
www.hellodigi.ir

http://technet24.ir

Mastering Ubuntu Server

Get up to date with the finer points of Ubuntu Server
using this comprehensive guide

Jay LaCroix

BIRMINGHAM - MUMBAI

www.hellodigi.ir

http://technet24.ir

Mastering Ubuntu Server

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1210716

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-452-6

www.packtpub.com

www.hellodigi.ir

www.packtpub.com
http://technet24.ir

Credits

Author
Jay LaCroix

Reviewers
David Diperna

Robert Stolk

Acquisition Editor
Prachi Bisht

Content Development Editor
Trusha Shriyan

Technical Editor
Vishal K. Mewada

Copy Editor
Madhusudan Uchil

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.hellodigi.ir

http://technet24.ir

About the Author

Jay LaCroix is an open-source enthusiast, specializing in Linux. He is passionate
about Linux and its long-term adoption, and has been using Linux since 2002. Jay
currently works as a DevOps Engineer for SolvIT Inc, and he holds a masters degree
in Information Systems Technology Management from Capella University. During
the course of his studies, he's obtained several certifications, including Linux+,
LPIC-2, and SUSE Certified Linux Professional, among others. In addition to a great
career working with Linux technologies, Jay also has a YouTube channel, available
at LearnLinux.tv, where he posts instructional tutorial videos demonstrating how
to utilize Linux and open-source technologies. When not practicing with technology,
Jay enjoys photography, music, classic video-games and writing. He has also written
Linux Mint Essentials and Mastering Linux Network Administration, also published
by Packt Publishing.

www.hellodigi.ir

http://technet24.ir

Acknowledgments

First and foremost, I would like to thank Randy Schapel at Mott Community
College for conducting a Linux class back in 2002 that was responsible for creating
a life-long addiction for me. During a time where Linux wasn't nearly as popular
as it is today, that class spring-boarded my career and passion. In addition, I would
also like to thank Packt Publishing for the wonderful opportunity I've been given,
to share my knowledge with others. I never would've thought I'd be a published
author, but here I am. It's hard to believe, but this is my third book, and writing it
has been an incredibly enjoyable experience. I would like to thank Prachi Bisht for
the opportunity of writing this book in particular, and Trusha Shriyan for supporting
me as it was being written. In addition, I would also like to thank James Jones
for introducing me to writing for Packt in the first place, back in 2014. I would
also like to thank everyone else I've worked with at Packt, who have all been
very supportive.

I would like to thank my best friend Krys for being there for me, Jim for his help and
support, my two sons Alan and Johnny for being great kids, and my family on the
Sherman side for not only being amazing, but also very supportive. I would like to
thank the team at Security Inspection for being an amazing group of people to
work with.

Last but certainly not least, I would like to thank my readers for their continued
support as well as all my viewers and subscribers on my Youtube channel. It's a
pleasure and an honor to create content to help you all advance your careers.

www.hellodigi.ir

http://technet24.ir

About the Reviewers

David Diperna is a Linux system administrator who graduated from Oakland
University with degrees in computer science and psychology. His work consists of
multiple projects in different areas of Linux, but his main focus is on monitoring and
logging solutions. Currently, he is working towards the CompTIA Linux+ and AWS
sysops certifications and plans to complete his master's degree in computer science.

I'd like to thank Packt Publishing for the opportunity and Jay for
his support.

Robert Stolk is an IT professional and has been working in the IT business for
18 years. He lives in the city of Rotterdam in the Netherlands.

He has experience as a Unix/Linux engineer, storage manager, technical application
manager, and functional application manager in the area of ISPs, post office, (mobile)
telecommunication, energy, hospitals, tax office, and banking.

He has fair knowledge of and uses the following Linux distributions at home and
professionally: Ubuntu, Debian, RedHat, and CentOS.

Currently, he works for Olgreen in Almere, the Netherlands, as a technical specialist.

On his current project, he is the functional application manager of mobile applications.

www.hellodigi.ir

http://technet24.ir

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.hellodigi.ir

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
mailto:service@packtpub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
http://technet24.ir

www.hellodigi.ir

http://technet24.ir

[i]

Table of Contents
Preface	 v
Chapter 1: Deploying Ubuntu Server	 1

Setting up our lab	 2
Determining your server's role	 3
Obtaining Ubuntu Server	 4
Deciding between 32-bit and 64-bit installations	 6
Creating a bootable Ubuntu Server flash drive (Windows)	 7
Creating a bootable Ubuntu Server flash drive (Linux)	 10
Creating a bootable Ubuntu Server flash drive (Mac)	 13
Planning the partition layout	 16
Installing Ubuntu Server	 18
Installing Ubuntu Server (Raspberry Pi)	 37
Summary	 39

Chapter 2: Managing Users	 41
Understanding when to use root	 42
Creating and removing users	 43
Understanding the /etc/passwd and /etc/shadow files	 49
Distributing default configuration files with /etc/skel	 53
Switching between users	 54
Managing groups	 56
Managing passwords and password policies	 59
Configuring administrator access with sudo	 63
Setting permissions on files and directories	 67
Summary	 74

www.hellodigi.ir

http://technet24.ir

Table of Contents

[ii]

Chapter 3: Managing Storage Volumes	 75
Viewing disk usage	 76
Adding additional storage volumes	 80
Partitioning and formatting volumes	 84
Mounting and unmounting storage volumes	 87
Understanding the /etc/fstab file	 89
Managing swap	 94
Utilizing LVM volumes	 97
Using symbolic and hard links	 106
Summary	 109

Chapter 4: Connecting to Networks	 111
Setting the hostname	 112
Managing network interfaces	 114
Assigning static IP addresses	 118
Understanding Linux name resolution	 122
Understanding Network Manager	 124
Getting started with OpenSSH	 125
Getting started with SSH key management	 129
Simplifying SSH connections with a ~/.ssh/config file	 133
Summary	 134

Chapter 5: Managing Software Packages	 135
Understanding Linux package management	 136
Installing and removing software	 138
Searching for packages	 142
Managing software repositories	 144
Keeping your server up to date	 149
Backing up and restoring packages	 156
Making use of aptitude	 157
Installing Snap packages	 160
Summary	 163

Chapter 6: Controlling and Monitoring Processes	 165
Showing running processes with the ps command	 166
Managing jobs	 171
Killing misbehaving processes	 174
Utilizing htop	 176
Managing system processes	 179
Monitoring memory usage	 184
Scheduling tasks with Cron	 188
Understanding load average	 190
Summary	 193

www.hellodigi.ir

http://technet24.ir

Table of Contents

[iii]

Chapter 7: Managing Your Ubuntu Server Network	 195
Planning your IP address scheme	 195
Serving IP addresses with isc-dhcp-server	 199
Setting up name resolution (DNS) with bind	 204
Creating a secondary DNS server	 211
Setting up an Internet gateway	 215
Keeping your system clock in sync with NTP	 217
Summary	 220

Chapter 8: Accessing and Sharing Files	 221
File server considerations	 221
Sharing files with Windows users using Samba	 223
Setting up NFS shares	 229
Transferring files with rsync	 233
Transferring files with SCP	 238
Mounting remote filesystems with SSHFS	 241
Summary	 243

Chapter 9: Managing Databases	 245
Preparations for setting up a database server	 246
Installing MariaDB	 248
Taking a look at MariaDB configuration	 251
Understanding how MariaDB differs in Ubuntu 16.04	 254
Managing databases	 255
Setting up a slave DB server	 262
Summary	 267

Chapter 10: Serving Web Content	 269
Installing and configuring Apache	 269
Installing additional Apache modules	 276
Securing Apache with SSL	 278
Setting up high availability with keepalived	 285
Installing and configuring ownCloud	 290
Summary	 295

Chapter 11: Virtualizing Hosts and Applications	 297
Setting up a virtual machine server	 298
Creating virtual machines	 306
Bridging the virtual machine network	 311
Creating, running, and managing Docker containers	 315
Summary	 323

www.hellodigi.ir

http://technet24.ir

Table of Contents

[iv]

Chapter 12: Securing Your Server	 325
Lowering your attack surface	 326
Securing OpenSSH	 330
Installing and configuring Fail2ban	 334
MariaDB best practices	 338
Setting up a firewall	 341
Encrypting and decrypting disks with LUKS	 344
Locking down sudo	 346
Summary	 347

Chapter 13: Troubleshooting Ubuntu Servers	 349
Evaluating the problem space	 350
Conducting a root-cause analysis	 352
Viewing system logs	 354
Tracing network issues	 359
Troubleshooting resource issues	 364
Diagnosing defective RAM	 368
Summary	 372

Chapter 14: Preventing and Recovering from Disasters	 373
Preventing disasters	 374
Utilizing Git for configuration management	 376
Implementing a backup plan	 383
Creating system images with Clonezilla live	 386
Utilizing bootable recovery media	 399
Summary	 403

Index	 405

www.hellodigi.ir

http://technet24.ir

[v]

Preface
Ubuntu is an exciting platform. You can find it everywhere—desktops, laptops,
phones, and especially servers. The Server edition enables administrators to create
efficient, flexible, and highly available servers that empower organizations with
the power of open source. As Ubuntu administrators, we're in good company—
according to W3Techs, Ubuntu is the most widely deployed distribution on the Web
in regards to Linux. With the release of Ubuntu 16.04, this platform becomes even
more exciting!

In this book, we will dive right into Ubuntu Server and learn all the concepts needed
to manage our servers and configure them to perform all kinds of neat tasks, such as
serving web pages, managing virtual machines, and sharing data with other users,
among many other things. We'll start our journey right in the first chapter, where
we'll walk through the installation of Ubuntu Server 16.04, which will serve as the
foundation for the rest of the book. As we proceed through the journey, we'll look
at managing users, connecting to networks, and controlling processes. Later, we'll
implement important technologies such as DHCP, DNS, Apache, and MariaDB,
among others. We'll even set up our own ownCloud server along the way.

Finally, the end of the book will cover various things we can do in order to
troubleshoot issues, as well as prevent and recover from disasters.

What this book covers
Chapter 1, Deploying Ubuntu Server, covers the installation process for Ubuntu Server.
This chapter will walk you through creating bootable media on various operating
systems, planning the partition layout, and going through the installation process.
Installation on the Raspberry Pi is also covered.

www.hellodigi.ir

http://technet24.ir

Preface

[vi]

Chapter 2, Managing Users, covers user management in full. Topics here include
creating and removing users, password policies, the sudo command, group
management, and switching from one user to another.

Chapter 3, Managing Storage Volumes, takes a look at storage volumes. You'll be shown
how to view disk usage, format volumes, manage the /etc/fstab file, utilize LVM,
and more. In addition, we'll look at managing swap and creating links.

Chapter 4, Connecting to Networks, takes a look at networking in Ubuntu,
specifically how to connect to resources from other nodes. We'll look at
assigning IP addresses, connecting to other nodes via OpenSSH, using
Network Manager, and name resolution.

Chapter 5, Managing Software Packages, takes you through the process of searching
for, installing, and managing packages. This will include a look at managing apt
repositories, installing packages, and keeping your server up to date. This will even
include a look at Snappy packages, which is a promising new package format for
Ubuntu systems.

Chapter 6, Controlling and Monitoring Processes, teaches you how to understand what
is running on the server, as well as how to stop misbehaving processes. This will
include a look at htop, systemd, managing jobs, and understanding load average.

Chapter 7, Managing Your Ubuntu Server Network, revisits networking with more
advanced concepts. In this chapter, you will learn more about the technologies that
glue your network together, such as DHCP and DNS. In this chapter, you will set up
your own DHCP and DNS server and install NTP.

Chapter 8, Accessing and Sharing Files, is all about sharing files with others. Concepts
will include the setting up of Samba and NFS network shares and will even go over
transferring files manually with rsync and scp.

Chapter 9, Managing Databases, takes you on a journey through setting up and
managing databases via MariaDB. You will learn to install MariaDB, set up
databases, and create a slave database server.

Chapter 10, Serving Web Content, takes a look at serving content with Apache.
In addition, you will be shown how to secure Apache with an SSL certificate,
manage modules, and set up keepalived. Setting up OwnCloud is also covered.

Chapter 11, Virtualizing Hosts and Applications, is all about virtualization. You will
be walked through setting up your very own KVM installation, as well as utilizing
Docker for containing individual applications.

www.hellodigi.ir

http://technet24.ir

Preface

[vii]

Chapter 12, Securing Your Server, takes a look at various things you can do in order to
strengthen security on Ubuntu servers. Topics will include concepts such as lowering
the attack surface, securing OpenSSH, and setting up a firewall, among others.

Chapter 13, Troubleshooting Ubuntu Servers, consists of topics relating to things we
can do when our deployments don't go exactly according to plan. You will also
investigate the problem space, view system logs, and trace network issues.

Chapter 14, Preventing and Recovering from Disasters, informs you of various strategies
that can be used to prevent and recover from disasters. This will include a look at
utilizing Git for configuration management, implementing a backup plan, creating
hard disk images with Clonezilla, and more.

What you need for this book
This book covers Ubuntu Server in depth, and in order to follow along, you'll need
to download Ubuntu Server 16.04 and have a machine or two to practice on. It really
doesn't matter if you use virtual or physical machines, as the nature of the machine
is irrelevant so long as it can run Ubuntu. Virtual machines have the added benefit of
snapshots, which you can use to test and roll back modifications to the server.

In the case of virtual machines, it's recommended to use bridged mode for
networking so that each VM can see each other easily over the network. It's a
good idea to use multiple machines if you can, since several chapters will include
networking concepts, such as connecting to other hosts via SSH, setting up a website,
and accessing databases.

You'll need to create bootable media in order to install Ubuntu Server.
On physical servers, this will require either a blank CD or empty flash drive.
In the first chapter, the installation process will be covered and will include a
walkthrough on creating bootable media. Ubuntu Server is available online at
http://www.ubuntu.com/server.

Since Ubuntu Server doesn't include a graphical user interface by default, it can run
on relatively modest hardware. As long as you have 512 MB of RAM and 8 GB of
hard disk space available, you should be in good shape. Raspberry Pi users will need
an available SD card, preferably 8 GB or larger. Raspberry Pi models 2 and 3 are
supported by Ubuntu Server.

www.hellodigi.ir

http://www.ubuntu.com/server
http://technet24.ir

Preface

[viii]

Who this book is for
This book is for readers who already have some experience with Linux, though
it doesn't necessarily have to be with Ubuntu. Preferably, you have basic Linux
command line skills, such as changing directories, listing contents, and issuing
commands as regular users or with root. Even if you don't have these skills, you
should read this book—the opening chapters will cover many of these concepts.

In this book, we'll take a look at real-world situations in which we can deploy
Ubuntu Server. This will include the installation process, serving web pages,
setting up databases, and much more. Specifically, the goal here is to be productive.
Each chapter will teach you a new and valuable concept, using practical examples
that are relative to real organizations. Basically, we focus on getting things done,
not primarily on theory. Although the theory that goes into Linux and its many
distributions is certainly interesting, the goal here is to get you to the point where
if a work colleague or client asks you to perform work on an Ubuntu-based server,
you'll be in a good position to get the task done. Therefore, if your goal is to get up
and running with Ubuntu Server and learn the concepts that really matter, this book
is definitely for you.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"MySQL and MariaDB create their log files in the /var/log/mysql directory."

A block of code is set as follows:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;

www.hellodigi.ir

http://technet24.ir

Preface

[ix]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[Documents]
 path = /share/documents
 force user = myuser
 force group = users
 public = yes
 writable = no

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Any command line input or output is written as follows:

dpkg --get-selections > installed_packages.txt

Some commands need to be executed as the root user or with sudo. I'll mark these
commands with the hash symbol (#) such as in the following example:

apt-get install openssh-server

If you don't see a hash symbol preceding a command, then sudo or root privileges
aren't necessary for you to run it. But if you do see this symbol, take note that you'll
need root privileges. I won't always remind you of this beforehand. In most cases, it
usually doesn't matter if you use sudo or switch to the root user, I'll leave that up to
you. But if it does matter in a particular example, I will let you know.

www.hellodigi.ir

http://technet24.ir

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/MasteringUbuntuServer_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.hellodigi.ir

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/MasteringUbuntuServer_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringUbuntuServer_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://technet24.ir

Preface

[xi]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir

[1]

Deploying Ubuntu Server
Ubuntu Server is an extremely powerful distribution for servers and network
appliances. Whether you're setting up a high-end database host or a small office file
server, the flexible nature of Ubuntu Server will meet and surpass your needs. In this
book, we'll walk through all the common use-cases to help you get the most out of
this exciting platform. In this chapter in particular, I'll guide you through the process
of deploying Ubuntu Server on your system. We'll start off with some discussion on
best practices, and then we'll obtain the software and create our installation media.
Next, I'll give you a step by step rundown of the entire installation procedure. By
the end of this chapter, you'll have an Ubuntu Server installation of your own to use
throughout the remainder of this book. I'll even show you the process of installing
Ubuntu Server on a Raspberry Pi for good measure.

In particular, we will cover:

•	 Setting up our lab
•	 Determining your server's role
•	 Obtaining Ubuntu Server
•	 Deciding between 32-bit and 64-bit installations
•	 Creating a bootable Ubuntu Server flash drive (Windows)
•	 Creating a bootable Ubuntu Server flash drive (Linux)
•	 Creating a bootable Ubuntu Server flash drive (Mac)
•	 Planning the partition layout
•	 Installing Ubuntu Server
•	 Installing Ubuntu Server (Raspberry Pi)

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[2]

Setting up our lab
The first thing for us to do is to set up our environment. For the purposes of this
book, it really doesn't matter what kind of hardware you use, if you even use
physical hardware at all (virtual machines are also fine). If you have physical server
hardware available to you, then by all means use it. Practicing on physical hardware
is always preferred if you can, though not everyone has the money (or even the
available space) to set up a complete lab. Nowadays, processing power and memory
is cheaper than it's ever been, and the typical home PC is capable of running several
virtual machines. Even better, software such as VirtualBox is free, so even if you
have no budget at all, there are definitely options available to you. Perhaps you
already have a server or two in your rack at work just waiting to be deployed, in
which case, this will be even more exciting and fun. In the case of VirtualBox, it can
be downloaded from here: https://www.virtualbox.org.

While I always prefer physical hardware, virtual machines have one major
advantage. Not only are they easy to create and destroy at will, they are perfect for
testing new or proposed solutions because you can easily take a snapshot of a VM
and restore it if an experiment blows up in your face. In my case, it's common for
me to create a virtual machine of a Linux distribution, fully update it, and then take
a snapshot before making any changes. That way, I always have a base version of
the OS to fall back on if I muck it up. Testing software roll-outs on virtual machines
before graduating a solution to production is a good habit to get into anyway.

This book makes no assumptions regarding your environment, because the
hardware one has access to differs from person to person. While the installation
procedure for Ubuntu Server differs based on hardware (for example, perhaps your
server doesn't have a physical optical drive, forcing you to use USB media instead of
a CD), all other concepts contained throughout will be the same regardless.

With that said, once we run through the install procedure, feel free to install Ubuntu
Server on as many devices or VMs as you can. If I can make any recommendation,
it would be to utilize both physical and virtual servers if you can. Not because this
book requires you to, but because it's a good habit to get into. If all else fails, cloud
Virtual Private Server (VPS) providers such as Linode and Digital Ocean have
Ubuntu Server available as an option for a small monthly fee. See the following
URLs for more information on those providers:

•	 https://www.digitalocean.com

•	 https://www.linode.com

www.hellodigi.ir

https://www.virtualbox.org
https://www.digitalocean.com
https://www.linode.com
http://technet24.ir

Chapter 1

[3]

These cloud providers are great if you wish to get a server up and running quickly
or if your goal is to set up a server to be available in the cloud. With that said, all you
need to do is have Ubuntu Server installed on something (basically anything at all)
and you're ready to follow along.

Determining your server's role
While at this point your goal is most likely to set up an Ubuntu Server installation
for the purposes of practicing the concepts contained within this book, it's also
important to understand how a typical server roll-out is performed. Every server
must have a purpose, also known as its Role. This role could be that of a database
server, web server, and so on. Basically, it's the value the server adds to your
network or your organization. Sometimes, servers may be implemented solely for
the purpose of testing experimental code. And this is important too—having a test
environment is a very common (and worthwhile) practice.

Once you understand the role your server plays within your organization, you
can plan for its importance. Is the system mission critical? How would it affect
your organization if for some reason this server malfunctioned? Depending on the
answer to this question, you may only need to set up a single server for this task, or
you may wish to plan for redundancy such that the server doesn't become a central
point of failure. An example of this may be a DNS server, which would affect your
colleague's ability to resolve local host names and access required resources. It may
make sense to add a second DNS server to take over in the event that the primary
server becomes unavailable.

Another item to consider is how confidential the data residing on a server is going
to be for your environment. This directly relates to the installation procedure we're
about to perform, because you will be asked whether or not you'd like to utilize
encryption. The encryption that Ubuntu Server offers during installation is known as
encryption at rest, which refers to the data stored within the storage volumes on that
server. If your server is destined to store confidential data (accounting information,
credit card numbers, employee or client records, and so on), you may want to
consider making use of this option. Encrypting your hard disks is a really good idea
to prevent miscreants with local access from stealing data. As long as the miscreant
doesn't have your encryption key, they cannot steal this confidential information.
However, it's worth mentioning that anyone with physical access can easily destroy
data (encrypted or not), so definitely keep your server room locked!

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[4]

At this point in the book, I'm definitely not asking you to create a detailed flow chart
or to maintain an IP roll-out spreadsheet, just to keep in mind some concepts that
should always be part of the conversation when setting up a new server. It needs
to have a reason to exist, it should be understood how critical and confidential the
server's data will be, and the server should then be set up accordingly. Once you
practice these concepts as well as the installation procedure, you can make up your
own server roll-out plan to use within your organization going forward.

Obtaining Ubuntu Server
For starters, we'll need to get our hands on Ubuntu Server and then create bootable
installation media in order to install it. How you do this largely depends on your
hardware. Does your server have an optical drive? Is it able to boot from USB?
Refer to the documentation for your server in order to find out. In most cases,
it's a very good idea to create both a bootable CD and USB media of Ubuntu Server
while you're at it. That way, regardless of how your server boots, you're most
likely covered.

Unfortunately, the differing age of servers within a typical data center introduces
some unpredictability when it comes to how to boot installation media. When I first
started with servers, it was commonplace for all servers to contain a 3.5 inch floppy
disk drive, and some of the better ones even contained a CD drive. Nowadays,
servers typically contain neither and only ship with an optical drive if you ask
for one nicely while placing your order. If a server does have an optical drive, it
typically will go unused for an extended period of time and become faulty without
anyone knowing until the next time someone goes to use it. Some servers boot from
USB; others don't. In order to continue, check the documentation for your hardware
and plan accordingly. Your server's capabilities will determine which kind of media
you'll need to create.

Thankfully, we only need to download a single file in order to create our media,
regardless of whether or not we plan on creating USB or CD media. To get started,
navigate to http://www.ubuntu.com/ in your browser, which will bring you to the
main site for Ubuntu. On the top right, there will be a download button, and if you
hover your cursor over that, you'll see an option for the Server version. Alternatively,
you can simply Google Ubuntu Server and it should be the first result, or close. Just
make sure the URL in the search result has a domain of ubuntu.com before you
click on it. The file that you download will be an ISO file, ending with a .iso file
extension. This is an image file that we will later use to create bootable media.

www.hellodigi.ir

http://www.ubuntu.com/
http://technet24.ir

Chapter 1

[5]

When this book was written, Ubuntu Server 16.04 is the most recent version.
Depending on when you're reading this, the next release, 16.10 (or newer) may
also be available. So, on the Ubuntu website, you may have a choice between LTS
and non-LTS. Ubuntu 16.04 is Long-Term Support (LTS) while 16.10 is not. What
does this mean? Essentially, whether or not an Ubuntu release is an LTS release
determines the length of time it will be supported with security updates. Non-LTS
releases are supported with security updates for just nine months, while LTS releases
are supported for five years. This makes LTS releases perfect for servers, since it's not
typical for an administrator to upgrade the entire distribution frequently. Non-LTS
releases can be very handy for testing code on a newer software stack, but that's the
only reason I can think of to consider a non-LTS release on a server. When in doubt,
stick with LTS.

Periodically throughout the life cycle of an LTS release of Ubuntu, several
"point releases" are published. These are similar to service packs in
comparison with Windows, as they contain current software and security
updates built in. They also contain the latest hardware drivers. Point
releases for Ubuntu Server 16.04 will be 16.04.1, 16.04.2, and so on. You
should always download the latest version as newer versions support
newer hardware.

If you're setting up a virtual machine, then the ISO file you download from the
Ubuntu download site will be all you need. In that case, all you should need to
do is create a VM, attach the ISO to the virtual optical drive, and boot it. From there,
the installer should start, and you can proceed with the installation procedure
contained within this chapter. Going over the process of booting an ISO image on
a virtual machine differs from hypervisor to hypervisor, so going over the process
on each would be beyond the scope of this book. Thankfully, the process is usually
straight-forward and you can find the details within the documentation of your
hypervisor or from performing a quick Google search.

As I mentioned before, I recommend creating both a bootable USB and bootable
CD. This is due to the fact that you'll probably run into situations where you have
a server that doesn't boot from USB, or perhaps your server doesn't have an optical
drive and the USB key is your only option. In addition, the Ubuntu Server boot
media also makes great recovery media if for some reason you need to rescue a
server. To create a bootable CD, the process is typically just a matter of downloading
the ISO file and then right-clicking on it. In the right-click menu, you should have an
option to burn to disc or similar. This is true of Windows, as well as most graphical
desktop environments of Linux when a disc burning application installed. If in
doubt, Brasero is a good disc burning utility to download for Linux.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[6]

The exact procedure differs from system to system, mainly because there is a
vast amount of software combinations at play here. For example, I've seen many
Windows systems where the right-click option to burn a CD was removed by
an installed CD/DVD burning application. In that case, you'd have to first open
your CD/DVD burning application and find the option to create media from a
downloaded ISO file. As much as I would love to outline the complete process here,
no two Windows PCs typically ship with the same CD/DVD burning application.
The best rule of thumb is to try right-clicking on the file to see if the option is there,
and if not, refer to the documentation for your application. Keep in mind that a "Data
Disc" is not what you want, so make sure to look for the option to create media from
an ISO image or your disc will be useless.

At the time of writing, the Ubuntu Server ISO image will fit on a standard
700 MB CD-R disc. However, the desktop flavors will require a writable
DVD, and each release of Ubuntu is larger than previous ones, so at some
point perhaps the server version will require a writable DVD as well. If
the image size is over 700 MB, be sure to grab a blank DVD instead.

Creating a bootable USB is a bit more involved but easier to outline in steps, since
each platform has a generally agreed upon method of creating them. In Linux, we
can use ddrescue, or simply dd, while in Windows we can use the Universal USB
installer from http://www.pendrivelinux.com/. In later section in this chapter,
I'll outline the procedure of creating a bootable USB in Windows, Linux, and Mac.

Deciding between 32-bit and 64-bit
installations
You might be wondering which version of Ubuntu Server (32-bit or 64-bit) you
should download and install. After all, it does give you an option for both when
you go to fetch the ISO image. So, which one should you go for? Nowadays, most
(if not all) servers that are currently being sold are compatible with 64-bit operating
systems. In fact, the majority of end-user PCs are also compatible with 64-bit
operating systems. However, it's often the case that you may have older hardware
lying around, so any existing servers you already have may or may not contain
processors with 64-bit registers. Generally speaking, though, the 64-bit version is
recommended, but the decision really comes down to whether or not you wish to
run legacy 32-bit applications and what your hardware is able to support.

www.hellodigi.ir

http://www.pendrivelinux.com/
http://technet24.ir

Chapter 1

[7]

Is a legacy application causing you to consider going with a 32-bit installation?
It's often the case that legacy applications remain in use for quite some time in the
enterprise, but thankfully 32-bit applications will run just fine (most of the time) in
a 64-bit Linux installation, providing that the libraries required for the application
have 32-bit versions available in Ubuntu's software repositories. We'll discuss
software repositories and installing applications in more detail in Chapter 5,
Managing Software Packages.

Often, the decision between 32-bit and 64-bit may come down to the misconception
that 32-bit operating systems are unable to utilize more than 4 GB of RAM. In the
Microsoft world, it's common to install 32-bit Windows on computers with less than
4 GB of RAM, and 64-bit Windows on computers with 4 GB or more. This is due to
32-bit versions of Windows being unable to utilize an address space of more than
4 GB. What many aren't aware of, however, is that this limitation is exclusive to
Windows. Many 32-bit Linux distributions can access much more than 4 GB of RAM,
by way of utilizing a Physical Address Extension (PAE), which is compiled into the
kernel of most Linux distributions nowadays. Since Ubuntu 16.04 is able to utilize
PAE, it can access more than 4 GB of RAM. If you prefer to use a 32-bit operating
system and are concerned whether or not Ubuntu will be able to utilize all of your
memory, you can forget your worries. It can support up to 64 GB!

If you're in doubt, choose the 64-bit version of Ubuntu on any computer or server
you wish to install it on, unless you have a very specific use-case which makes the
decision for you. You should consider the 32-bit version only when you need to run
legacy applications or wish to install the distribution on a legacy server. With this
discussion out of the way, we can move on to actually getting some Ubuntu Server
installations going. Go ahead and download the Ubuntu Server ISO image from
the Ubuntu website and then follow along with the relevant section for creating a
bootable flash drive with your OS.

Creating a bootable Ubuntu Server flash
drive (Windows)
In this section, I'll walk you through the procedure for creating a bootable flash drive
for Ubuntu Server for those of you currently running Windows on your workstation:

1.	 To get started, grab a flash drive that's 1 GB or larger and insert it into your
PC. You'll also need to download the Universal USB installer from the
pendrivelinux website. You can find it at http://www.pendrivelinux.
com/universal-usb-installer-easy-as-1-2-3. This executable doesn't
actually install anything on your system, it will run from wherever
you saved it.

www.hellodigi.ir

http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3
http://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3
http://technet24.ir

Deploying Ubuntu Server

[8]

2.	 Once the application is open, click on the Step 1 drop-down box and select
Ubuntu Server Installer from the list of available Linux distributions. Next,
click on Browse and select the Ubuntu Server ISO image you downloaded
earlier. Then, select your flash drive in the Step 3 drop-down box and then
click on Create. When you've selected all your options, your application
should look like this:

Utilizing the Universal USB installer to create a bootable flash drive in Windows

3.	 At this point, you'll see a confirmation dialog box appear, giving you one
last chance to abort the process in case you selected an incorrect drive.
Double-check that you've selected the proper drive and then click on Yes:

www.hellodigi.ir

http://technet24.ir

Chapter 1

[9]

Confirming your selections for creating a bootable flash drive

4.	 Next, you'll see a new dialog box open that will show you the progress as
your flash drive is formatted and converted:

Flash drive creation in progress

This process will take about 5 minutes or so to complete, depending on the speed of
your flash drive and your computer. Once it's finished, remove the flash drive from
your PC and you should be good to go.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[10]

It's a good idea to keep the Universal USB installer around even
after you're finished using it, as it is a handy tool for creating
bootable media for more than just Ubuntu Server. In fact, all of the
distributions within the Ubuntu family are featured, as well as others
such as OpenSUSE and Fedora. If nothing else, you can use it to
recreate your server media when the next point release comes out so
that you're always installing the latest version.

Creating a bootable Ubuntu Server flash
drive (Linux)
On Linux systems, we can use either ddrescue or dd to create our bootable media.
In the case of ddrescue, you'll first need to install the package on your system.
If your distribution is Debian-based, you should be able to install it with the
following command:

apt-get install gddrescue

If your distribution is not Debian-based, use your distribution's package manager
to install gddrescue. If this package is not available to you in your chosen
platform, you can always fall back to the dd command, which I will also give
you in this section.

With the gddrescue package installed, we can move on. Make sure the flash drive
is inserted into your PC. Next, we'll need to run the following command in order to
determine the name the system has provided for our flash drive:

fdisk -l

From the output, you should be able to deduce which of the listed drives refers to
your flash drive. In my case, /dev/sdc is mine. I know this because the partition
/dev/sdc1 is formatted as FAT32, and I don't have any other partition formatted
this way:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[11]

Output from the fdisk -l command

If you are at all unsure which drive is which, you may consider executing the fdisk
-l command before and after inserting your flash drive and comparing the results.
For the remaining examples in this section, I will use /dev/sdc for the commands.
However, please make sure that you change this to match however your flash drive
is named. If you format the wrong drive, you'll lose data (or worse, end up with a PC
that won't start the next time you turn it on). Pay careful attention here!

Now that we know the device name for our flash drive, we can begin creating our
media. If you have ddrescue available to you, use the following command:

ddrescue -d -D --force <path and file name of the ISO> /dev/<device
name>

For example, in my case, the command is the following:

ddrescue -d -D --force /home/user/downloads/ubuntu-16.04-server-amd64.
iso /dev/sdc

Be sure to replace /dev/sdc with the device name of your flash
drive and the name of the ISO with the filename and path of the
Ubuntu Server ISO you downloaded earlier.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[12]

With the example ddrescue command I provided, pay special attention to the fact
that I did not identify a partition for the dd command. For example, I didn't use
/dev/sdc1, I used simply /dev/sdc. This is important—the flash drive will not be
bootable if you targeted a specific partition. After all, the ISO image is an image of an
entire disk, not just a single partition.

As for the options I chose, I'm choosing direct disk access for input and output (the
-d and -D flags), forcing our device to be overwritten (the --force flag), and using
the full path and file name of our downloaded ISO and directing the output to /dev/
sdc. Once you start the process, it shouldn't take very long to complete. When it's
finished, you're ready to begin using it to install Ubuntu Server:

ddrescue in the process of creating a bootable flash drive

For those of you without ddrescue available, you can use dd instead:

dd if=/home/user/downloads/ubuntu-16.04-server-amd64.iso of=/dev/sdc
bs=1M; sync

Similar to the ddrescue command, in the example for dd I'm using the path and
filename of the Ubuntu Server ISO image as the input file (if=) and directing the
output file (of=) to be that of my flash drive (/dev/sdc) and a block size of 1 MB
(bs=1M). Unlike ddrescue, we won't see any fancy output with dd, but the process
should work just fine. Once finished, we'll be ready to plan our partition layout and
get our installation started.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[13]

Creating a bootable Ubuntu Server flash
drive (Mac)
The process for creating bootable USB media with Mac OS X is very similar to that
of Linux, but there's a little preparation to do first. After you download the ISO, as
mentioned earlier, we will need to convert the ISO file to the IMG format and then
write the media.

First, let's convert the downloaded ISO image.

Open a terminal and then execute the following command:

hdiutil convert -format UDRW -o <path_to_save_IMG_file> <path_to_ISO_
image>

In my case, the command is as follows:

hdiutil convert -format UDRW -o /Users/jay/ubuntu_server.img

/Users/jay/Downloads/ubuntu-16.04-server-amd64.iso

All you should need to do is change the paths accordingly. First, we're choosing the
path we want the created IMG file to be saved to, followed by the path to the Ubuntu
ISO. The following screenshot shows an example run of this process:

Converting the Ubuntu Server ISO to IMG format

With the conversion out of the way, we can run the following command to show
information regarding the disks which are currently attached to the system. We need
to do this so we know the device name OS X has given our USB drive, since we'll be
referring to it later:

diskutil list

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[14]

In the example screenshot, you can see what the process looks like on the system I
was using. In my case, I know my USB media is /dev/disk2, as it's the only thing
attached to the Mac, which is roughly 8 GB in size. In your case, double-check the
output of the diskutil list command and make a note of which entry is referring
to your USB media. If in doubt, run the command before and after inserting your
flash drive and compare the results:

Listing attached disks on a Mac system

Now that we know the device name of your USB media, we can continue with
the final command and perform the actual creation of our Ubuntu Server media.
But first, we should make sure that the flash drive is not mounted:

diskutil unmountDisk /dev/disk2

Be sure to change the device name to match the one you saw in the results of the
diskutil list command you performed earlier.

The following command will create our actual media:

sudo dd if=<path_to_IMG_file> of=<device_node_of_usb_media> bs=1m

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[15]

For example, using the paths and device name on my system, the command would
become the following:

sudo dd if=/Users/jay/ubuntu_server.img.dmg of=/dev/rdisk2 bs=1m

Here, I'm using the sudo command, which means that I want to run
the command using root privileges. From this point forward, I'll prefix
commands with # if you need to run the commands with root privileges.
It doesn't matter if you use sudo or switch to root whenever you see
this mark. (Just keep in mind that commands prefixed with # needs to be
executed either with root or sudo). Even though this section involves
using a Mac, I thought it would be worth bringing up.

The next screenshot shows an example run of this dd command:

Writing the Ubuntu Server IMG file to a USB flash drive

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[16]

Now that we have our media, you can remove it from your Mac and continue on and
get some installations going. Before we get into that, though, we should have a quick
discussion regarding partitioning.

Planning the partition layout
One of the many joys of utilizing Linux for server platforms is how flexible the
partitioning is. Partitioning your disk allows you to segregate your storage in order
to dedicate specific storage allocations to individual applications. For example, you
can dedicate a partition for the files that are shared by your Apache web server so
changes to other partitions won't affect it. You can even dedicate a partition for
your network file shares—the possibilities are endless. The names you create for the
directories where your partitions are mounted are arbitrary; it really doesn't matter
what you call them. The flexible nature of storage on Linux systems allows you to be
creative with your partitioning as well as your directory naming.

With custom partitioning, you're able to do some very clever things. For example,
with the right configuration you're able to wipe and reload your distribution while
preserving user data, logs, and more. This works because Ubuntu Server allows
you to carve up your storage any way you want during installation. If you already
have a partition with data on it, you can choose to leave it as is so you can carry it
forward into a new install. You simply set the directory path where it's mounted
the same, restore your configuration files, and your apps will continue working
as if nothing happened.

One very common example of custom partitioning in the real world is separating the
/home directory into its own partition. Since this is where users typically store their
files, you can set up your server such that a reload of the distribution won't disturb
user files. When they log in after a server refresh, all their files will be right where
they left them. You could even place the files shared by your Apache web server
onto their own partition and preserve those too. The possibilities are endless.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[17]

Another reason to utilize separate partitions may be to simply create boundaries or
restrictions. If you have an application running on your server that is prone to filling
up large amounts of storage, you can point that application to its own partition,
limited by size. An example of where this might be useful is an application's log files.
Log files are the bane of any administrator when it comes to storage. While helpful
if you're trying to figure out why something crashed, logs can fill up a hard disk if
you're not careful. In my experience, I've seen servers come to a screeching halt due
to log files filling up all the available free space on a server where everything was
on a single partition. The only boundary the application had was the entirety of
the disk.

While there are certainly better ways of handling excessive logging (log rotating, disk
quotas, and so on), a separate partition also would have helped. If the application's
log directory was on its own partition, it would be able to fill up that partition, but
not the entire drive. A full log partition will certainly cause issues, but it wouldn't
have been able to affect the entire server. As an administrator, it's up to you to weigh
the pros and the cons and develop a partitioning scheme that will best serve the
needs of your organization.

Running an efficient server is a matter of efficiently managing resources, users, and
security—and a good partitioning scheme is certainly part of that. Sometimes it's just
a matter of making things easier on yourself so that you have less work to do should
you need to reload your operating system. For the sake of following along with this
book, it really doesn't matter how you install or partition Ubuntu Server. The trick is
simply to get it installed—you can always practice partitioning later. After all, part of
learning is setting up a platform, figuring out how to break it in epic ways and then
fixing it up.

When we perform our installation in the next section, you'll have an opportunity
to partition your system any way you'd like. However, you don't have to—having
everything in one partition is fine too, depending on your needs.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[18]

Installing Ubuntu Server
Now, regardless of your platform, we should be ready to get an installation or two of
Ubuntu Server going. In the steps that follow, I'll walk you through the process.

1. To get started, all you should need to do is insert the media into your server
or device and follow the onscreen instructions to open the boot menu. The
key you press at the beginning of the POST process differs from one machine
to another, but it's quite often F10, F11, or F12. Refer to your documentation
if you are unsure, though most computers and servers tell you which key to
press at the beginning. You'll probably miss this window of opportunity the
first few times, and that's fine—to this day I still seem to need to restart the
machine once or twice to hit the key in time. Once you successfully boot from
the media, it should ask you to select your language. Use your arrow keys to
change the selection, then press Enter:

Language selection at the beginning of the installation process

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[19]

2.	 Next, we'll be brought to the installation menu, where we'll have a few
options. We can get right into the installation process by pressing Enter to
choose the first option (Install Ubuntu Server), though a few of the other
options may be useful to you:

Main menu of the Ubuntu installer

First, this menu also offers you an option to Check disc for defects. Although
I'm sure you've done well in creating your media, all it takes is for a small
corruption in the download or with the dd command and you would end up
with invalid media. This is extremely rare—but it does happen from time to
time. If you have the extra time, it may make sense to verify your media.

If boot media created from your PC is constantly corrupted
or invalid, try creating the media from another machine
and test your PC's memory. You can test memory right
from the Ubuntu Server installation media.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[20]

Second, this menu gives you the option to Test memory. This is an option
I've found myself using far more often than I'd like to admit. Defective
RAM on computers and servers is surprisingly common and can cause all
kinds of strange things to happen. For one, defective RAM may cause your
installation to fail. Worse, your installation could also succeed—and I say
that's worse due to the fact you'd find out about problems later rather than
right away. While doing a memory test can add considerable time to the
installation process, I definitely recommend it, especially if the hardware is
new and hasn't ever been tested at all. In fact, I make it a process to test the
RAM of all my servers once or twice a year, so this media can be used as a
memory tester any time you need one. The Rescue a broken system option is
also useful to recover systems that, for some reason, are unable to boot at all.
From this point forward, we will progress through quite a few screens in
order to customize our installation. I'll guide you along the way.

3. To navigate the installer, you simply use the arrow keys to move up and
down to select different options, press Enter to confirm choices, and you
press Tab to select between different buttons. The installer is pretty easy
to navigate once you get the hang of it. Anyway, after you enter the actual
installation process, the first screen will ask you to Select a language. Go
ahead and do so. Please note that this selection refers to the language used
for the installation process, not necessarily the language that will be used by
default on your installation:

Language selection screen

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[21]

4.	 On the Select your location screen, choose the area that is closest to you.
As the installer notes, this will set your time zone and system locale:

Selecting the system locale and time zone

5.	 On the Configure the keyboard screen, you'll be given an option to have
the installer automatically detect your keyboard. I recommend choosing No
because it's just as easy (if not faster) to select it yourself. If you choose No,
the next screen will ask you for your keyboard type.

Keyboard configuration during the Ubuntu Server installation procedure

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[22]

6. On the next screen, I chose English (US), but make sure you choose the
country of origin that best represents your keyboard:

Selecting the country of origin for your keyboard

7. Next, you choose your actual keyboard layout. Once you've highlighted
yours, press Enter to continue:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[23]

Selecting the keyboard layout

8.	 After several progress bars complete, you'll be brought to the Configure the
network screen, where the installer will ask you to choose a Hostname for
your server. The hostname is basically the name that will appear in your
command prompt and on your network if you open up file shares to others.
Enter whatever you'd like for this and then choose Continue. If you're
indecisive, we can always change this later (and I'll show you how to
do so in future chapters).

Entering in the host name for the new server

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[24]

9. On the Set up users and passwords screen, the installer will ask you for
the Full name for the new user that will be created. Unlike Debian (on
which Ubuntu Server is based), the root account is disabled by default. We
can always enable this later, but with the way Ubuntu Server sets up your
system, the user account you create during the installation process will
be given sudo rights, which will allow that user to perform commands as
root with the sudo command. We'll discuss sudo in more detail in the next
chapter, so don't worry if you've never worked with this before. Anyway,
put in the full name of the first user and continue on:

Creating a system user for Ubuntu Server

10. Next, the installer will ask you for the username for the sudo user. This will
be the name you'll use to log in:

Selecting a user name

11. The next screen will ask you to enter and then confirm your password for our
sudo user. Enter it both times, and we'll continue on:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[25]

Entering in the password for the system user

12.	 The final screen of the Set up users and passwords section will ask if you'd
like to encrypt the home directory of your sudo user:

Choosing whether or not to encrypt the home directory for the system user

Although we'll talk more about encryption in Chapter 12, Securing Your
Server, it's important to note that this is a bit different than doing full-
disk encryption with software such as Linux Unified Key Setup (LUKS).
Although there is a way you can go back and encrypt your home directory
later, it's a relative pain. Therefore, if you'd like your home directory
encrypted, you may as well do it now. Whether or not you do this is up
to you, but if you do, it will make the contents of your home directory
completely private should an unauthorized person get a hold of your
server's hard disk. As a basic rule of thumb, if you're storing private data,
encrypt. Otherwise, don't.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[26]

13. On the next screen, the installer will recommend a time-zone based on your
earlier choices. This is usually correct, but if it's not, you can select your
time-zone from a list. With that out of the way, let's continue on.

Confirming time zone selections

14. Now comes the fun part, partitioning your system. As we discussed earlier
in this chapter, creative partitioning can make your system easier to manage.
Whatever you've decided in regards to partitioning, you'll implement that
plan here.

Choosing a partitioning method

15. If you want to get through the installer quickly and you don't plan
on any partitioning, you can select Guided – use entire disk to just
set up a single partition. If you do decide to use a single partition,
you'll basically be skipping the next dozen or so steps, and you'll jump
ahead to manual partitioning steps. In the next steps, we'll go through
a bit of manual partitioning.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[27]

As an alternative to Guided – use entire disk, you can also choose
Guided – use entire disk and set up encrypted LVM. Doing so will
also allow you to skip the partitioning process but will encrypt your
filesystem as well. This will help prevent people with physical access
stealing information from the server if they boot it from live media. It's
recommended that you do this if you plan on storing sensitive data.

16.	 This part of the installer is assuming you chose to manually partition your
system (by choosing the Manual option). You should now see your hard disk
on the list on this screen. In my case, my disk is listed as SCSI3 (0,0,0) (sda) –
171.8 GB ATA VBOX HARDDISK since I'm using a virtual machine to show
the process. Yours will say something different, but it will be similar:

Main menu of the Ubuntu Server partitioner

17.	 If you've already installed an operating system on this disk before, you may
see several partitions here. In my case, if I select the VBOX HARDDISK, the
system will ask me whether or not I'd like to create an empty partition table.
If the hard disk you're using has never been formatted before, you'll see the
same thing. Feel free to choose Yes here to have a fresh partition table created
if this screen appears:

Creating a new partition table

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[28]

Assuming you already have partitions on your disk, you should delete them.
It likely goes without saying, but you should always back up any important
data on your machine that you care about before partitioning your disk.

18. To delete your current partitions, choose one by selecting it and pressing
Enter, and you'll have an option to Delete the partition near the bottom of
the list:

Deleting an existing partition

19. Now that you've deleted your existing partitions, you should only have
empty space listed for your hard disk. Select this free space and choose
to Create a new partition. To show how this process works, I'll walk you
through setting up separate /, /home, and swap partitions. You don't have to
follow this exact scheme; feel free to mix it up. You do need a / partition at a
minimum, though:

Creating a new partition on our disk

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[29]

20.	 After you choose to Create a new partition, you'll be prompted to enter the
size for it. In my opinion, 30 GB is plenty for your root partition. Some opt
for smaller, though I've found that eventually you'll find yourself having to
keep a close eye on space after a year or two, and since hard disk space is
cheap nowadays, 30 GB is reasonable, but the choice is yours.

Choosing the size of the new partition

21.	 You'll be prompted whether or not you'd like to create the partition as
Primary or Logical. We'll always be choosing Primary each time we see this.
Creating Logical volumes is a good idea only if you plan on creating more
than four partitions.

Choosing a partition type

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[30]

22. Next, you'll be asked whether or not you'd like the partition created at the
Beginning or the End of the free space of your disk. Each time we see this,
we'll choose Beginning:

Choosing to create the partition at the beginning or end of the free space

23. Next, we'll see a summary of our options, many with the defaults selected. In
our case, make sure Use as is set to Ext4 journaling file system, the Mount
point is set to /, and the Bootable flag is set to on. Compare your settings to
the ones I've chosen in the following screenshot for reference. When finished,
choose Done setting up the partition:

Creating the root partition for our installation

24. Next, we'll be taken back to the main Partition disks screen, where
we should see the partition we created as well as some FREE SPACE
remaining. Select FREE SPACE, and we'll set up our next partition:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[31]

Preparing to create a second partition

25.	 In this case, we're setting up a partition for swap. The swap partition will
be used if our server runs out of RAM, so hopefully we'll never need to use
this partition much since the hard disk is slower than RAM. I think 2 GB is
healthy, but the choice is yours. Some will set this to 1.5 times the amount of
RAM you have, which is also valid. If in doubt, choose a few gigabytes here,
no less than 2:

Selecting a size for our swap partition

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[32]

There is currently a lot of debate in the Linux community regarding
whether or not swap is even necessary. Some administrators will even
omit this altogether. While I won't get into that debate here, I really
don't see the point in disregarding swap. After all, if you have even
an average hard disk, how much of a difference would it really make
if you save a few gigabytes? In my opinion, it doesn't hurt anything to
create swap and it may even save you one day.

26. Again, we'll choose Primary for the type:

Choosing primary or logical for the swap partition

27. Ensure Use as is set to swap area, then select Done setting up the partition
to continue:

Finishing the creation of our swap partition

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[33]

With the swap partition created, go ahead and repeat the process to create a
partition for /home. If you're following my partition scheme in this example,
go ahead and allocate the remainder of the drive for /home. All the other
options should be the same as before.

28.	 Once you have our three partitions created, select Finish partitioning and
write changes to disk to continue on. Refer to the following screenshot for a
comparison of all the options I've chosen during my installation:

Previewing all of our partition selection so far

In case you're wondering why I partition this way, I think it makes more
sense to create the partition most likely to need growth as the last one. In
our case, I created /home last. This is so if I need to upgrade the storage
later, all I would need to do is resize /home on the new disk. If I had
created the swap partition last (as most Linux installers do), I would
have to delete (or move) swap and then recreate it again afterwards. It's
all about saving time in the long run. If I were creating a web server, I
would've used the same style but instead of /home, I would've mounted
the last partition in a directory like /srv/www instead.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[34]

29. Next, the following screen will confirm our selections one last time before the
new partitions are written to disk:

Confirming our choices one last time

30. After the partitions are created, Ubuntu Server will be installed on your hard
disk. This process should pass relatively quickly depending on the speed of
your machine. You'll see a progress bar appear, detailing its progress:

Installing the base system

31. Once all the packages have been installed for the base system, the installer
will ask you if you need a proxy to access the Internet. If you need one, enter
it here. Otherwise, leave it blank and select Continue:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[35]

Proxy prompt during the Ubuntu Server installation

32.	 Another progress bar will scroll by, which will prepare a selection of
additional software you can choose to install:

Preparing to install additional software

33.	 On the Configuring tasks screen, you'll be asked whether or not you'd like
to enable automatic updates. Personally, I always choose No automatic
updates here, because I like to handle this myself by writing a script. It's
up to you, though. Be careful, because an updated application may become
incompatible with custom configurations, which can be a disaster for
production later. Security updates are definitely something you want to stay
on top of, so if you don't enable automatic updates, make sure you at least
come up with your own solution later. We'll discuss updating your system
during Chapter 5, Managing Software Packages, so don't worry if you don't
have an idea on how to handle updates just yet.

Deciding between automatic and non-automatic security updates

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[36]

34. On the next screen, you'll be given some additional software collections
you can install if you want to. You'll have the option to set up an OpenSSH
server, Mail server, LAMP server, and more. Most of these options we'll set
up manually further on into the book, so I suggest selecting only OpenSSH
server for now. Leave standard system utilities checked:

Selecting additional software

35. The next screen that appears will offer us the option to Install the GRUB
boot loader on the master boot loader. You should always say Yes to this
prompt, unless you have your own process to boot the system you wish to
implement. For 99.99% of you, you'll definitely want to do this:

Confirming boot loader installation

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 1

[37]

36.	 Finally, our installation is complete! At this point, you can remove your
boot media and then select Continue at the final confirmation screen to
reboot the system:

Final confirmation prompt during installation

At this point, your server will reboot and then Ubuntu Server should start right up.
Although the installation process contained quite a few steps, it's really quick once
you get used to it. To make things easier, later on in this book I'll go over the process
of creating images you can use to deploy Ubuntu Server, so you'll be able to create
your own pre-configured environments to simplify the process greatly.

Installing Ubuntu Server (Raspberry Pi)
The Raspberry Pi has become quite a valuable asset in the industry. These tiny
computers, now with four cores and 1 GB of RAM, are extremely useful in running
one-off tasks and even offering a great place to test code without disrupting existing
infrastructure. In my lab, I have three Pis on my network, each one responsible for
performing specific tasks or functions. It's a very useful platform.

Thankfully, Ubuntu Server is quite easy to install on a Raspberry Pi. In fact,
it's installed in much the same way as Raspbian, which is the distribution most
commonly used on the Pi. Ubuntu Server is available for Raspberry Pi models 2 and
3. All you'll need to do is download the SD card image and then copy it directly to
your SD card. Once you've done that, you can boot the Pi and log in. The default
username and password is ubuntu for both.

At the time of writing, the version of Ubuntu Server for the
Raspberry Pi 3 is not officially supported but should work. The
Pi 2 version is fully supported. The Pi 3 version is expected to be
fully supported at some point.

www.hellodigi.ir

http://technet24.ir

Deploying Ubuntu Server

[38]

To install Ubuntu on the Pi, perform the following steps:

1. To get started, you'll first download the SD card image from here:
https://wiki.ubuntu.com/ARM/RaspberryPi and check that it is
compatible with your model of Raspberry Pi.

2. In order to write the image to an SD card, first extract it and then use dd to
do the actual copying. This is very similar to the process we used to create
bootable USB media. In fact, it is the same; the only difference is the source
and target. From a Linux system, you can perform the process with the
following command:
dd if=/path/to/downloaded/file of=/dev/sdX bs=1M

3. As before, replace if= and of= with the path to the downloaded and
extracted file and the target respectively. If you are unsure about which
device your SD card is on your system, execute:
fdisk -l

4. In my case, this process can take some time to complete. Often, the command
prompt will return even before the syncing process is actually finished. This
means you'll more than likely see the access indicator LED on your card
reader continue to flash for a while before the process is truly complete. It
goes without saying, but make sure you remove your SD card only once
the LED has stopped flashing. If you'd rather have the command prompt
NOT return until after the process is complete, add the sync option, like
the following:
dd if=/path/to/downloaded/file of=/dev/sdX bs=1M; sync

5. So for example, on my system, the command will be:

dd if=/home/jay/downloads/ubuntu-server-16.04.img of=/dev/sdc
bs=1M; sync

Depending on the speed of your card reader, this process will likely take at least 5
minutes to complete, if not longer. Once you're finished and you start up your Pi,
you're likely to notice an issue straight away. If we execute:

df -h

We'll see that regardless of the size of our SD card, we'll have quite a bit of space that
is not being utilized. This is because the SD card image will be the size of the SD card
it was captured from, which will most likely not equal the size of yours. This will
result in wasted space. What we'll need to do is resize the installation to match our
SD card.

www.hellodigi.ir

https://wiki.ubuntu.com/ARM/RaspberryPi
http://technet24.ir
http://technet24.ir

Chapter 1

[39]

First, from the Pi after it's started up, enter fdisk by executing the
following command:

fdisk /dev/mmcblk0

Next, we'll need to delete the second partition, by pressing d + 2.

With the partition deleted (and while still within the fdisk console), we'll recreate
the partition we deleted by pressing n + p + 2 and Enter (twice) +w.

With those commands executed, execute the reboot command to restart the Pi.
However, we have one more command to execute. Once it starts backup, we can do
the actual resizing with:

resize2fs /dev/mmcblk0p2

After the resize procedure, you should be all set and able to utilize all the space of
your SD card. You should also be able to use your Pi as a means of following along
with the activities of this book. One last thing, though. If you execute this, you'll
notice that your Pi doesn't have a swap partition:

free -m

This is normal, and while you can create a swap file to fill the role of a swap partition,
I recommend you don't. SD cards are much too slow for swap, so you'd be better off
without it. Since the Raspberry Pi 2 and Pi 3 only have about 1 GB of RAM, make
sure whatever processes you plan on running fit within that restraint and you should
be fine.

Summary
In this chapter, we covered the installation process in great detail. As with most
Linux distributions, Ubuntu Server is scalable and able to be installed on a variety
of server types. Physical servers, virtual machines, and even the Raspberry Pi have a
version of Ubuntu Server available. The process of installation was covered step by
step, and you should now have an Ubuntu Server of your own to configure as you
wish. Also in this chapter, we covered partitioning, creating boot media, determining
the role of your server, as well as some best practices.

In the next chapter, I'll show you how to manage users. You'll be able to create them,
delete them, change them, and even manage password expiration and more. I'll also
cover permissions so that you can determine what your users are allowed to do on
your server. See you there!

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[41]

Managing Users
As an administrator of an Ubuntu Server, users can be your greatest asset and also
your biggest headache. During your career you'll add countless new users, manage
their passwords, remove their accounts when they leave the company, and grant or
remove access to resources across the file-system. Even on servers on which you're
the only user, you'll still find yourself managing user accounts since even system
processes run as users. To be successful at managing Linux servers, you'll also
need to know how to manage permissions, create password policies, and limit who
can execute administrative commands on the machine. In this chapter, we'll work
through these concepts so that you'll have a clear idea of how to manage users and
their resources. In particular, we will cover:

•	 Understanding when to use root
•	 Creating and removing users
•	 Understanding the /etc/passwd and /etc/shadow files
•	 Distributing default configuration files with /etc/skel
•	 Switching between users
•	 Managing groups
•	 Managing passwords and password policies
•	 Configuring administrator access with sudo
•	 Setting permissions on files and directories

www.hellodigi.ir

http://technet24.ir

Managing Users

[42]

Understanding when to use root
In the last chapter, we set up our very own Ubuntu Server installation. During the
installation process, we were instructed to create a user account as an administrator
of the system. So, at this point, we should have two users on our server. We have
the aforementioned administrative user, as well as root. We can certainly create
additional user accounts with varying levels of access (and we will do so in this
chapter), but before we get to that, some discussion is in order regarding the
administrator account you created, as well as the root user that was created for you.

In regards to root, the root user account exists on all Linux distributions and is the
most powerful user account on the planet. The root user account can be used to do
anything, and I do mean anything. Want to use root to create files and directories
virtually anywhere on the file-system? No problem. Want to use root to install
software? Again, not a problem. The root account can even be used to destroy your
entire installation with one typo or ill-conceived command. Even if you instruct
root to delete all files on your entire hard disk, it won't hesitate to do so. It's always
assumed on a Linux system that if you are using root, you are doing so because you
know what you are doing. So there's often not so much as a confirmation prompt
while executing any command as root. It will simply do as instructed, for better
or worse.

It's for this reason that every Linux distribution I've ever used instructs, or at least
highly recommends, you to create a standard user during the installation process.
It's generally recommended that you not use the root account unless you absolutely
have to. It's common in the Linux community for an administrator to have his or her
own account and then switch to root whenever a task comes up that requires root
privileges to complete. It's less likely to accidentally destroy your server with an
accidental typo or bad command while you're not logged in as root. Don't get me
wrong, some arrogant administrators will strictly use root at all times without any
issue, but again, it's recommended to use root only when you have to. And besides,
when it comes to arrogant administrators, don't be that person.

Most distributions ask you to create a root password during installation in order to
protect that account. Ubuntu Server is a bit different in this regard, however. You
weren't even asked what you wanted the root password to be. The reason for this
is because Ubuntu defaults to locking out the root account altogether. This is very
much unlike many other distributions. In fact, Debian (on which Ubuntu is based),
even has you set a root password during installation. Ubuntu just decides to do
things a little bit differently. There's nothing stopping you from enabling root, or
switching to the root user after you log in. Being disabled by default just means
the root account isn't as easily accessible as it normally would be. I'll cover how to
enable this account later in this chapter, should you feel the need to do so.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[43]

An exception to this rule is that most VPS providers, such as Linode
or DigitalOcean, will enable the root account even on their Ubuntu
servers. Typically the root password will be randomly generated
and emailed to you.

Instead, Ubuntu (as well as its server version), recommends the use of sudo rather
than using root outright. I'll go over how to manage sudo later on in this chapter,
but for now, just keep in mind that the purpose of sudo is to enable you to use your
user account to do things that normally only root would've been able to do. For
example, you cannot issue a command such as the following to install a software
package as a normal user:

apt-get install tmux

Instead, you'll receive an error:

E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission
denied)

E: Unable to lock the administration directory (/var/lib/dpkg/), are you
root?

But if you prefix the command with sudo (assuming your user account has access to
it), the command will work just fine:

sudo apt-get install tmux

When you use sudo, you'll be asked for your user's password for confirmation, and
then the command will execute. Understanding this should clarify the usefulness
of the user account you created during installation. I referred to this user as an
administrative account earlier, but all it really is is a user account that is able to
utilize sudo. (Ubuntu Server automatically gives the first user account you create
during installation access to sudo). The intent is that you'll use that account for
administering the system, rather than root. When you create additional user
accounts, they will not have access to sudo by default, unless you explicitly
grant it to them.

Creating and removing users
Creating users in Ubuntu can be done with one of either of two commands: adduser
and useradd. This can be a little confusing at first, because both of these commands
do the same thing (in different ways) and are named very similarly. I'll go over the
useradd command first and then I'll explain how adduser differs. You may even
prefer the latter, but we'll get to that in a moment.

www.hellodigi.ir

http://technet24.ir

Managing Users

[44]

First, here's an example of the useradd command in action:

useradd -d /home/jdoe -m jdoe

As I mentioned in the front matter for this book, whenever I prefix
commands with a pound symbol (#), I'm instructing you to execute the
command as root. You can use the actual root account for these types
of commands or you can simply prefix the command with sudo. In the
latter case, the command would become:
sudo useradd -d /home/jdoe -m jdoe

I won't remind you of this henceforth, so just keep in mind commands
prefixed with # need to be executed as root or with the prefix sudo.

In this example, I'm creating a user named jdoe. With the -d flag, I'm clarifying that I
would like a home directory created for this user, and following the flag I called out /
home/jdoe as the user's home directory. The -m flag tells the system that I would like
the home directory created during the process; otherwise, I would've had to create the
directory myself. Finally, I called out the username for my new user.

If you list the storage of /home, you should see a folder listed there for our new user:

ls -l /home

Listing the contents of /home after our first user was created

What about creating our user's password? We created a new user on our system, but
we did not set a password. We weren't even asked for one—what gives? To create
a password for the user, we can use the passwd command. The passwd command
defaults to allowing you to change the password for the user you're currently logged
in as, but it also allows you to set a password for any other user if you run it as root
or with sudo. If you enter passwd by itself, the command will first ask you for your
current password, then your new password, and then it will ask you to confirm
your new password again. If you prefix the command with sudo and then specify a
different user account, you can set the password for any user you wish. An example
of the output of this process is as follows:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[45]

root@ubuntu-server:~# passwd jdoe

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

You won't see any asterisks or any kind of output as you type a password
while using the passwd command. This is normal. Although you won't
see any visual indication of input, your input is being recognized.

Now we have a new user and we were able to set a password for that user. The jdoe
user will now be able to access the system with the password we've chosen.

Earlier, I mentioned the adduser command as another way of creating a user. The
difference (and convenience) of this command should become apparent immediately
once you use it. Go ahead and give it a try; execute adduser along with a username
for a user you wish to create. An example of a run of this process is as follows:

root@ubuntu-server:~# adduser dscully

Adding user `dscully' ...

Adding new group `dscully' (1006) ...

Adding new user `dscully' (1006) with group `dscully' ...

Creating home directory `/home/dscully' ...

Copying files from `/etc/skel' ...

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Changing the user information for dscully

Enter the new value, or press ENTER for the default

 Full Name []: Dana Scully

 Room Number []: 405

 Work Phone []: 555-412-5555

 Home Phone []: 412-555-5555

 Other []: Trust no one

Is the information correct? [Y/n] y

www.hellodigi.ir

http://technet24.ir

Managing Users

[46]

In the process above, I executed adduser dscully and then I was asked a series
of questions regarding how I wanted the user to be created. I was asked for the
password (twice), Full Name, Room Number, Work Phone and Home Phone. In the
Other field, I entered the comment Trust no one, which is a great mindset to adopt
while managing users. In the example output, I bolded sections where I was asked
to type input. The latter prompts prior to the final confirmation were all optional. I
didn't have to enter a Full Name, Room Number, and so on. I could've pressed Enter
to skip those prompts if I wanted to. The only thing that's really required is the
username and the password.

From the output, we can see that the adduser command performed quite a bit of
work for us. The command defaulted to using /home/dscully as the home directory,
the account was given the next available User ID (UID) and Group ID (GID) of
1006, and it also copied files from /etc/skel into our new user's home directory.
In fact, both the adduser and useradd commands copy files from /etc/skel, but
adduser is more verbose regarding the actions it performs.

Don't worry if you don't understand UID, GID, and /etc/skel yet. We'll
work through those concepts soon.

In a nutshell, the adduser command is much more convenient in the sense that it
prompts you for various options while it creates the user without requiring you
to memorize command line options. It also gives you detailed information about
what it has done. At this point, you may be wondering why someone would want
to use useradd at all, considering how much more convenient adduser seems to
be. Unfortunately, adduser is not available on all distributions of Linux. It's best to
familiarize yourself with useradd in case you find yourself on a Linux system that's
not using Ubuntu.

It may be interesting for you to see what exactly the adduser command actually is.
It's not even a binary program—it's a shell script. A shell script is simply a text file
that can be executed as a program. In the case of adduser, it's a script written in Perl.
Since it's not binary, you can even open it in a text editor in order to view all the
magic code that it executes behind the scenes. However, make sure you don't open
the file in a text editor with root privileges, so you don't accidentally save changes
to the file and break it. The following command will open adduser in a text editor on
an Ubuntu Server system:

nano /usr/sbin/adduser

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[47]

Use your up/down arrows as well as Page Up and Page Down keys to scroll through
the file. When you're finished, press Ctrl + X on your keyboard to exit the text editor.

Those of you with keen eyes will likely notice that the adduser script is
calling useradd to perform its actual work. So either way, you're using
useradd either directly or indirectly.

Now that we know how to create users, it will be useful to understand how to
remove them as well. After all, removing access is very important when a user no
longer needs to access a system, as unmanaged accounts often become a security
risk. To remove a user account, we'll use the userdel command.

Before removing an account, though, there is one very important question you
should ask yourself. Will you still need access to the user's files? Most companies
have retention policies in place that detail what should happen to a user's data when
he or she leaves the organization. Sometimes, these files are copied into an archive
for long-term storage. Often, a manager, co-worker, or new hire will need access
to the former user's files to continue working on a project where they left off. It's
important to understand this policy ahead of managing users. If you don't have a
policy in place that outlines retention requirements for files when users resign, you
should probably work with your management and create one.

By default, the userdel command does not remove the contents of the user's home
directory. If we use the following command to remove dscully from the system:

userdel dscully

We'll see that dscully's home directory still exists and is intact:

ls /home

The home directory for user dscully still exists, even though we removed the user

With the home directory for dscully still existing, we're able to move the contents of
this directory anywhere we would like to. If we had a directory called /store/file_
archive, for example, we can easily move the files there:

mv /home/dscully /store/file_archive

www.hellodigi.ir

http://technet24.ir

Managing Users

[48]

Of course, it's up to you to create the directory where your long-term storage will
ultimately reside, but you get the idea.

If you weren't already aware, you can create a new directory with the
mkdir command. You can create a directory within any other directory
your logged-in user has access to. The following command will create the
file_archive directory I mentioned in my example:
mkdir -p /store/file_archive

The -p flag simply creates the parent directory if it didn't already exist.

If you do actually want to remove a user's home directory at the same time you
removed an account, just add the -r parameter. This will eliminate the user and
their data in one shot.

userdel -r dscully

To remove the home directory for the user after the account was already removed (if
you didn't use the -r parameter the first time), use the rm -r command to get rid of
it, as you would any other directory:

rm -r /home/dscully

It probably goes without saying, but the rm command can be extremely
dangerous. If you're logged in as root or using sudo while using rm,
you can easily destroy your entire installed system if you're not careful.
For example, the following command (while seemingly innocent at first
glance) will likely completely destroy your entire file system:
rm -r / home/dscully

Notice the typo: I accidentally typed a space after the first forward slash.
I literally accidentally told my system to remove the contents of the entire
file system. If that command was executed, the server probably wouldn't
even boot the next time we attempt to start it. All user and program
data would be wiped out. If there was ever any single reason for us to be
protective over the root account, the rm command is certainly it!

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[49]

Understanding the /etc/passwd and /etc/
shadow files
Now that we know how to create (and delete) user accounts on our server, we
are well on our way to being able to manage our users. But where exactly is this
information stored? We know that users store their personal files in /home, but is
there some kind of database somewhere that keeps track of which user accounts are
on our system? Actually, user account information is stored in two special text files:
/etc/passwd and /etc/shadow.

You can display the contents of each of those two files with the following commands.
Take note that any user can look at the contents of /etc/passwd, while only root has
access to /etc/shadow:

cat /etc/passwd

cat /etc/shadow

Go ahead and take a look at these two files (just don't make any changes), and I will
help you understand them. First, let's go over the /etc/passwd file. What follows is
example output from this file on my test server. For brevity, I limited the output to
the last seven lines:

testuser:x:1000:1000::/home/testuser:0
testuser2:x:1006:1006:Test user,,,:/home/testuser2:/bin/bash
myuser:x:1002:1002::/home/myuser:
myuser2:x:1003:1003::/home/myuser2:
jdoe:x:1004:1004::/home/jdoe:
bsmith:x:1005:1005::/home/bsmith:/bin/bash
jdoe2:x:1007:1007::/home/jdoe2:

Each line within this file contains information for each user account on the system.
Entries are split into columns, separated by a colon ":". The username is in the first
column, so you can see that I've created users testuser, testuser2, myuser, and so
on. The next column on each is simply an "x". I'll go over what that means a bit later.
For now, let's skip to the third and fourth columns, which reference the UID and GID
respectively. On a Linux system, user accounts and groups are actually referenced by
their IDs. While it's easier for you and I to manage users by their names, usernames
and group names are nothing more than a label placed on the UID and GID in order
to help us identify with them easier. For example, it may be frustrating to try to
remember that jdoe is UID 1004 on our server each time we want to manage this
account. Managing it by referring to the account as jdoe is easier for us humans,
since we don't remember numbers as well as we do names. But to Linux, each time
we reference user jdoe, we're actually just referencing UID 1004. When a user is
created, the system (by default) automatically assigns the next available UID to
the account.

www.hellodigi.ir

http://technet24.ir

Managing Users

[50]

In my case, the UID of each user is the same as their GID. This is just a coincidence on
my system and isn't always that way in practice. While I'll discuss creating groups
later in this chapter, understand that creating groups works in a similar way as
creating users, in the sense that the group is assigned the next available GID in much
the same way as new user accounts are assigned the next available UID. When you
create a user, the user's primary group is the same as their username (unless you
request otherwise). For example, when I created jdoe, the system also automatically
created a jdoe group as well. This is what you're actually seeing here – the UID for
the user, as well as the GID for the user's primary group. Again, we'll get to groups in
more detail later.

You probably also noticed that the /etc/passwd file on your system contains
entries for many more users than the ones we've created ourselves. This is perfectly
normal, as Linux uses user accounts for various processes and things that run in the
background. You'll likely never interact with the default accounts at all, though you
may someday create your own system user for a process to run as. For example,
perhaps you'd create a data processor account for an automated data processing
script to run under.

Anyway, back to our /etc/passwd file. The fifth column is designated for user info,
most commonly the first and last name. In my example, the fifth field is blank for
most except for testuser2. I created testuser2 with the adduser command,
which asked me for the first and last name, which I entered as Test user.
Here is that line again:

testuser2:x:1006:1006:Test user,,,:/home/testuser2:/bin/bash

In the sixth column, the home directory for our user is shown. In the case of
testuser2, it's set as /home/testuser2. Finally, we designate the user's shell as
/bin/bash. This refers to the default shell the user will use, which always defaults
to /bin/bash. If we wanted the user to use a different shell, we can clarify that
here (though shells other than /bin/bash are beyond the scope of this book). If we
wanted, we could change the user's shell to something invalid to prevent them from
logging in at all. This is useful for when a security issue requires us to disable an
account quickly, or if we're in the mood to pull a prank on someone.

With that out of the way, let's take a look at the /etc/shadow file. We can use cat
to display the contents as any other text file, but unlike /etc/passwd, we need root
privileges in order to view it. So, go ahead and display the contents of this file, and
I'll walk you through it:

cat /etc/shadow

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[51]

For comparison, the last few lines of my /etc/shadow file are as follows:

myuser2:6maFOiNL.:16809:0:99999:7:::
jdoe:6TPxx8Z.:16809:0:99999:7:::
bsmith:6KoShUY.:16809:0:99999:7:::
testuser3:6QAGTNqR:16809:0:99999:7::

I've shortened the second column by quite a few characters in
order to save space on this page. The second column in your
output will appear much longer.

First, we have the username in the first column—no surprises there. Note that the
output is not showing the UID for each user in this file. The system knows which
username matches to which UID based on the /etc/passwd file, so there's no need
to repeat that here. In the second column, we have what appears to be random
gobbledygook. Actually, that's the most important part of this entire file. That's the
actual hash for the user's password. If you recall, in the /etc/passwd file, each user
listing had an "x" for the second column, and I mentioned I would explain it later.
What the "x" refers to is the fact that the user's password is encrypted and simply
not stored in /etc/passwd but is instead stored in /etc/shadow. After all, the /
etc/passwd file is viewable by everyone, so it would compromise security quite a
bit if anyone could just open up the file and see what everyone's password hashes
are. In the days of old, you could actually store a user's password in /etc/passwd,
but it's literally never done that way anymore. Whenever you create a user account
on a modern Linux system, the user's password is encrypted (an "x" is placed in the
second column of /etc/passwd for the user), and the actual password hash is stored
in the second column of /etc/shadow to keep it away from prying eyes. Hopefully
now the relationship between these two files has become apparent.

Remember earlier I mentioned that the root user account is locked out by default?
Well, let's actually see that in action. Execute the following command to see root's
entry in /etc/shadow:

cat /etc/shadow | grep root

On my system, I get the following output:

root:!:16402:0:99999:7:::

www.hellodigi.ir

http://technet24.ir

Managing Users

[52]

You should notice right away that the root user account doesn't have a password
hash at all. Instead, there's an exclamation point where the password hash would've
been. In practice, placing an exclamation point here is one way to lock out an
account, though the standard practice is to use an "x" in this field instead. But either
way, we can still switch to the root account (which I'll show you how to do later on
in this chapter). The restriction is that we can't directly log in as root from the shell
or over the network. We have to log in to the system as a normal user account first.

With the discussion of password hashes out of the way, there are a few more fields
within /etc/shadow entries that we should probably understand. Here's an example
line from the file on my system to save you the trouble of flipping back:

jdoe:6TPxx8Z.:16809:0:99999:7:::

Continuing on with the third column, we can see the number of days since the UNIX
Epoch that the password has last been changed. For those that don't know, the UNIX
Epoch is January 1st, 1970. Therefore, we can read that column as the password
having last been changed 16,809 days since the UNIX Epoch.

Personally, I like to use the following command to show more easily
when the password was last changed:
passwd -S <username>

By executing this command (it must be run as root), you can view
information about any account on your system. The third column of this
command's output gives you the actual date of the last password change
for the user.

The fourth column tells us how many days are required to pass before the user
will be able to change their password again. In the case of my previous sample,
testuser can change the password anytime because the minimum number of days
is set to 0. We'll talk about how to set the minimum number of days later on in this
chapter, but I'll give you a brief explanation of what this refers to. At first, it may
seem silly to require a user to wait a certain number of days to be able to change
his or her password. However, never underestimate the laziness of your users. It's
quite common for a user, when required to change his or her password, to change
their password several times to satisfy history requirements, to then just change it
back to what it was originally. By setting a minimum number of days, you're forcing
a waiting period in between password changes, making it less convenient for your
users to cycle back through to their original password.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[53]

The fifth column, as you can probably guess, is the maximum number of days that
can pass between password changes. If you require your users to change their
passwords every certain number of days, you'll see that in this column. By default,
this is set to 99,999 days. It probably stands to reason that you'll move on to bigger
and better things by the time that elapses, so it may as well be infinite.

Continuing with the sixth column, we have the number of days that will elapse
before the user is warned that they will soon be required to change their password.
In the seventh column, we set how many days can pass after the password expires,
in which case the account will be disabled. In our example, this is not set. Finally,
with the eighth column, we can see the number of days since the UNIX Epoch that
will elapse before the account is disabled (in our case, there's nothing here, so there
is no disabled day set). We'll go over setting these fields later, but for now hopefully
you understand the contents of the /etc/shadow file better.

Distributing default configuration files
with /etc/skel
In a typical organization, there are usually some defaults that are recommended for
users in terms of files and configuration. For example, in a company that performs
software development, there are likely recommended settings for text editors and
version control systems. Files that are contained within /etc/skel are copied into
the home directory for all new users when you create them (assuming you've chosen
to create a home directory while setting up the user).

In fact, you can see this for yourself right now. If you execute the following
command, you can view the contents of the /etc/skel directory:

ls -la /etc/skel

You probably already know how to list files within a directory, but I specifically
called out the -a parameter because the files included in /etc/skel by default
are hidden (their file names begin with a period). I threw the -l parameter solely
because I like it better (it shows a long list, which I think is easier to read). Your
output will likely include the following files:

.bash_logout

.bashrc

.profile

www.hellodigi.ir

http://technet24.ir

Managing Users

[54]

Each time you create a new user and request a home directory to be created as well,
these three files will be copied into their home directory, along with any other files
you create here. You can verify this by listing the storage of the home directories for
the users you've created so far. The .bashrc file in one user's home directory should
be the same as any other, unless they've made changes to it.

Armed with this knowledge, it should be extremely easy to create default files for
new users you create. For example, you could create a file named welcome with your
favorite text editor and place it in /etc/skel. Perhaps you may create this file to
contain helpful phone numbers and information for new hires in your company. The
file would then be automatically copied to the new user's home directory when you
create the account. The user, after logging in, would see this file in his or her home
directory and see the information. More practically, if your company has specific
editor settings you favor for writing code, you can include those files in /etc/skel
as well to help ensure your users are compliant. In fact, you can include default
configuration files for any application your company uses.

Go ahead and give it a try. Feel free to create some random text files and then create
a new user afterwards, and you'll see that these files will propagate into the home
directories of new user accounts you add to your system.

Switching between users
Now that we have several users on our system, we need to know how to switch
between them. Of course, you can always just log in to the server as one of the users,
but you can actually switch to any user account at any time providing you either
know that user's password or have root access.

The command you will use to switch from one user to another is the su command. If
you enter su with no options, it will assume that you want to switch to root and will
ask you for your root password. As I mentioned earlier, Ubuntu locks out the root
account by default, so you really don't have a root password. Unlocking the root
account is actually really simple; all you have to do is create a root password. To do
that, you can execute the following command as any user with sudo access:

sudo passwd

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[55]

The command will ask you to create and confirm your root password. From this
point on, you will be able to use the root account as any other account. You can log
in as root, switch to root; it's fully available now. You really don't have to unlock
the root account in order to use it. You certainly can, but there are other ways
to switch to root without unlocking it, and it's typically better to leave the root
account locked unless you have a very specific reason to unlock it. Either of the
following commands will allow you to switch to root from a user account that has
sudo access:

sudo su

sudo -s

Now you'll be logged in as root and able to execute any command you want with no
restrictions whatsoever. To return to your previous logged-in account, simply type
exit. You can tell which user you're logged in as by the value at the beginning of
your bash prompt.

But what if you want to switch to an account other than root? Of course, you can
simply log out and then log in as that user. But you really don't have to do that.
The following command will do the job, providing you know the password for
the account.

su - <username>

The shell will ask for that user's password and then you'll be logged in as that user.
Again, type exit when you're done using the account. That command is all well and
good if you know the user's password, but you often won't. Typically in an enterprise,
you'll create an account, force the user to change their password at first log in, and
then you will no longer know that user's password. Since you have root and sudo
access, you could always change their password and then log in as them. But they'll
know something is amiss if their password suddenly stops working—you're not
eavesdropping, are you?

Armed with sudo access, you can use sudo to change to any user you want to, even
if you don't know their password. Just prefix our previous command with sudo and
you'll only need to enter the password for your user account, instead of theirs:

sudo su - <username>

www.hellodigi.ir

http://technet24.ir

Managing Users

[56]

Switching to another user account is often very helpful for support (especially
while troubleshooting permissions). As an example, say that a user comes to you
complaining that he or she cannot access the contents of a specific directory, or they
are unable to run a command. In that case, you can log in to the server, switch to
their user account, and try to reproduce their problem. That way, you can not only
see their problem yourself, but you can also test out whether or not your fix has
solved their issue before you report back to them.

Managing groups
Now that we understand how to create, manage, and switch between user accounts,
we'll need to understand how to manage groups as well. The concept of groups in
Linux is not very different from other platforms and pretty much serves the exact
same purpose. With groups, you can more efficiently control a user's access to
resources on your server. By assigning a group to a resource (a file, directory, and so
on), you can allow and disallow access to users by simply adding them or removing
them from the group.

The way this works in Linux is that every file or directory has both a user and a
group that takes ownership of it. This is contrary to platforms such as Windows,
which can have multiple groups assigned to a single resource. With Linux, it's just
a one-to-one ownership: just one user and just one group assigned to each file or
directory. If you list contents of a directory on a Linux system, you can see this
for yourself:

ls -l

The following is sample output from a directory on one of my servers:

-rw-r--r-- 1 root bind 490 2013-04-15 22:05 named.conf

In this case, we can see that root owns the file and that the group bind is also
assigned to it. Ignore the other fields for now; I'll explain them later when we get to
the section of this chapter dedicated to permissions. For now, just keep in mind that
one user and one group are assigned to each file or directory.

While each file or directory can only have one group assignment, any user account
can be a member of any number of groups. The groups command will tell you
what groups your currently logged-in user is currently a member of. If you add a
username to the groups command, you'll see which groups that user is a member
of. Go ahead and give the groups command a try with and without providing a
username to get the idea.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[57]

On the Ubuntu Server platform, you'll likely see that each of your user accounts is
a member of just one group, a group that's named the same as your username. As I
mentioned earlier, when you create a user account, you're also creating a group with
the same name as the user. On some Linux distributions, though, a user's primary
group will default to a group called users instead. If you were to execute the groups
command as a user on the Ubuntu desktop platform, you would likely see additional
groups. This is due to the fact that distributions of Linux that cater to being a server
platform are often more stripped down and users on desktop platforms need access
to more things such as printers, audio cards, and so no.

If you were curious as to which groups exist on your server, all you would need to
do is cat the contents of the /etc/group file. Similar to the /etc/passwd file we
covered earlier, the /etc/group file contains information regarding the groups
that have been created on your system. Go ahead and take a look at this file on
your system:

cat /etc/group

The following is sample output from this file on one of my servers:

kvm:x:36:qemu,jay
admins:x:901:ansible,jay
testuser:x:1000:
testuser2:x:1001:
myuser:x:1002:

I shortened this file a bit when I pasted it, as there are quite a few groups created
by default on Linux systems. Toward the end of the file, we see some entries for
users that we created earlier. These are the primary user groups I mentioned earlier.
Like before, the columns in this file are separated by colons, though each line is
only four columns long. In the first column, we have the name of the group. No
surprise there. In the second, we are able to store a password for the group, but this
is not used often. In the third column, we have the GID, which is similar in concept
to the UID when we were discussing users. Finally, in the last column, we see a
comma-separated list of each user that is a member of each of the groups. In this
case, we're seeing that users ansible and jay are a member of admins and qemu and
jay are members of the kvm group. The last several entries (the ones for our users)
don't show any group memberships at all. Each user is indeed a member of their
own group, so this is implied even though it doesn't explicitly call that out in this
file. If you take a look at /etc/passwd entries for your users, you will see that their
primary group (shown as the third column in the form of a GID) references a group
contained in the /etc/group file.

www.hellodigi.ir

http://technet24.ir

Managing Users

[58]

Creating new groups on your system is easy to do and is a great idea for categorizing
your users and what they are able to do. Perhaps you can create an accounting
group for your accountants, an admins group for those in your IT department, and
a sales group for your sales people. The groupadd command allows you to create
new groups. If you wanted to, you could just edit the /etc/group file and add a new
line with your group information manually (and some even prefer this method),
although, in my opinion, using groupadd saves you some work and ensures that
group entries are created properly. Editing group and user files directly is typically
frowned upon (and a typo can cause serious problems). Anyway, what follows is an
example of creating a new group with the groupadd command:

groupadd admins

If you take a look at the /etc/group file again after adding a new group, you'll see
that a new line was created in the file and a GID was chosen for you (the first one
that hadn't been used yet). Removing a group is just as easy. Just issue the groupdel
command followed by the name of the group you wish to remove:

groupdel admins

Next, we'll take a look at the usermod command, which will allow you to actually
associate users with groups. The usermod command is more or less a Swiss Army
knife; there are several things you can do with that command (adding a user to a
group is just one thing it can do). If we wanted to add a user to our admins group,
we would issue the following command:

usermod -aG admins myuser

In that example, we're supplying the -a option, which means append, and
immediately following that we're using -G, which means we would like to modify
groups. I put the two options together with a single dash (-aG), but you could also
issue them separately (-a -G) as well. The example I gave only adds the user to
additional groups, it doesn't replace their primary group. If you wanted to change a
user's primary group, you would use the -g option instead:

usermod -g <group-name> <username>

Feel free to check out the manual pages for the usermod command, to see all the nifty
things it allows you to do with your users. One additional example is changing a
user's home directory. Suppose that one of your users has undergone a name change,
so you'd like to change their username, as well as move their previous home directory
(and their files) to a new one. The following commands will take care of that:

usermod -d /home/jsmith jdoe -m

usermod -l jsmith jdoe

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[59]

In that example, we're moving the home directory for jdoe to /home/jdoe, and then
in the second example, we're changing the username from jdoe to jsmith.

If you wish to remove a user from a group, you can use the gpasswd command to do
so. gpasswd -d will do the trick:

gpasswd -d <username> <grouptoremove>

In fact, gpasswd can also be used in place of usermod to add a user to a group:

gpasswd -a <username> <group>

So, now you know how to manage groups. With efficient management of groups,
you'll be able to best manage the resources on your server. Of course, groups
are relatively useless without some explanation of how to manage permissions
(otherwise, nothing would actually be enforcing a member of a group to access a
resource). Later on in this chapter, we'll cover permissions so you'll have a complete
understanding of how to manage user access.

Managing passwords and password
policies
In this chapter, we've already covered a bit of password management, since I've
given you a few examples of the passwd command. If you recall, the passwd
command allows us to change the password of the currently logged-in user. In
addition, using passwd as root (and supplying a user name) allows us to change
the password for any user account on our system. But that's not all this command
can do.

One thing I've neglected to mention in regards to the passwd command is the fact
that you can use it to lock and unlock a user's account. There are many reasons why
you may want to do this. For instance, if a user is going on vacation or extended
leave, perhaps you'd want to lock their account so that it cannot be used while they
are away. After all, the fewer active accounts, the lower your attack surface. To lock
an account, use the -l option:

passwd -l <username>

And to unlock it, use the -u option:

passwd -u <username>

www.hellodigi.ir

http://technet24.ir

Managing Users

[60]

However, locking an account will not prevent the user from logging in if he or she
has access to the server via SSH with utilizing public key authentication. In that case,
you'd want to remove their ability to use SSH as well. One common way of doing
this is to limit SSH access to users who are a member of a specific group. When you
lock an account, simply remove them from the group. Don't worry so much about
the SSH portion of this discussion if this is new to you. We will discuss securing your
SSH server in Chapter 12, Securing Your Server. For now, just keep in mind that you
can use the passwd to lock or unlock accounts, and if you utilize SSH, you'll want to
lock your users out of that if you don't want them logging in.

However, there's more to password management than the passwd command, as we
can also implement our own policies as well. Earlier, I mentioned that you can set
an expiration date on a user's password (during our discussion on the /etc/shadow
file). In this section, we'll go through how to actually do that. Specifically, the chage
command (pronounced Sage) gives us this ability. We can use chage to not only alter
the expiration period of a user's password, but it's also a more convenient way of
viewing current expiration information than viewing the /etc/shadow file. With the
-l option of chage, along with providing a username, we can see the relevant info:

chage -l <username>

Using sudo or root is not required to run chage. You're able
to view expiration information for your own username without
needing to escalate permissions. However, if you want to view
information via chage for any user account other than your own,
you will need to use sudo.

In the example that follows, we can see the output of this command from a sample
user account:

Sample output from the chage command

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[61]

In the output, we can see values for the date of expiration, maximum number of days
between password changes, and so on. Basically, it's the same information stored in
/etc/shadow but it's much easier to read.

If you would like to change this information, chage will again be the tool of
choice. The first example I'll provide is a very common one. When creating user
accounts, you'll certainly want them to change their password when they first log in.
Unfortunately, not everyone will be keen to do so. The chage command allows you
to force a password change for a user when he or she first logs in. Basically, you can
set their number of days to expiry to 0 with the following example:

chage -d 0 <username>

You can see the results of this command immediately if you run chage -l again
against the user account you just modified:

The chage command listing a user that has a required password change set

To set a user account to require a password change after a certain period of days,
the following example will do the trick:

chage -M 90 dscully

In that example, I'm setting the user account to expire and require a password
change in 90 days. When the impending date reaches 7 days before the password
is to be changed, the user will see a warning message when they log in.

As I mentioned earlier, users will often do whatever they can to cheat password
requirements and may try to change their password back to what it was originally
after satisfying the initial required password change. You can set the minimum
number of days with the -m flag, as you can see in the next example:

chage -m 5 dscully

www.hellodigi.ir

http://technet24.ir

Managing Users

[62]

The trick with setting a minimum password age is to set it so that it will be
inconvenient for the user to change their password to the original one, but you still
want a user to be able to change their password when they feel the need to (so don't
set it too long, either). If a user wants to change their password before the minimum
number of days elapses (for example, if your user feels that their account may have
been compromised), they can always have you change it for them. However, if you
make your password requirements too much of an inconvenience, it can also work
against you.

Next, we should discuss setting a Password Policy. After all, forcing your users to
change their passwords does little good if they change it to something simple, such
as abc123. A password policy allows you to force requirements on your users for
things such as length, complexity, and so on.

To configure options for password requirements, let's first install the required
Pluggable Authentication Module (PAM):

apt-get install libpam-cracklib

Next, let's take a look at the following file. Feel free to open it with a text editor,
as we'll need to edit it:

/etc/pam.d/common-password

An extremely important tip while modifying configuration files related
to authentication (such as password requirements, sudo access, SSH,
and so on) is to always keep a root shell open at all times while you make
changes, and in another shell, test those changes. Do not log out of your
root window until you are 100% certain that your changes have been
thoroughly tested. While testing a policy, make sure that your users can
not only log in, but also your admins as well. Otherwise, you may remove
your ability to log in to a server and make changes.

To enable a History Requirement for your passwords (meaning, the system
remembers the last several passwords a user has used, preventing them from
reusing them), we can add the following line to the file:

password required pam_pwhistory.so
remember=99 use_authok

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[63]

In the example config line, I'm using remember=99, which (as you can probably
guess) will cause our system to remember the last 99 passwords for each user and
prevent them from using those passwords again. If you configured a minimum
password age earlier, for example 5 days, it would take the user 495 days to cycle
back to their original password if you take into account that the user changes his or
her password once every 5 days, 99 times. That pretty much makes it impossible for
the user to utilize their old passwords.

Another field worth mentioning within the /etc/pam.d/common-password file is the
section that reads difok=3. This configuration details that at least three characters
have to be different before the password is considered acceptable. Otherwise, the
password would be deemed too similar to the old one and refused. You can change
this value to whatever you like; the default is normally 5 but Ubuntu defaults it to
3 in their implementation of this config file. In addition, you'll also see obscure
mentioned in the file as well, which prevents simple passwords from being used
(such as common dictionary words and so on).

Setting a password policy is a great practice to increase the security of your server.
However, it's also important to not get carried away. In order to strike a balance
between security and user frustration, the challenge is always to create enough
restrictions to increase your security, while trying to minimize the frustration of
your users. Of course, the mere mention of the word "password" to a typical user
is enough to frustrate them, so you can't please everyone. But in terms of overall
system security, I'm sure your users will appreciate the fact that they can be
reasonably sure that you as an administrator have taken the necessary precautions
to keep their (and your company's) data safe. When it all comes down to it, use your
best judgment.

Configuring administrator access with
sudo
By now, we've already used sudo quite a few times in this book. At this point, you
should already be aware of the fact that sudo allows you to execute commands as if
you were logged in as root. However, we haven't had any formal discussion about
it, yet nor have we discussed how to actually modify which of your user accounts are
able to utilize sudo.

www.hellodigi.ir

http://technet24.ir

Managing Users

[64]

On all Linux systems, you should protect your root account with a strong password
and limit it to be used by as few people as possible. Using sudo is an alternative to
using root, so you can give your administrators access to perform root tasks with
sudo without actually giving them your root password. In fact, sudo allows you
to be a bit more granular. Using root is basically all or nothing—if someone knows
the root password and the root account is enabled, that person is not limited and
can do whatever they want. With sudo, that can also be true, but you can actually
restrict some users to use only particular commands with sudo and therefore limit
the scope of what they are able to do. For example, you could give an admin access
to install software updates but not allow them to reboot the server.

By default, members of the sudo group are able to use sudo without any restrictions.
Basically, members of this group can do anything root can do (which is everything).
During installation, the user account you created was made a member of sudo. To
give additional users access to sudo, all you would need to do is add them to the
sudo group:

usermod -aG sudo <username>

Not all distributions utilize the sudo group by default, or even
automatically install sudo. Other distributions require you to install
sudo manually and may use another group (such as wheel) to govern
access to sudo.

But again, that gives those users access to everything, and that may or may not be
what you want. To actually configure sudo, we use the visudo command. This
command assists you with editing /etc/sudoers, which is the configuration file
that governs sudo access. Although you can edit /etc/sudoers yourself with a text
editor, configuring sudo in that way is strongly discouraged. The visudo command
checks to make sure your changes follow the correct syntax and helps prevent you
from accidentally destroying the file. This is a very good thing, because if you did
make some errors in the /etc/sudoers file, you may wind up in a situation where
no one is able to gain administrative control over the server. And while there are
ways to recover from such a mistake, it's certainly not a very pleasant situation to
find yourself in! So, the takeaway here it to never edit the /etc/sudoers file directly;
always use visudo to do so.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[65]

The following output is what I receive when I make an error while using visudo:

>>> /etc/sudoers: syntax error near line 32 <<<

What now?

Options are:

 (e)dit sudoers file again

 e(x)it without saving changes to sudoers file

 (Q)uit and save changes to sudoers file (DANGER!)

Thankfully, I used visudo and didn't edit that file manually! Otherwise, if I had
edited the file manually, I may not have known that I made an error. You shouldn't
necessarily rely on visudo catching your mistakes, but it is a nice safety net, just
in case.

When you run visudo from your shell, you are brought into a text editor with the
/etc/sudoers file opened up. You can then make changes to the file and save it
like you would any other text file. By default, Ubuntu Server opens up the nano text
editor when you use visudo. With nano, you can save changes using Ctrl + W, and
you can exit the text editor with Ctrl + X. However, you don't have to use nano if
you prefer something else. If you fancy the vim text editor, you can use the following
command to use visudo with vim:

EDITOR=vim visudo

Anyway, so visudo allows you to make changes to who is able to access sudo. But
how do you actually make these changes? Go ahead and scroll through the /etc/
sudoers file that visudo opens and you should see a line similar to the following:

%sudo ALL=(ALL:ALL) ALL

This is the line of configuration that enables sudo access to anyone who is a member
of the sudo group. You can change the group name to any that you'd like, for
example, perhaps you'd like to create a group called admins instead. If you do
change this, make sure that you actually create that group and add yourself and
your staff to be members of it before you log off; otherwise, it would be rather
embarrassing if you found yourself locked out of administrator access to the server.

Of course, you don't have to enable access by group. You can actually call out a
username instead. As an example of this, we also have the following line in the file:

root ALL=(ALL:ALL) ALL

www.hellodigi.ir

http://technet24.ir

Managing Users

[66]

Here, we're calling out a username (in this case, root), but the rest of the line is the
same as the one I pointed out before. While you can certainly copy this line and paste
it one or more times (substituting root for a different username), to grant access to
others, using the group approach is really the best way. It's easier to add and remove
users from a group (such as the sudo group), rather than use visudo each time.

So, at this point, you're probably wondering what the options on /etc/sudoers
configuration lines actually mean. So far, both examples used ALL=(ALL:ALL) All.
In order to fully understand sudo, understanding the other fields is extremely
important, so let's go through them (using the root line again as an example).

The first ALL means that root is able to use sudo from any terminal. The second ALL
means that root can use sudo to impersonate any other user. The third ALL means
that root can impersonate any other group. Finally, the last ALL refers to what
commands this user is able to do; in this case, any command he or she wishes.

To help drive this home, I'll give some additional examples. Here's a hypothetical
example:

charlie ALL=(ALL:ALL) /usr/sbin/reboot,/usr/sbin/shutdown

Here, we're allowing user charlie to execute the reboot and shutdown commands.
If user charlie tries to do something else (such as install a package), he will receive
an error message:

Sorry, user charlie is not allowed to execute '/usr/bin/apt-get install
tmux' as root on ubuntu-server.

However, if charlie wants to use the reboot or shutdown commands on the server,
he will be able to do so because we explicitly called out those commands while
setting up this user's sudo access. We can limit this further by changing the first ALL
to a machine name, in this case, ubuntu-server to reference the host name of the
server I'm using for my examples. I've also changed the command that charlie is
allowed to run:

charlie ubuntu-server=(ALL:ALL) /usr/bin/apt-get

Now, the charlie is only able to use apt-get. He can use apt-get update, apt-
get dist-upgrade, and any other subset of apt-get. But if he tries to reboot the
server, remove protected files, add users, or anything else we haven't explicitly set,
he will be prevented from doing so.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[67]

We have another problem, though. We're allowing charlie to impersonate other
users. This may not be completely terrible given the context of installing packages
(impersonating another user would be useless unless that user also has access to
install packages), but it's bad form to allow this unless we really need to. In this case,
we could just remove the (ALL:ALL) from the line altogether to prevent charlie
from using the -u option of sudo to run commands as other users:

charlie ubuntu-server= /usr/bin/apt-get

On the other hand, if we actually do want charlie to be able to impersonate other
users (but only specific users), we can call out the username and group that charlie
is allowed to act on behalf of by setting those values:

charlie ubuntu-server=(dscully:admins) ALL

In that example, charlie is able to run commands on behalf of user dscully and
group admins.

Of course, there is much more to sudo than what I've mentioned in this section.
Entire books could be written about sudo (and have been), but 99% of what you will
need for your daily management of this tool involves how to add access to users,
while being specific about what each user is able to do. As a best practice, use groups
when you can (for example, you could have an apt group, reboot group, and so on)
and be as specific as you can regarding who is able to do what. This way, you're not
only able to keep the root account private (or even better, disabled), but you also
have more accountability on your servers.

Setting permissions on files and
directories
In this section, all the user management we've done in this chapter so far all comes
together. We've learned how to add accounts, manage accounts, and secure them
but we haven't actually done any work regarding managing the resources as
far as who is able to access them. In this section, I'll give you a brief overview of
how permissions work in Ubuntu Server and then I'll provide some examples for
customizing them.

I'm sure by now that you understand how to list the contents of a directory with the
ls command. When it comes to viewing permissions, the -l flag is especially handy,
as the output that the long listing provides allows us to view the permissions of
an object:

ls -l

www.hellodigi.ir

http://technet24.ir

Managing Users

[68]

The following are some example file listings:

-rw-rw-rw- 1 doctor doctor 5 Jan 11 12:52 welcome
-rw-r--r-- 1 root root 665 Feb 19 2014 profile
-rwxr-xr-x 1 dalek dalek 35125 Nov 7 2013 exterminate

In each line, we see several fields of information. The first column is our permission
string for the object (for example, -rw-r--r--). We also see the link count for the
object (second column), the user that owns the file (third), the group that owns the
file (fourth), the size in bytes (fifth), the last date the file was modified (sixth), and
finally the name of the file.

Keep in mind that depending on how your shell is configured, your output may
look different and the fields may be in different places. For the sake of our discussion
on permissions, what we're really concerned with is the permissions string, as well
as the owning user and group. In this case, we can see that the first file (named
welcome) is owned by a user named doctor. The second file is named profile and
is owned by root. Finally, we have a file named exterminate owned by a user
named dalek.

With these files, we have the permission strings of -rw-rw-rw-, -rw-r--r--, and
-rwxr-xr-x respectively. If you haven't worked with permissions before, these
may seem strange, but it's actually quite easy when you break them down. Each
permission string can be broken down into four groups, as I'll show you in the
following table:

Object type User Group World
- rw- rw- rw-

- rw- r-- r--

- rwx rwx r-x

I've broken down each of the three example permission strings into four groups.
Basically, I split them each at the first character and then again every third. The
first section of the permission string is just one character. In each of these examples,
it's just a single hyphen. This refers to what type the object is. Is it a directory? A
file? A link? In our case, each of these permission strings are files, because the first
position of the permission strings are all hyphens. If the object were a directory, the
first character would've been a d instead of a -. If the object were a link, this field
would've been l (lower-case L) instead.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[69]

In the next group, we have three characters, rw-, rw-, and rwx respectively, in the
second column of each object. This refers to the permissions that apply to the user
that owns the file. For example, here is the first permission string again:

-rw-rw-rw- 1 doctor doctor 5 Jan 11 12:52 welcome

The third field shows us that doctor is the user that owns the file. Therefore, the
second column of the permission string (rw-) applies specifically to the user doctor.
Moving on, the third column of permissions is also three characters. In this case,
rw- again. This section of the permissions string refers to the group that owns the
file. In this case, the group is also named doctor, as you can see in column four of
the string. Finally, the last portion of the permission string (rw- yet again, in this
case) refers to world, also known as other. This basically refers to anyone else other
than the owning user and owning group. Therefore, literally everyone else gets
rw- permissions on the object.

Individually, r stands for read and w stands for write. Therefore, we can read the
second column (rw-), indicating the user (doctor) has access to read and write to
this file. The third column (rw- again) tells us the group doctor also has read and
write access to this file. The fourth column of the permission string is the same, so
anyone else would also have read and write permissions to the file as well.

The third permission string I gave as an example looks a bit different. Here it
is again:

-rwxr-xr-x 1 dalek dalek 35125 Nov 7 2013 exterminate

Here, we see the x attribute set. The x attribute refers to the ability to execute the
file as a script. So, with that in mind, we know that this file is actually a script and is
executable by users, groups, and others. Given the filename of exterminate, this is
rather suspicious and if it were a real file, we'd probably want to look into it.

If a permission is not set, it will simply be a single hyphen where there would
normally be r, w, or x. This is the same as indicating that a permission is disabled.
Here are some examples:

•	 rwx: Object has read, write, and execute permissions set for this field
•	 r-x: Object has read enabled, write disabled, and execute enabled for

this field
•	 r--: Object has read enabled, write disabled, and execute disabled for

this field
•	 ---: Object has no permissions enabled for this field

www.hellodigi.ir

http://technet24.ir

Managing Users

[70]

Bringing this all the way home, here are a few more permission strings:

-rw-r--r-- 1 sue accounting 35125 Nov 7 2013 budget.txt

drwxr-x--- 1 bob sales 35125 Nov 7 2013 annual_projects

For the first of these examples, we see that sue is the owning user of budget.txt and
that this file is assigned a group of accounting. This object is readable and writable
by sue and readable by everyone else (group and other). This is probably bad,
considering this is a budget file and is probably confidential. We'll change it later.

The annual_projects object is a directory, which we can tell from the d in the first
column. This directory is owned by user bob and group sales. However, since this
is a directory, each of the permission bits have different meanings. In the following
two tables, I'll outline the meanings of these bits for files and again for directories:

Files

Bit Meaning
r The file can be read
w The file can be written to
x The file can be executed as a

program

Directories

Bit Meaning
r The contents of the directory can be viewed
w Contents of the directory can be altered
x The user or group can use cd to go inside the

directory

As you can see, permissions are read differently depending on their context; whether
they apply to a file or a directory. In the example of the annual_projects directory,
bob has rwx permissions to the directory. This means that user bob can do everything
(view the contents, add or remove contents, and use cd to move the current directory
of his shell into the directory). In regards to a group, members of the sales group
are able to view the contents of this directory and cd into it. However, no one in the
sales group can add or remove items to or from the directory. On this object, other
has no permissions set at all. This means that no one else can do anything at all with
this object, not even view its contents.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[71]

So, now we understand how to read permissions on files and directories. That's
great, but how do we alter them? As I mentioned earlier, the budget.txt file is
readable by everyone (other). This is not good because the file is confidential. To
change permissions on an object, we will use the chmod command. This command
allows us to alter the permissions of files and directories in a few different ways.

First, we can simply remove read access from sue's budget file by removing the read
bit from the other field. We can do that with the following example:

chmod o-r budget.txt

If we are currently not in the directory where the file resides, we need to give a
full path:

chmod o-r /home/sue/budget.txt

But either way, you probably get the idea. With this example, we're removing the
r bit from other (o-r). If we wanted to add this bit instead, we would simply use +
instead of -. Here are some additional examples of chmod in action:

•	 chmod u+rw <filename>: The object gets rw added to the user column
•	 chmod g+r <filename>: The owning group is given read access
•	 chmod o-rw <filename>: Other is stripped of the rw bits

In addition, you can also use octal point values to manage and modify permissions.
This is actually the most common method of altering permissions. I like to think
of this as a scoring system. That's not what it is, but it makes it a lot easier to
understand to think of each type of access as having its own value. Basically,
each of the permission bits (r, w, and x) have their own octal equivalent, as follows:

•	 Read: 4
•	 Write: 2
•	 Execute: 1

www.hellodigi.ir

http://technet24.ir

Managing Users

[72]

With this style, there are only a few possibilities for numbers you can achieve when
combining these octal values (each can only be used once). Therefore, we can get 0, 1,
2, 4, 5, 6, and 7 by adding (or not adding) these numbers in different combinations.
Some of them you'll almost never see, such as an object having write access but not
read. For the most part, you'll see 0, 4, 6, and 7 used with chmod most often. For
example, if we add Read and Write, we get 6. If we add Read and Execute, we get 5.
If we add all three, we get 7. If we add no permissions, we get 0. We repeat this for
each column (User, Group, and Other) to come up with a string of three numbers.
Here are some examples:

• 600: User has read and write (4+2). No other permissions are set. This is the
same as -rw-------.

• 740: User has read, write, and execute. Other has nothing. This is the same as
-rwxr-----.

• 770: Both user and group has full access (read, write, execute). Other has
nothing. This is the same as -rwxrwx---.

• 777: Everyone has everything. This is the same as -rwxrwxrwx.

Going back to chmod, we can use this numbering system in practice:

• chmod 600 filename.txt

• chmod 740 filename.txt

• chmod 770 filename.txt

Hopefully you get the idea. If you wanted to change the permissions of a directory,
the -R option may be helpful to you. This makes the changes recursive, meaning
that you'll not only make the changes to the directory, but all files and directories
underneath it in one shot:

chmod 770 -R mydir

While using -R with chmod can save you some time, it can also cause trouble if
you have a mix of directories and files underneath the directory you're changing
permissions on. The previous example gives permissions 770 to mydir and all of its
contents. If there are files inside, they are now given executable permissions, since 7
includes the execute bit (value of 1). This may not be what you want. We can use the
find command to differentiate these. While find is out of the scope of this chapter, it
should be relatively simple to see what the following commands are doing and how
they may be useful:

find /path/to/dir/ -type f -exec chmod 644 {} \;

find /path/to/dir/ -type d -exec chmod 755 {} \;

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 2

[73]

Basically, in the first example, the find command is locating all files (-type f)
in /path/to/dir/ and everything it finds, it executes chmod 644 against it. The
second example is locating all directories in this same path and changing them all
to permissions 755. The find command isn't covered in detail here because it easily
deserves a chapter of its own, but I'm including it here because hopefully these
examples are useful and will be handy for you to include in your own list of
useful commands.

Finally, we'll need to know how to change ownership of files and directories. It's
often common that a particular user needs to gain access to an object, or perhaps we
need to change the owning group as well. We can change user and group ownership
of a file or directory with the chown command. As an example, if we wanted to
change the owner of a file to sue, we could do the following:

chown sue myfile.txt

In the case of a directory, we can also use the -R flag to change ownership of the
directory itself, as well as all the files and directories it may contain:

chown -R sue mydir

If we would like to change the group assignment to the object, we would follow the
following syntax:

chown sue:sales myfile.txt

Notice the colon separating the user and the group. With that command, we
established that we would like user sue and group sales to own this resource.
Again, we could use -R if the object were a directory and we wanted to make the
changes recursive.

Another command worth knowing is the chgrp command, which allows you to
directly change group ownership on a file. To use it, you can execute the chgrp
command along with the group you'd like to own the file, followed by the username.
For example, our previous chown command can be simplified to the following, since
we were only modifying the group assignment of that file:

chown sales myfile.txt

Just like with the chown command, we can use the -R option with
chgrp to make our changes recursively, in the case of a directory.

www.hellodigi.ir

http://technet24.ir

Managing Users

[74]

Well, there you have it. You should now be able to manage permissions of the files
and directories on your server. If you haven't worked through permissions on a
Linux system before, it may take a few tries before you get the hang of it. The best
thing for you to do is to practice. Create some files and directories (as well as users)
and manage their permissions. Try to remove a user's access to a resource and then
try to access that resource as that user anyway and see what errors you get. Fix those
errors and work through more examples. With practice, you should be able to get a
handle on this very quickly.

Summary
In the field, managing users and permissions is something you'll find yourself
doing quite a bit. New users will join your organization, while others will leave, so
this is something that will become ingrained in your mental tool-set. Even if you're
the only person using your servers, you'll find yourself managing permissions
for applications as well, given the fact that processes cannot function if they don't
have access to their required resources. In this chapter, we took a lengthy dive
into managing users, groups, and permissions. We worked through creating and
removing users, assigning permissions, and managing administrative access with
sudo. Practice these concepts on your server. When you get the hang of it, I'll see
you in our next chapter, where we'll discuss all things related to storage.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[75]

Managing Storage Volumes
When it comes to storage on our servers, it seems as though we can never get
enough. While hard disks are growing in capacity every year, and high capacity
disks are cheaper than ever, our servers gobble up available space quickly. As
administrators of servers, we always do our best to order servers with ample storage,
but business needs evolve over time, and no matter how well we plan, a successful
business will always need more. While managing your servers, you'll likely find
yourself adding additional storage at some point. But managing storage is more than
just adding new disks every time your current one gets full. Planning ahead is also
important, and technologies such as LVM will make your job much easier as long as
you start using it as early as you possibly can.

In this chapter, I'll walk you through the concepts you'll need to know in order to
manage storage and volumes on your server. This discussion will include:

•	 Viewing disk usage
•	 Adding additional storage volumes
•	 Partitioning and formatting volumes
•	 Mounting and unmounting storage volumes
•	 Understanding the /etc/fstab file
•	 Managing swap
•	 Utilizing LVM volumes
•	 Using symbolic and hard links

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[76]

Viewing disk usage
Keeping tabs on your storage is always important, as no one enjoys getting a call
in the middle of the night that a server is having an issue, much less something
that could've been avoided, such as a filesystem growing too close to being full.
Managing storage on Linux systems is easy once you master the related tools, the
most useful of which I'll go over in this section. In particular, we'll answer the
question "what's eating all my free space?" and I'll provide you with some examples
of how to find out.

First, the df command. This command is likely always going to be your starting
point in situations where you don't already know which volume is becoming full.
When executed, it gives you a high-level overview, so it's not necessarily useful
when you want to figure out who or what in particular is hogging all your space.
However, when you just want to list all your mounted volumes and see how much
space is left on each, df fits the bill. By default, it shows you the information in bytes.
However, I find it easier to use the -h option with df so that you'll see information
that's a bit easier to read. Go ahead and give it a try:

df -h

Output from the df -h command

The output will look different depending on the types of disks and mount points on
your system. In the example I showed earlier, I took the information from a Digital
Ocean VPS. In my case, you'll see that the root filesystem is located on a disk called
DOROOT, and it is currently only utilizing 10% of the space allocated for it. As you
can see from the example, df gives you some very useful information for starting
your investigation. It shows you the Filesystem, its Size, how much space is Used,
how much is available (Avail), how much percentage is being used (Use%), and the
filesystem the device is Mounted on.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[77]

While investigating disk utilization, it's also important to understand the concepts
of inodes. While going deep into the concept of inodes is beyond the scope of this
book, the basics are simple enough and can save you a lot of trouble, in particular
in situations where an application is reporting that your disk is full but the df -h
command shows plenty of free space is available. Think of the concept of an inode
as a type of database object, containing metadata for the actual items you're storing.
Information stored in inodes are details such as the owner of the file, permissions,
last modified date, and type (whether it is a directory or a file).

The problem with inodes is that you can only have a limited number of them on any
storage media. This number is usually extremely high and hard to reach. In the case
of servers, though, where you're possibly dealing with hundreds of thousands of
files, the inode limit can become a real problem. I'll show you some output from one
of my servers to help illustrate this:

Output from the df -i command

The command I executed to see the output in the previous screenshot was df -i.
As you can see, the -i option of df gives us information regarding inodes instead
of the actual space used. In this example, my root filesystem has a total of 1310720
inodes available, of which 94735 are used and 1215985 are free. If you have a system
that's reporting a full disk (though you see plenty of space is free when running
df -h), it may actually be an issue with your volume running out of inodes. In this
case, the problem would not be the size of the files on your disk, but rather the sheer
number of files you're storing. In my experience, I've seen this happen from mail
servers becoming bound (millions of stuck emails, with each email being a file), as
well as unmaintained log directories. It may seem as though having to contend with
an inode limit is unbecoming of a legendary platform such as Linux, though as I
mentioned earlier, this limit is very hard to reach—unless something is very,
very wrong.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[78]

The next step in investigating what's gobbling up your disk space is finding out
what is using it all up. At this stage, there are a multitude of tools you can use to
investigate. The first I'll mention is the du command, which is able to show you how
much space a directory is using. Using du against directories and subdirectories
will help you narrow down the problem. Like df, we can also use the -h option
with du to make our output easier to read. By default, du will scan the current
working directory your shell is attached to and give you a list of each item within
the directory, the total space each item consists of, as well as a summary at the end.

The du command is only able to scan directories that its calling user has
permission to scan. If you run this as a non-root user, then you may not
be getting the full picture. Also, the more files and subdirectories that
are within your current working directory, the longer this command will
take to execute. If you have an idea where the resource hog might be, try
to cd into a directory further in the tree to narrow your search down and
reduce the amount of time the command will take.

The output of du -h can often be more verbose than you actually need in order to
pinpoint your culprit and can fill several screens. To simplify it, my favorite variation
of this command is the following:

du -hsc *

Basically, you would run du -hsc * within a directory that's as close as possible
to where you think the problem is. The -h option, as we know, gives us human
readable output (essentially, giving us output in the form of megabytes, gigabytes,
and so on). The -s option gives us a summary and -c provides us with a total
amount of space used within our current working directory. The following
screenshot shows this output from my desktop (yes, I have a lot of games
and music):

Example output from du -hsc *

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[79]

As you can see, the information provided by du -hsc * is a nice, concise summary.
From the output, we know which directories within our working directory are the
largest. To further narrow down our storage woes, we could cd into any of those
large directories and run the command again. After a few runs, we should be able to
narrow down the largest files within these directories and make a decision on what
we want to do with them. Perhaps we can clean unnecessary files or add another
disk. Once we know what is using up our space, we can decide what we're going to
do about it.

At this point in reading this book, you're probably under the impression that I
have some sort of strange fixation on saving the best for last. You'd be right. I'd
like to finish off this section by introducing you to one of my favorite applications,
the Ncurses Disk Usage Utility (or more simply, the ncdu command). The ncdu
command is one of those things that administrators who constantly find themselves
dealing with disk space issues learn to love and appreciate. In one go, this command
gives you not only a summary of what is eating up all your space, it also gives you
an ability to traverse the results without having to run a command over and over
while manually traversing your directory tree. You simply execute it once and then
you can navigate the results and drill down as far as you need.

To use ncdu, you will need to install it as it doesn't come equipped on Ubuntu
by default:

apt-get install ncdu

Once installed, simply execute ncdu in your shell from any starting directory of your
choosing. When done, simply press q on your keyboard to quit. Like du, ncdu is only
able to scan directories that the calling user has access to. You may need to run it as
root to get an accurate portrayal of your disk usage.

You may want to consider using the -x option with ncdu. This
option will limit it to the current filesystem, meaning it won't
scan network mounts or additional storage devices; it'll just focus
on the device you started the scan on. This can save you from
scanning areas that aren't related to your issue.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[80]

When executed, ncdu will scan every directory from its starting point onward.
When finished, it will give you a menu-driven layout allowing you to browse
through your results:

ncdu in action

To operate ncdu, you move your selection (indicated with a long white highlight)
with the up and down arrows on your keyboard. If you press Enter on a directory,
ncdu switches to showing you the summary of that directory, and you can continue
to drill down as far as you need. In fact, you can actually delete items and entire
folders by pressing d. Therefore, ncdu not only allows you to find what is using up
your space, it also allows you to take action as well!

Adding additional storage volumes
At some point or another, you'll reach a situation where you'll need to add additional
storage to your server. On physical servers, we can add additional hard disks, and
on virtual or cloud servers, we can add additional virtual disks. Either way, in order
to take advantage of the extra storage we'll need to determine the name of the device,
format it, and mount it. In the case of LVM (which we'll discuss later in this chapter),
we'll have the opportunity to expand an existing volume, often without a server
reboot being necessary.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[81]

When a new disk is attached to our server, it will be detected by the system and
given a name. In most cases, the naming convention of /dev/sda, /dev/sdb, and so
on will be used. In other cases (such as virtual disks), this will be different, such as
/dev/vda, /dev/xda, and possibly others. The naming scheme usually ends with a
letter, incrementing to the next letter with each additional disk. The fdisk command
is normally used for creating and deleting partitions, but it will allow us to determine
which device name our new disk received. Basically, the fdisk -l command will
give you the info, but you'll need to run it as root or with sudo:

sudo fdisk -l

Output of the fdisk -l command, showing a device of /dev/vda1

I always recommend running this command before and after attaching a new device.
That way, it will be obvious which device name is the one that's new. Once you
have the name of the device, we will be able to interact with it and set it up. There's
an overall process to follow when adding a new device, though. When adding
additional storage to your system, you should ask yourself the following questions:

•	 How much storage do you need? If you're adding a virtual disk, you can
usually make it any size you want, as long as you have enough space
remaining in the pool of your hypervisor.

•	 After you attached it, what device name did it receive? As I mentioned,
run the fdisk -l command as root to find out. Another trick is to use the
following variation of the tail command, with which the output will update
automatically as you add the disk. Just start the command, attach the disk,
and watch the output. When done, press Ctrl + C on your keyboard:
tail -f /var/log/dmesg

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[82]

• How do you want it formatted? At the time of writing, the Ext4 filesystem
is the most common. However, for different workloads, you may consider
other options (such as XFS). When in doubt, use Ext4, but definitely read up
on the other options to see if they may benefit your use case. ZFS is another
option that's new in version 16.04 of Ubuntu, which you may also consider
for additional volumes. We'll discuss formatting later in this chapter.

It may be common knowledge to you by now, but the word
filesystem is a term that can have multiple meanings on a Linux
system depending on its context, and may confuse newcomers. We
use it primarily to refer to the entire file and directory structure (the
Linux filesystem), but it's also used to refer to how a disk is formatted
for use with the distribution (for example, the Ext4 filesystem).

• Where do you want it mounted? The new disk needs to be accessible to
the system and possibly users, so you would want to mount (attach) it to
a directory on your filesystem where your users or your application will
be able to use it. In the case of LVM, which we also discuss in this chapter,
you're probably going to want to attach it to an existing storage group. You
can come up with your own directory for use with the new volume. But later
on in this chapter, I'll discuss a few common locations.

With regards to how much space you should add, you would want to research the
needs of your application or organization and find a reasonable amount. In the
case of physical disks, you don't really get a choice beyond deciding which disk to
purchase. In the case of LVM, you're able to be more frugal, as you can add a small
disk to meet your needs (you can always add more later). The main benefit of LVM
is being able to grow a filesystem without a server reboot. For example, you can start
with a 30 GB volume and then expand it in increments of 10 GB by adding additional
10 GB virtual disks. This method is certainly better than adding a 200 GB volume
all at once when you're not completely sure all that space will ever be used. LVM
can also be used on physical servers as well, but would most likely require a reboot
anyway since you'd have to open the case and physically attach a hard drive.

The device name, as we discussed, is found with the fdisk -l command. You can
also find the device name of your new disk with the lsblk command. One benefit
of lsblk is that you don't need root privileges and the information it returns is
simplified. Either works fine:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[83]

The lsblk command in action, showing two disks with one partition each

On a typical server, the first disk (basically, the one that you installed Ubuntu Server
on) will be given a device name of /dev/sda. Additional disks will be given the next
available name, such as /dev/sdb, /dev/sdc, and so on. You'll also need to know the
partition number as well. Device names for disk will also have numbers at the end,
representing individual partitions. For example, the first partition of /dev/sda
will be given /dev/sda1, while the second partition of /dev/sdc will be given
/dev/sdc2. These numbers increment and are often easy to predict. As I mentioned
before, your device naming convention may vary from server to server, especially
if you're using a RAID controller or virtualization host such as VMWare or
XenServer. If you haven't created a partition on your new disk yet, you will
not see any partition numbers.

Next, you need to consider which filesystem to use. Ext4 is the most common
filesystem type but many others exist, and new ones are constantly being created. At
the time of writing, there are up and coming filesystems such as B-tree file system
(Btrfs) being developed, while ZFS is not actually new but is new to Ubuntu (it's
very common in the BSD community and has been around for a long time). Btrfs and
ZFS are both not considered ready for stable use in Linux due to the fact that Btrfs is
relatively new and ZFS is newly implemented in Ubuntu. At this point, it's believed
that Ext4 won't be the default filesystem forever, as several are vying for the crown of
becoming its successor. As I write this, though, I don't believe that Ext4 will be going
away anytime soon.

An in-depth look at all the filesystem types is beyond the scope of this book due
to the sheer number of them. One of the most common alternatives to Ext4 is XFS,
which is a great filesystem if you plan on dealing with very large individual files
or massive multi-terabyte volumes. XFS volumes are also really good for database
servers due to their additional performance. In general, stick with Ext4 unless you
have a very specific use case that gives you a reason to explore alternatives.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[84]

Finally, the process of adding a new volume entails determining where you want
to mount it and adding the device to the /etc/fstab file, which will help with
automatically mounting it each time the server is booted (which is convenient but
optional). We'll discuss the /etc/fstab file and mounting volumes in a later section.
Basically, Linux volumes are typically mounted inside an existing directory on the
filesystem, and from that point on, you'll see free space for that volume listed when
you execute the df -h command we worked through earlier.

It's very typical to use the /mnt directory as a top-level place to mount additional
drives. If you don't have an application that requires a disk to be mounted in
a specific place, a subdirectory of /mnt is a reasonable choice. I've also seen
administrators make their own top-level directory, such as /store, to house their
drives. When a new volume is added, a new directory would be created underneath
the top-level directory. For example, you could have a backup disk attached to /mnt/
backup or a file archive mounted at /store/archive. The directory scheme you
choose to use is entirely up to you.

I just mentioned mounting a backup disk at /mnt/backup, which those of you with
more experience may be thinking is a terrible idea. As a rule of thumb, adding
another internal disk is not technically considered a valid backup location. If the
entire server were to catastrophically fail, all internal disks may be a victim and also
fail. However, you're certainly not limited to adding internal disks. In a typical Linux
network, you could also mount external disks (such as USB 3.0 external hard disks or
network attached storage devices) as well. The method of adding disks is mostly the
same regardless of which type of disk you're adding (local, external, network, and so
on). Just as before, external devices will need to be formatted and given a location on
which to be mounted. Mounting volumes will be discussed later on in this chapter.

Partitioning and formatting volumes
In order to utilize a disk, it must be partitioned and formatted. The fdisk command
does much more than just show us what partitions are available, it allows us to
manage them as well. In this section, I'll walk you through partitioning as well as
formatting new volumes.

In order to begin the process of partitioning a disk, we'll use the fdisk command
as root, using a device name as an option. For example, if you have a disk such as
/dev/sdb that needs to be configured, you would execute the following:

fdisk /dev/sdb

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[85]

Note that I didn't include a partition number here, as fdisk works with the disk
directly (and we also have yet to create any partitions). In this section, I'm assuming
you have a disk that has yet to be partitioned, or one you won't mind wiping out.
When executed correctly, fdisk will show you an introductory message and give
you a prompt:

Main prompt of fdisk

At this point, you can press m on your keyboard for a menu of possible commands
you can execute. In this example, I'll walk you through the commands required to set
up a new disk for the first time.

I'm sure it goes without saying, but I have to make sure you're
aware of the destructive possibilities of fdisk. If you run fdisk
against the wrong drive, irrecoverable data loss may result. It's
common for an administrator to memorize utilities such as fdisk
to the point where using it becomes muscle-memory. But always
make sure that you take the time to make sure that you're running
such commands against the appropriate disk.

Before we continue with creating a new partition, some discussion is required with
regards to MBR and GPT partition tables. When creating partitions, you'll have
the option to use an MBR partition table or a GPT partition table. GPT is the newer
standard, while MBR has been around for quite some time and is probably what
you've been using if you've ever created partitions in the past. By default, fdisk will
create a partition table in the MBR format. But with MBR partition tables, you have
some limitations to consider. First, MBR only allows you to create up to four primary
partitions. In addition, it also limits you to using somewhere around 2 TB of a disk.
If the capacity of your disk is 2 TB or less, this won't be an issue. However, disks
larger than 2 TB are becoming more and more common. GPT doesn't have a 2 TB
restriction, so if you have a very large disk, the decision between MBR and GPT has
pretty much been made for you. In addition, GPT doesn't have a restriction of up to
four primary partitions, as fdisk with a GPT partition table will allow you to create
up to 128. It's certainly no wonder why GPT is fast becoming the new standard!
It's only a matter of time before GPT becomes the default, so unless you have good
reason not to, I recommend using it if you have a choice.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[86]

When you first enter the fdisk prompt, you can press m to access the menu, where
you'll see toward the bottom that you have a few options in regards to which
partition style you'd like to use. If you make no selection and continue with the
process of creating a partition, it will default to MBR. Instead, you can press g at the
prompt to specifically create a GPT partition table, or to to switch back to MBR. Note
that this will obviously wipe out the current partition table on the drive, so hopefully
you weren't storing anything important on the disk.

Continuing on, after you've made your choice and created either an MBR or GPT
partition table, we're ready to proceed. Next, at the fdisk prompt, type n to tell
fdisk that you would like to create a new partition. Then, you'll be asked if you
would like to create a primary or extended partition (if you've opted for MBR). With
MBR, you would want to choose primary for the first partition and then you can
use extended for creating additional partitions. If you've opted for GPT, this prompt
won't appear, as it will create your partition as primary no matter what.

The next prompt that will come up will ask you for the partition number, defaulting
to the next available number. Press Enter to accept the default. Afterwards, you'll be
asked for the first sector for the partition to use (accept the default of 2048) and then
the last sector to use. If you press Enter to accept the default last sector, your partition
will consist of all the free space that was remaining. If you'd like to create multiple
partitions, don't accept the default at this prompt. Instead, you can clarify the size
of your new partition by giving it the number of megabytes or gigabytes to use. For
example, you can enter 20G here to create a partition of 20 GB.

At this point, you'll be returned to the fdisk prompt. To save your changes and exit
fdisk, press w and then Enter. Now if you run the fdisk -l command as root, you
should see the new partition you created. Here is some example output from my
server, where I just partitioned an 8 GB virtual disk with a single partition:

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 16777215 16775168 8G 83 Linux

After you create your partition layout for your new disk and you're satisfied with
it, you're ready to format it. If you've made a mistake or you want to redo your
partition layout, you can do so by entering the fdisk prompt again and then
pressing g to create a new GPT layout or o to create a new MBR layout. Then,
continue through the steps again to partition your disk. Feel free to practice this a
few times until you get the hang of the process.

Formatting is done with the mkfs command. To format a device, you execute mkfs
with a period (.), followed by the type of filesystem you would like to format the
target as. The following example will format /dev/sdb1 as Ext4:

mkfs.ext4 /dev/sdb1

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[87]

Your output will look similar to mine in the following screenshot:

Main prompt of fdisk

If you've opted for a filesystem type other than Ext4, you can use that in place of Ext4
when using mkfs. The following example creates an XFS filesystem instead:

mfs.xfs /dev/sdb1

So, now that we've created one or more partitions and formatted them, we're ready
to mount the newly created partition(s) on our server. In the next section, I'll walk
you through mounting and unmounting storage volumes.

Mounting and unmounting storage
volumes
Now that you've added a new storage volume to your server and have formatted it,
you can mount the new device so that you can start using it. To do this, we use the
mount command. This command allows you to attach a storage device (or even a
network share) to a local directory on your server. This directory must be empty. The
mount command, which we'll get to practice with an example very shortly, basically
just requires you to designate a place (directory) for it to be mounted. But where
should you mount the volume?

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[88]

Normally, there are two directories created by default in your Ubuntu Server
installation that exist for the purposes of mounting volumes: /mnt and /media.
While there is no hard rule as far as where media needs to be mounted, these two
directories exist as part of the Filesystem Hierarchy Standard (FHS), which is a
special specification defining the default directories and storage locations (as well as
their intended purposes) on Linux systems. While an in-depth review of the FHS is
beyond the scope of this book, it's worth bringing up because the purpose of the
/mnt and /media directories are defined within this specification. The FHS defines
/mnt as a mount point for a temporarily mounted filesystem, and /media as a mount
point for removable media.

In plain English, this means that the intended purpose of /mnt is for storage volumes
you generally keep mounted most of the time, such as additional hard drives,
virtual hard disks, and network attached storage. The FHS document uses the
term "temporary" when describing /mnt, but I'm not sure why that's the case since
this is generally where things are mounted which your users and applications will
use. Perhaps "temporary" just refers to the fact that the system doesn't require this
mount in order to boot, but who knows. In regards to /media, the FHS is basically
indicating that removable media (flash drives, CD-ROM media, external hard drives,
and so on) are intended to be mounted here.

However, it's important to point out that where the FHS indicates you should mount
your extra volumes is only a suggestion. No one is going to force you to follow it,
and the fate of the world isn't dependent on your choice. With the mount command,
you can literally mount your extra storage anywhere that isn't already mounted or
full of files. You could even create the directory /kittens and mount your disks
there and you won't suffer any consequences other than a few chuckles from
your colleagues.

Often, organizations will come up with their own scheme for where to mount extra
disks. Although I personally follow the FHS designation, I've seen companies use a
custom common mount directory such as /store. Whatever scheme you use is up to
you; the only suggestion I can make is to be as consistent as you can from one server
to another, if only for the sake of sanity.

The mount command generally needs to be run as root. While there is a way
around that (you can allow normal users to mount volumes, but we won't get
into that just yet), it's usually the case that only root can or should be mounting
volumes. As I mentioned, you'll need a place to mount these volumes, so when
you've come up with such a place, you can mount a volume with a command
similar to the following:

mount /dev/sdb1 /mnt/vol1

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[89]

In that example, I'm mounting device /dev/sdb1 to directory /mnt/vol1. Of course,
you'll need to adjust the command to reference the device you want to mount and
where you want to mount it. If you don't remember which devices exist on your
server, you can list them with:

fdisk -l

Normally, the mount command wants you to issue the -t option with a given type.
In my case, the mount command would've been the following had I used the -t
option, considering my disk is formatted with ext4:

mount /dev/sdb1 -t ext4 /mnt/vol1

In that example, I used the -t option along with the type of filesystem I formatted
the device with. In the first example, I didn't. This is because, in most cases, the
mount command is able to determine which type of filesystem the device uses and
adjust itself accordingly. Thus, most of the time, you won't need the -t option. In
the past, you almost always needed it, but it's easier nowadays. The reason I bring
this up is because if you ever see an error when trying to mount a filesystem that
indicates an invalid filesystem type, you may have to specify this. Feel free to check
the man pages for the mount command for more information regarding the different
types of options you can use.

When you are finished using a volume, you can unmount it with the
umount command:

umount /mnt/vol1

The umount command, which also needs to be run as root, allows you to disconnect
a storage device from your filesystem. In order for this command to be successful,
the volume should not be in use. If it is, you may receive a device or resource busy
error message.

The downside to manually mounting devices is that they will not automatically
remount themselves the next time your server boots. In order to make the mount
automatically come up when the system is started, you'll need to edit the /etc/
fstab file, which I'll walk you through in the next section.

Understanding the /etc/fstab file
The /etc/fstab file is a very critical file on your Linux system. As I mentioned in
the last section, you can edit this file to call out additional volumes you would like
automatically mount at boot time. However, the main purpose of this file is also to
mount your main filesystem as well, so if you make a mistake while editing it, your
server will not boot. Definitely be careful.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[90]

When your system boots, it looks at this file to determine where the root filesystem
is. In addition, the location of your swap area is also read from this file and mounted
at boot time as well. Your system will also read any other mount points listed in this
file, one per line, and mounts them. Basically, just about any kind of storage you can
think of can be added to this file and automatically mounted. Even network shares
from Windows servers can be added here.

For an example, here is the content of /etc/fstab on one of my servers:

/ was on /dev/sda1 during installation

UUID=53ce034d-c06e-4bc3-b784 / ext4 errors=remount-ro 0 1

swap was on /dev/sda5 during installation

UUID=c9468709-008f-49f8-8b5e none swap sw 0 0

I've shortened the UUID columns a bit in order to save space on this page, but all the
relevant info is still present. When you install Ubuntu Server, the /etc/fstab file
is created for you and populated with a line for each of the partitions you created
during installation. On the server I used to grab the example fstab content, I have
two volumes: one for the root filesystem and one for swap.

Each volume is designated with a Universally Unique Identifier (UUID) instead of
the normal /dev/sdaX naming convention you are more than likely used to. In my
output, you can see that some comments (lines beginning with #) were created by
the installer to let me know which volume refers to which device. For example, UUID
c9468709-008f-49f8-8b5e refers to my swap partition, /dev/sda5 (according to
the comment). The concept of a UUID has been around for a while, but there's nothing
stopping you from replacing the UUID with the actual device names (/dev/sda1 and
/dev/sda5 in my case). If you were to do that, the server would still boot and you
probably wouldn't notice a difference (assuming you didn't make a typo).

Nowadays, UUIDs are preferred over common device names due to the fact that the
names of devices can change depending on where you place them physically (which
SATA port, USB port, and so on) or how you order them (in the case of virtual disks).
Add to this the fact that removable media can be inserted or removed at any time
and you have a situation where you don't really know what name each device is
going to receive. For example, your external hard drive may be named /dev/sdb1 on
your system now, but it may not be the next time you mount it if something else you
connect claims the name of /dev/sdb1. This is where the concept of UUIDs comes
in handy. A UUID of a device will not change, no matter what order it's installed in.
You can easily list the UUIDs of your volumes with the blkid command:

blkid

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[91]

The output will show you the UUID of each device attached to your system, and you
can use this command any time you add new volumes to your server to list your
UUIDs. This is also the first step in adding a new volume to your /etc/fstab file.
While I did say that using UUIDs is not required, it's definitely recommended and
can save you from trouble later.

Each line of an fstab entry is broken down into several columns, each separated
by spaces. There isn't a set number of spaces necessary to separate each column; in
most cases, spaces are only used to line up each column to make them easier to read.
However, at least one space is required.

In the first column of the example fstab file, we have the UUID of each device. In
the second column, we have the location we want the device to be mounted to. In
the case of the root filesystem, this is /, which (as you know) is the beginning of
the Linux filesystem. The second entry (for swap) has a mount point of none, which
means that a mount point is not necessary for this device. In the third column, we
have the filesystem type, the first being ext4, and the second being swap.

In the fourth column, we have a list of options for each mount separated by a
comma. In this case, we only have one option for each of the example lines. With the
root filesystem, we have an option of errors=remount-ro, which tells the system to
remount the filesystem as read-only if an error occurs. Such an issue is rare, but will
keep your system running in read-only mode if a problem occurs. The swap partition
has a single option of sw. There are many other options that can be used here, so feel
free to consult the man pages for a list. We will go over some of these options in
this section.

The fifth and sixth columns refer to dump and pass respectively, which are 0 and 1
in the first example line and 0 and 0 in the last. Dump is almost always 0 and can be
used with a backup utility to determine whether the filesystem should be backed up
(0 for no, 1 for yes). In most cases, just leave this at 0 since this is rarely ever used by
anything nowadays. The Pass field refers to the order in which fsck will check the
file systems. The fsck utility scans hard disks for filesystem errors in the case of a
system failure or a scheduled scan. The possible options for Pass are 0, 1, or 2. With
0, the partition is never checked with fsck. If set to 1, the partition is checked first.
Partitions with a Pass of 2 are considered second priority and checked last. As a
general rule of thumb, use 1 for your main filesystem and 2 for all others.

Now that we understand all the columns of a typical fstab entry, we can work
through adding another volume to the fstab file. First, we need to know the UUID of
the volume we would like to add (assuming it's a hard disk or virtual disk). Again,
we do that with the blkid command:

blkid

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[92]

Next, we need to know where we want to mount the volume. Go ahead and create
the directory now, or use an existing directory if you wish. With this information,
we can add a new entry to fstab. To do so, we create a new line after all the others.
In my example server, an entry for /dev/sdb1 will look like the following:

Extra storage for user apps

UUID=b15ec9ce-7b59-45c6 /mnt/vol1 ext4 defaults 0 2

In my example, I created a comment line with a little note about what the extra
volume will be used for. It's always a good idea to leave comments, so other
administrators will have a clue regarding the purpose of the extra storage. Then,
I created a new line with the UUID of the volume, the mount-point for the volume,
the filesystem type, defaults option, and a dump/pass of 0 and 2.

The defaults option I've not mentioned before. By using defaults as your mount
option in fstab, your mount will be given several useful options in one shot,
without having to list them individually. Among the options included with
defaults are the following, which are worth an explanation:

• rw: Device will be mounted read/write
• exec: Allow files within this volume to be executed as programs
• auto: Automatically mount the device at boot time
• nouser: Only root is able to mount the filesystem
• async: Output to the device should be asynchronous

Depending on your needs, the options included with defaults may or may not be
ideal. Instead, you can call the options out individually, separated by commas,
choosing only the ones you need. For example, with regards to rw, you may not want
users to be allowed to change content. In fact, I strongly recommend that you use
ro (read-only) instead, unless your users have a very strong use case for needing to
make changes to files. I've actually learned this the hard way, where I've experienced
an entire volume getting completely wiped out (and no one admitted to clearing
the contents). This volume included some very important company data. From
that point on, I mandated ro being used for everything, with a separate rw mount
created, with only a select few (very responsible) people having access to it.

The exec option may also not be ideal. For example, if your volume is intended for
storing files and backups, you may not want scripts to be run from that location. By
using the inverse of exec (noexec), you can prevent scripts from running to create a
situation where users are able to store files on the volume but not execute programs
that are stored there.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[93]

Another option worth explanation is auto. The auto option basically tells your
system to automatically mount that volume whenever the system boots or when
you enter the following command:

mount -a

When executed, mount -a will mount any entry in your /etc/fstab file that has
the auto option set. If you've used defaults as an option for the mount, those will be
mounted as well since defaults implies auto. This way, you can mount all filesystems
that are supposed to be mounted without rebooting your server (this command will
not disrupt anything that is already mounted).

The opposite of the auto option is noauto, which can be used instead. As you can
probably guess by the name, an entry in fstab with the noauto option will not be
automatically mounted and will not be mounted when you run mount -a. Instead,
entries with this option will need to be mounted manually.

You may be wondering, then, what the point is of including an entry in fstab just
to use noauto. To explain this better, here is an example fstab entry with noauto
being used:

UUID=e51bcc9e-45dd-45c7 /mnt/ext_disk ext4 rw,noauto 0 0

Here, let's say that I have an external disk that I only mount when I'm performing a
backup. I wouldn't want this device mounted automatically at boot time (I may not
always have it connected to the server), so I use the noauto option. But since I
do have an entry for it in /etc/fstab, I can easily mount it any time with the
following command:

mount /mnt/ext_disk

Notice that I didn't have to include the device name, only where I want the device
mounted. The mount command knows what device I'm referring to, since I have
an entry for a device to be mounted at /mnt/ext_disk. This saves me from having
to type the device name each time I want to mount the device. So, in addition to
mounting devices at boot time, the /etc/fstab file also becomes a convenient
place to declare devices that may be used on an on-demand basis but aren't
always attached.

One final option I would like to cover before we move on is users. When used with
a mount in /etc/fstab, this allows regular users (users other than root) to mount
and unmount the filesystem. This way, root or sudo will not be necessary at all for
a mount used with this option. Use this with care, but it can be useful if you have
a device with non-critical data you don't mind your users having full control over
when mounting and unmounting.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[94]

While the concept of a text file controlling which devices are mounted on the
system may seem odd at first, I think you'll appreciate being able to view a single
file in order to find out everything that should be mounted and where it should be
mounted. As long as all administrators add even on-demand devices to this file, it
can be a convenient place to get an overview of the filesystems that are in use on
the server.

Managing swap
As I mentioned earlier in this book, the concept of swap is one that has been a
subject of great debate, with some administrators even omitting it outright. When
your server is running smoothly, you should never need swap. If your server
does start consuming a lot of swap, it's definitely cause for concern. Swap space is
a special partition (or file) that is used for memory when your physical memory
gets depleted. It's not uncommon for a handful of megabytes here and there to be
consumed by swap, but when serious swap space is used, it's usually the sign of a
struggling server.

Theoretically, this space should remain idle and (for the most part) unused. In
a perfect world, your server will always run efficiently, processes will never
misbehave, and users will never do anything stupid. But in the real world, swap
space is here to catch you when you fall. While some believe that swap shouldn't be
necessary given how much cheaper memory is nowadays, I counter with the fact that
disk space is also cheap, so it shouldn't be a problem to attribute some of your disk to
swap. If nothing else, it may save you from a reboot when things go awry.

There is an exception to this rule, though. When it comes to the Raspberry Pi, you
should never have swap space if you can help it. Traditionally, the Raspberry Pi
images do not include a swap partition. You could create one, but I recommend
that you don't. The reason for this is because the Pi uses SD cards for storage, which
are orders of magnitude slower than traditional hard disks. While the Raspberry Pi
might seem fast enough with regards to IO when performing average tasks, swap
would be so slow on these devices that it would just be more trouble than it's worth
and end up working against you.

As you probably noticed from our earlier discussion, swap space is declared in our
/etc/fstab file. In most cases, you would've chosen to create a swap partition
during installation. You could, of course, add a swap partition later. In that case, you
would add it just like you would any other partition, and you could use my output
earlier in this chapter for a sample fstab line for swap. However, the mount -a
command we discussed earlier won't activate swap, even after adding it to the file.
To activate swap, we would use the swapon command:

swapon -a

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[95]

When run, the swapon -a command will find your swap partition in /etc/fstab,
mount it, and activate it for use. The inverse of this command is swapoff -a, which
deactivates and unmounts your swap partition. It's rare that you'd need to disable
swap, unless of course you were planning on deleting your swap partition, creating a
larger one, and then mounting the new partition. If you find out that your server has
an inadequate swap partition size, that may be a course of action you would take.

When you check your free memory (hint: execute free -m), you'll see swap listed
whether you have it or not, but when swap is deactivated, you will see all zeros for
the size totals.

In my experience with cloud servers, it's not uncommon that you won't have a swap
partition at all. In the case of Digital Ocean (a popular cloud server provider), their
default Ubuntu images do not include swap. Their lowest server tier for Ubuntu
Server includes just 512 MB of RAM, and with no swap, you could easily encounter
a situation where an application stops working when it hits the physical memory
ceiling (as I've personally experienced). For situations where you aren't given swap
by default, and you aren't able to add additional disks, you can create a swap
file instead.

To do so, you'll first create the actual file to be used as swap. This can be stored
anywhere, but /swapfile is typically ideal. You can use the fallocate command to
create the actual file:

fallocate -l 2G /swapfile

Here, I'm creating a 2 GB swap file, but feel free to make yours whatever size you
want in order to fit your needs. Next, we need to prepare this file to be used as swap:

mkswap /swapfile

Now, we have a handy-dandy swap file stored in our root filesystem. Next, we'll
need to mount it. As always, it's recommended that we add this to our /etc/fstab
file. What follows is an example entry:

/swapfile none swap sw 0 0

From this point, we can activate our new swap file:

swapon -a

But what if you wanted to create a swap partition on a physical device, such as a
secondary hard or virtual disk? Remember our old friend fdisk we've used to create
partitions before. The fdisk utility can also be used to create a swap partition as
well. Assuming you have a disk that hasn't yet been partitioned or formatted, what
follows is an example run of fdisk where I create a swap partition.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[96]

First, at the fdisk prompt, I type n to create a new partition:

Command (m for help): n

Then, I'm asked for the partition type, where I'll press p for primary:

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

When asked for the Partition number, I'll leave the default at 1, and then
press Enter:

Partition number (1-4, default 1):

I'll accept the defaults for First sector as well:

First sector (2048-16777215, default 2048):

For the last sector, you can press Enter to claim the entire drive (which would
probably be a waste). In my case, I type +2G to instruct fdisk to create a
2 GB partition:

Last sector, +sectors or +size{K,M,G,T,P} (2048-16777215, default
16777215): +2G

Then, I receive confirmation that I've created a new partition:

Created a new partition 1 of type 'Linux' and of size 2 GiB.

So far, no surprises. We've been through this song and dance before. Next, comes
the neat part. We can select a different type for our partition by entering t at the
fdisk prompt:

Command (m for help): t

Next, we are asked for the type. We could list all the possibilities with L, but I'll give
you a shortcut and let you know that 82 is the partition type for swap, so press 82
and then Enter:

Partition type (type L to list all types): 82

I then receive another confirmation:

Changed type of partition 'Linux' to 'Linux swap / Solaris'.

Finally, I type w to write the changes to disk:

Command (m for help): w

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[97]

Now, we have a swap partition. We can mount it on our system by finding its UUID
(hint: use the blkid command as root) and then prepare this partition to be used
as swap:

mkswap /dev/sdd1

The output of the mkswap command will give us the UUID, which we can then add to
our /etc/fstab to ensure it's used at boot time and mount it right now with swapon
-a as root. For your convenience, an example fstab entry for swap is as follows:

UUID=8d773e13-01 none swap sw 0 0

While I certainly hope you won't need to resort to using swap, I know from
experience that it's only a matter of time. Knowing how to add and activate swap
when you need it is definitely a good practice, but for the most part, you should be
fine as long as you created an adequate swap partition during installation. I always
recommend a bare minimum of 2 GB on servers, but if you can swing 8 GB or even
16 GB of your disk for this purpose, that's even better.

Utilizing LVM volumes
The needs of your organization will change with time. While we as server
administrators always do our best to configure resources with long-term growth
in mind, budgets and changes in policy always seem to get in our way. LVM is
something that I'm sure you'll come to appreciate. In fact, technologies such as LVM
are one of those things that make Linux the champion when it comes to scalability
and cloud deployments. With LVM, you are able to resize your filesystems online,
without needing to reboot your server.

Take the following scenario for example. Say you have an application running on
a production server, a server that's so important that downtime would cost your
organization serious money. When the server was first set up, perhaps you gave
the application's storage directory a 100 GB partition, thinking it would never
need more than that. Now, with your business growing, it's not only using a lot of
space—you're about to run out! What do you do? If the server was initially set up
with LVM, you could add an additional storage volume, add it to your LVM pool,
and grow your partition. All without rebooting your server! On the other hand, if
you didn't use LVM, you're forced to find a maintenance window for your server
and add more storage the old-fashioned way.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[98]

With physical servers, you can install additional hard drives
and keep them on standby without utilizing them to still gain
the benefit of growing your filesystem online, even though
your server isn't virtual.

It's for this reason that I must stress that you should always use LVM on storage
volumes in virtual servers whenever possible. Let me repeat myself. You should
always use LVM on storage volumes when you are setting up a virtual server! If you
don't, this will eventually catch up with you when your available space starts to run
out and you find yourself working over the weekend to add new disks. This will
involve manually syncing data from one disk to another and then migrating your
users to the new disk. This is not a fun experience, believe me.

When setting up a new server, you're given the option to use LVM during
installation. If you can, it's not a bad idea. But it's much more important for your
storage volumes to use LVM, and by those, I mean the volumes where your users
and applications will store their data. LVM is a good choice for your Ubuntu Server's
root filesystem, but not required. In order to get started with LVM, there are a few
concepts that we'll need to understand, specifically Volume Groups, Physical
Volumes, and Logical Volumes.

A volume group is a namespace given to all the physical and logical volumes on your
system. Basically, a volume group is the highest name that encompasses your entire
implementation of an LVM setup. Think of it as a kind of container that is able to
contain disks. An example of this might be a volume group named vg-accounting.
This volume group would be used for a location for the accounting department to store
their files. It will encompass the physical volumes and logical volumes that will be in
use by these users. It's important to note that you aren't limited to just a single volume
group; you can have several, each with their own disks and volumes.

A physical volume is a physical or virtual hard disk that is a member of a volume
group. For example, the hypothetical vg-accounting volume group may consist of
three 100 GB hard disks, each called a physical volume. Keep in mind that these
disks are still referred to as physical volumes, even when the disks are virtual.
Basically, any block device that is owned by a volume group is a physical volume.

Finally, logical volumes are similar in concept to partitions. Logical volumes can
take up a portion of, or an entire, disk, but unlike standard partitions, they may also
span multiple disks. For example, a logical volume can include three 100 GB disks
and be configured such that you would receive a cumulative total of 300 GB. When
mounted, users will be able to store files there just as they would a normal partition
on a standard disk. When the volume gets full, you can add an additional disk and
then grow the partition to increase its size. Your users would see it as a single storage
area, even though it may consist of multiple disks.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[99]

The volume group can be named anything you'd like, but I always give mine names
that begin with vg- and end with a name detailing its purpose. As I mentioned, you
can have multiple volume groups. Therefore, you can have vg-accounting, vg-
sales, and vg-frontdesk all on the same server. Then, you assign physical volumes
to each. For example, you can add a 500 GB disk to your server and assign it to vg-
sales. From that point on, the vg-sales volume group owns that disk. You're able
to split up your physical volumes any way that makes sense to you. Then, you can
create logical volumes utilizing these physical volumes, which is what your users
will use.

I think it's always best to work through an example when it comes to learning a
new concept, so I'll walk you through such a scenario. In my case, I just created
a local Ubuntu Server VM on my machine via VirtualBox and then I added four
additional disks after I installed the distribution. Virtualization is a good way to play
around with learning LVM if you don't have a server available with multiple free
physical disks.

To get started with LVM, you'll first need to install the required packages, which
may or may not be present on your server. The following command will install a
package that will download all the required packages as dependencies:

apt-get install lvm2

Next, we'll need to take an inventory of the disks we have available to work with.
You can list them with the fdisk -l command as root. In my case, I have /dev/
sdb, /dev/sdc, /dev/sdd, and /dev/sde to work with. The names of your disks will
be different depending on your hardware or virtualization platform, so make sure
to adjust all the following commands accordingly. To begin, we'll need to configure
each disk to be used with LVM, by setting up each one as a physical volume. The
pvcreate command allows us to create physical volumes, so we'll need to run the
pvcreate command against all of the drives we wish to use for this purpose. Since I
have four, I'll use the following to set them up:

pvcreate /dev/sdb

pvcreate /dev/sdc

pvcreate /dev/sdd

pvcreate /dev/sde

And so on, for however many disks you plan on using.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[100]

To confirm that you have followed the steps correctly, you can use the
pvdisplay command as root to display the physical volumes you have
available on your server:

Output of the pvdisplay command on a sample server

Although we have some physical volumes to work with, none of them are assigned
to a volume group. In fact, we haven't even created a volume group yet. We can now
create our volume group with the vgcreate command, where we'll give our volume
group a name and assign our first disk to it:

vgcreate vg-test /dev/sdb

Here, I'm creating a volume group named vg-test and I'm assigning it one of the
physical volumes I prepared earlier (/dev/sdb). Now that our volume group is
created, we can use the vgdisplay command to view details about it, including the
number of assigned disks (which should now be 1):

vgdisplay

Output of the vgdisplay command on a sample server

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[101]

For all intents and purposes, LVM is now set up and we can begin using it. All we
need to do at this point is create a logical volume and format it. Our volume group
can contain all or a portion of the disk we've assigned to it. With the following
command, I'll create a logical volume of 2 GB, out of the 8 GB disk I added to the
volume group:

lvcreate -n myvol1 -L 2g vg-test

The command may look complicated, but it's not. In this example, I'm giving my
logical volume a name of myvol1 with the -n option. Since I only want to give it 2
GB of space, I use the -L option and then 2g to represent 2 GB. Finally, I give the
name of the volume group that this logical volume will be assigned to. You can run
lvdisplay to see information regarding this volume:

Output of the lvdisplay command on a sample server

The next step is for us to format our logical volume so that it can be used. But first,
we'll need to find the full name for our logical volume:

ls /dev/mapper

The /dev/mapper directory is where our volume groups will be listed. There should
be only one listed here, and its name should be the same as you named your volume
group in the previous step (so it should be obvious which one represents your logical
volume). Record this path and name. Now that we know the name, we can format
it as we would any other volume. In my case, the one I created is now located at
/dev/mapper/vg-- test-myvol1:

mkfs.ext4 /dev/mapper/vg--test-myvol1

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[102]

And now this device can be mounted as any other hard disk. I'll mount mine at
/mnt/lvm/myvol1, but you can use any directory or name you wish:

mount /dev/mapper/vg--test-myvol1 /mnt/lvm/myvol1

We now have an LVM configuration containing just a single disk, so this isn't very
useful. The 2 GB I've given it will not likely last very long. In my case, I only used
2 GB of the physical volume I assigned to this volume group, so there is some
remaining space we can use. With the following command, I can resize my logical
volume to take up the remainder of the physical volume:

lvextend -n /dev/mapper/vg--test-myvol1 -l 100%FREE

Extending a logical volume

Now my logical volume is using the entire physical volume I assigned to it. Be
careful, though, because if I had multiple physical volumes assigned, that command
would've claimed all the space on those as well, giving the logical volume a size that
is the total of all the space it has available, across all its disks. You may not always
want to do this, but since I only had one physical volume anyway, I don't mind.
If you check your mounted disks with the df -h command, you should see this
volume is mounted:

df -h

Unfortunately, it's not showing the extra space we've given the volume. The output
of df is still showing the size the volume was before. That's because although we
have a larger logical volume, and it has all the space assigned to it, we didn't actually
resize the ext4 filesystem that resides on this logical volume. To do that, we will use
the resize2fs command:

resize2fs /dev/mapper/vg--test-myvol1

Now you should see the added space as usable when you execute df -h. The coolest
part is that we resized an entire filesystem without having to restart the server. In
this scenario, if our users have got to the point where they have utilized the majority
of their free space, we would be able to give them more space without disrupting
their work.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[103]

However, you may have additional physical volumes that have yet to be assigned
to a volume group. In my example, I created four and have only used one. We can
add additional physical volumes to our volume group with the vgextend command.
In my case, I'll run this against the three remaining drives. If you have additional
physical volumes, feel free to add yours with the same commands I use, but
substitute my device names with yours:

vgextend vg-test /dev/sdc

vgextend vg-test /dev/sdd

vgextend vg-test /dev/sde

You should see a confirmation similar to the following:

Volume group "vg-test" successfully extended

When you run pvdisplay, you should see the additional physical volumes attached
(shown under Cur PV in the output). Also in the output, you can see that the amount
of free space is greater than what the volume group is actually using. You'll see how
much space you're using under Alloc PE/Size and how much space you have
remaining listed under Free PE/Size. Now, we have some options. We could give
all the extra space to our logical volume and extend it as we did before. However, I
think it's better to withhold some of the space from our users. That way, if our users
do use up all our available space again, we have an emergency reserve of space we
could use in a pinch if we needed to while we figure out the long-term solution. The
following example command will add an additional 10 GB to the logical volume:

lvextend -L+10g /dev/vg-test/myvol1

And finally, make the free space available to the filesystem:

resize2fs /dev/mapper/vg--test-myvol1

With very large volumes, the resize may take some time to
complete. If you don't see the additional space right away, you
may see it gradually increase every few seconds until all the
new space is completely allocated.

As you can see, LVM is very useful in managing storage on your server. It gives
you the ability to scale your server's storage as the needs of your organizations and
users evolve. However, what if I told you that being able to resize your storage on
command isn't the only benefit of LVM? In fact, LVM also allows you to perform
snapshots as well.

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[104]

LVM snapshots allow you to capture a logical volume at certain point in time
and preserve it. After you create a snapshot, you can mount it as you would any
other logical volume and even revert your volume group to the snapshot in case
something fails. In practice, this is useful if you want to test some potentially risky
changes to files stored within a volume, but want the insurance that if something
goes wrong, you can always undo your changes and go back to how things were.
LVM snapshots allow you to do just that. LVM snapshots require you to have some
unallocated space in your volume group.

However, LVM snapshots are definitely not a viable form of backup. For the most
part, these snapshots are best when used as a very temporary holding area when
running tests or testing out experimental software. If you recall, you were offered
the option to create an LVM configuration during installation of Ubuntu Server, so
therefore you can use snapshots to test how security updates will affect your server
if you used LVM for your root filesystem. If the new updates start to cause problems,
you can always revert back. When you're done testing, you should merge or remove
your snapshot.

So, why did I refer to LVM snapshots as a temporary solution and not a backup?
First, backups aren't secure if they are stored on the same server that's being backed
up. It's always important to save backups off the server at least, preferably off-site.
But what's worse is that if your snapshot starts to use up all available space in your
volume group, it can get corrupted and stop working. Therefore, this is a feature you
would use just as a means of testing something and then reverting back or deleting
the snapshot when you're done experimenting.

When you create a snapshot with LVM, what happens is a new logical volume
is created that is a clone of the original. Initially, no space is consumed by this
snapshot. But as you run your server and manipulate files in your volume group,
the original blocks are copied to the snapshot as you change them, to preserve the
original logical volume. If you don't keep an eye on usage, you may lose data if you
aren't careful and the logical volume will fill up.

To show this in an example, the following command will create a snapshot (called
mysnapshot) of the myvol1 logical volume:

lvcreate -s -n mysnapshot -L 4g vg-test/myvol1

You should see the following output:

Logical volume "mysnapshot" created.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[105]

With that example, we're using the lvcreate command, with the -s option
(snapshot) and the -n option, where we declare a name of mysnapshot. We're also
using the -L option to designate a maximum size for the snapshot, which I set to
4 GB in this case. Finally, I give it the volume group and logical volume name,
separated by a forward slash (/). From here, we can use the lvs command to
monitor its size.

Since we're creating a new logical volume when we create a snapshot, we can mount
it as we would a normal logical volume. This is extremely useful if we want to pull a
single file without having to restore the entire thing. If we would like to remove the
snapshot, we can do so with the lvconvert command:

lvconvert --merge vg-test/mysnapshot

The output will look similar to the following:

Merging of volume mysnapshot started.

myvol1: Merged: 100.0%

It's important to note, however, that unlike being able to resize a logical volume
online, we cannot merge a snapshot while it is in use. If you do, the changes will
take affect the next time it is mounted. Therefore, you can either unmount the logical
volume before merging, or ummount and remount after merging. Afterwards, you'll
see that the snapshot is removed the next time you run the lvs command.

Finally, you may be curious about how to remove a logical volume or volume group.
For these purposes, you would use the lvremove or vgremove commands. It goes
without saying that these commands are destructive, but are useful in a situation
where you want to delete a logical volume or volume group. To remove a logical
volume, the following syntax will do the trick:

lvremove vg-test/myvol1

Basically, all you're doing is giving the lvremove command the name of your
volume group, a forward slash, and then the name of the logical volume within
that group that you would like to remove. To remove the entire volume group,
the following command and syntax should be fairly self-explanatory:

vgremove vg-test

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[106]

Hopefully you're convinced by now how awesome LVM is. It allows you flexibility
over your server's storage that other platforms can only even dream of. The
flexibility of LVM is one of the many reasons why Linux excels in the cloud market.
These concepts can be difficult to grasp at first if you haven't worked with LVM
before. But thanks to virtualization, playing around with LVM is easy. I recommend
you practice creating, modifying, and destroying volume groups and logical
volumes until you get the hang of it. If the concepts aren't clear now, they
will be with practice.

Using symbolic and hard links
With Linux, we can link files to other files, which gives us quite a bit of flexibility
with how we can manage our data. Symbolic and hard links are very similar,
but to explain them, you'll first need to understand the concept of inodes.

We already discussed inodes earlier in this chapter. But as a refresher, an inode is a
data object that contains metadata regarding files within your filesystem. Inodes are
represented by an integer number, which you can view with the -i option of the ls
command. On my system, I created two files: file1 and file2. These files are inodes
543815 and 558287 respectively. You can see this output in the following screenshot
where I run the ls -i command. This information will come in handy shortly.

Output of ls -i

There are two types of links in Linux: Symbolic Links and Hard Links. This concept
is similar in purpose to shortcuts created in graphical user interfaces. Almost all
graphical operating systems have a means of creating a shortcut icon that points
to another file or application. I'm sure you've seen shortcut icons to applications
on Windows or Mac OS X systems. Even Linux has this same functionality in most
desktop environments that are available. On a Linux server, you typically don't have
a graphical environment, but you can still link files to one another using symbolic
or hard links. And while links approach the concept of shortcuts differently, they
pretty much serve the same purpose. Basically, a link allows us to reference a file
somewhere else on our filesystem.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[107]

For a practical example, let's create a hard link. In my case, I have a couple of files
in a test directory, so I can create a link to any of them. To create a link, we'll use
the ln command:

ln file1 file3

Here, I'm creating a hard link (file3) that is linked to file1. To play around with
this, go ahead and create a link to a file on your system. If we use ls again with the
-i option, we'll see something interesting:

Output of ls -i after creating a link

If you look closely at the output, both file1 and file3 have the same inode number.
Essentially, they're the same file. With this hard link created, we can move file3 into
another location on the filesystem and it will still be a link to file1. Hard links have
a couple of limitations, however. First, you cannot create a hard link to a directory,
only a file. Second, this link cannot be moved to a different filesystem. That makes
sense, considering each filesystem has its own inodes. Inode 543815 on my system
would of course not point to the same file on another system, if this inode number
even exists at all.

To overcome these limitations, we can consider using a Symbolic Link instead.
Symbolic links (also known as Soft Links or Symlinks) can not only be moved
around between filesystems (as these do not share the same inode number as the
original file), we can also create a symbolic link to a directory as well. To illustrate
this, let's create a symbolic link. In my case, I'll delete file3 and recreate it as a
symbolic link. We'll again use the ln command:

rm file3

ln -s file1 file3

www.hellodigi.ir

http://technet24.ir

Managing Storage Volumes

[108]

With the -s option of ln, I'm creating a symbolic link. First, I deleted the original
hard link with the rm command (which doesn't disturb the original) and then created
a symbolic link, also named file3. If we use ls -i again, we'll see that file3 does
not have the same inode number as file1:

Output of ls -i after creating a symbolic link

That's not the only thing that's different from the output, though. Notice that the
file name field of the ls command shows that file3 is redirecting to file1. At this
point, the main difference from a hard link should become apparent. A symbolic
link is not a clone of the original file; it's simply a pointer to the original file. Any
commands you execute against file3 are actually being run against the target that
the link is pointing to.

In practice, symbolic links are incredibly useful when it comes to server
administration. One example of this is with regards to configuration files. As you
most likely know, system-wide configuration files for an application on a Linux
server are stored in the /etc directory. I find that it's a best practice to use git
for managing these configuration files, which we'll actually discuss in Chapter 14,
Preventing and Recovering from Disasters. In a Linux server, you may create a central
location for all the configuration files that matter to your server. For example,
I usually create the /git directory. Inside, I create several git repositories for
configurations that need to be under version control. For example, I may have
/git/bind to include files for a DNS server. However, the bind daemon doesn't
look in /git/bind for its data files, it looks (by default) in /etc/bind. Therefore,
I can create a symbolic link (/etc/bind) that actually points to /git/bind. The
bind daemon won't know the difference and I can use a common directory to house
the configuration files for daemons that are under version control. Of course, this
method may not be practical for a DNS server that sees a heavy amount of frequent
changes (such as Dynamic DNS), but for a small server, this does the trick, and it
works to illustrate one of the many uses for symbolic links.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 3

[109]

However, it's important not to go crazy and create a great number of symbolic links
all over the filesystem. This certainly won't be a problem for you if you are the only
administrator on the server, but if you resign and someone takes your place, it will
be a headache for them to figure out all of your symbolic links and map where
they lead to. You can certainly create documentation for your symbolic links, but
then you'd have to keep track of them and constantly update documentation. My
recommendation is to only create symbolic links when there are no other options,
or if doing so benefits your organization and streamlines your file layout.

Getting back to the subject of symbolic links vs hard links, you're probably
wondering which one you should use and when to use it. The main benefit of a hard
link is that you can move either file (the link or the original) to anywhere on the same
filesystem and the link will not break. This is not true of symbolic links, however. If
you move the original file, the symbolic link will be pointing to a file that no longer
exists at that location. Hard links are basically a mirror image of the original file
(since they point to the same inode), so both will have the same file size and content.
A symbolic link is merely a pointer—nothing more, nothing less.

However, even though I just spoke about several benefits of hard links, I actually
recommend symbolic links for most use cases. They can cross filesystems, can be
linked to directories, and are easier to determine from the output where they lead. If
you move hard links around, you may forget where they originally were located or
which file actually points to which. Sure, with a few commands you can find them
and map them easily. But overall, symbolic links are more convenient in the long
run. As long as you're mindful of recreating your symbolic link whenever you move
the original file (and you use them only when you need to), you shouldn't have
an issue.

Summary
Efficiently managing the storage of your servers will ensure that things continue
to run smoothly, as a full filesystem is a sure fire way for everything to grind to a
halt. Thankfully, Linux servers feature a very expansive tool set for managing your
storage, some of which are a source of envy for other platforms. As Linux server
administrators, we benefit from technologies such as LVM, and utilities such as ncdu,
as well as many others. In this chapter, we explored these tools and how to manage
our storage. We covered how to format, mount, and unmount volumes, as well as
managing LVM, monitoring disk usage, and creating links. We also discussed swap,
as well as managing our /etc/fstab file.

In our next chapter, we'll work through connecting to networks. We'll configure
our server's host-name, work through examples of connecting to other servers via
OpenSSH, and take a look at IP addressing.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[111]

Connecting to Networks
Linux networks are taking the industry by storm. Many big-name companies use
Linux in their data centers, to the point where most people use Linux nowadays,
whether they realize it or not (either directly or indirectly). The scalability of Linux
in the data center lends itself very well to networking. This flexibility allows Linux
to not only be useful for large server deployments, but also allows it to power routers
and network services.

So far in this book, we've worked with a single Ubuntu Server instance. Here,
we begin a two-part look at networking in Linux. In this chapter, we'll discuss
connecting to other nodes and networks. We'll resume this exploration in
Chapter 7, Managing Your Ubuntu Server Network, where we'll work on some
foundational concepts that power much of the things we'll need to set up our
Linux network. In this chapter, we'll take a look at:

•	 Setting the hostname
•	 Managing network interfaces
•	 Assigning static IP addresses
•	 Understanding Linux name resolution
•	 Understanding Network Manager
•	 Getting started with OpenSSH
•	 Getting started with SSH key management
•	 Simplifying SSH connections with a ~/.ssh/config file

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[112]

Setting the hostname
During installation, you were asked to create a hostname for your server. The
default during installation is ubuntu, but you can (and should) come up with your
own name. If you left the default, or if you want to practice changing it, we'll work
through that in this section.

In most organizations, there is a specific naming scheme in place for servers and
networked devices. I've seen quite a few variations, from naming servers after
cartoon characters (who wouldn't want a server named daffy-duck?), to Greek Gods
or Goddesses. Some companies choose to be a bit boring, and come up with naming
schemes consisting of a series of characters separated by hyphens, with codes
representing which rack the server is in, as well as its purpose. You can create your
own naming convention if you haven't already, and no matter what you come up
with, I won't judge you.

Your hostname identifies your server to the rest of the network. While the default
ubuntu hostname is fine if you have just one host, it would get confusing really
quickly if you kept the default on every Ubuntu server within your network.
Giving each server a descriptive name helps you tell them apart from one another.
But there's more to a server's name than its hostname, which we'll get into in
Chapter 7, Managing Your Ubuntu Server Network, when we discuss DNS. But for
now, we'll work through viewing and configuring the hostname, so you'll be ready
to make your hostname official with a DNS assignment, when we come to it.

So, how do you view your hostname? One way is to simply look at your shell
prompt; you've probably already noticed that your hostname is included there.
While you can customize your shell prompt in many different ways, the default
shows your current hostname. However, depending on what you've named your
server, it may or may not show the entire name. Basically, the default prompt
(known as a PS1 prompt, in case you were wondering) shows the hostname only
until it reaches the first period. For example, if your hostname is dev.mycompany.
org, your prompt will only show dev. To view the entire hostname, simply enter
the hostname command:

hostname

Output from the hostname command

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[113]

Changing the hostname is fairly simple. To do this, we can use the hostnamectl
command as root. If, for example, I'd like to change my hostname from dev.
mynetwork.org to dev2.mynetwork.org, I would execute the following command:

hostnamectl set-hostname dev2.mynetwork.org

Simple enough, but what does that command actually do? Well, I'd love to give you
a fancy outline, but all it really does is change the contents of a text file (specifically,
/etc/hostname). To see this for yourself, feel free to use the cat command to view
the contents of this file before and after making the change with hostnamectl:

cat /etc/hostname

You'll see that this file contains only your hostname.

The hostnamectl command didn't exist before Ubuntu switched to
systemd (versions 15.04 and earlier). If you're using a version earlier
than that, you'll need to edit /etc/hostname manually.

Once you change your hostname, you may start seeing an error message similar to
the following after executing some commands:

unable to resolve host dev.mynetwork.org

This error means that the computer is no longer able to resolve your local hostname.
This is due to the fact that the /etc/hostname file is not the only file where
your hostname is located; it's also referenced in /etc/hosts. Unfortunately, the
hostnamectl command doesn't update /etc/hosts for you, so you'll need to
edit that file yourself to make the error go away. As an example, here's what my
/etc/hosts file looks like:

127.0.0.1 localhost
127.0.1.1 dev

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

In the bold area, you can see my original hostname (dev). By using a text editor,
we can change this occurrence of the hostname.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[114]

Considering the extra work with changing our hostname, I see little benefit in
using hostnamectl over manually editing /etc/hosts and /etc/hostname, so the
choice is pretty much yours. You'll end up using a text editor to update /etc/hosts
anyway, so you may as well perform the update the same way for both.

Managing network interfaces
Assuming our server's hardware has been properly detected, we'll have one or more
network interfaces available for us to use. We can view information regarding these
interfaces and manage them with the ip command. For example, we can use ip
addr show to view our currently assigned IP address:

ip addr show

Viewing interface information with the ifconfig command

If for some reason you're not fond of typing, you can shorten this command all the
way down to simply ip a. The output will be the same in either case. From the
output, we can see several useful tidbits, such as the IP address for each device
(if it has one), as well as its MAC address.

Using the ip command, we can also manage the state of an interface. We can bring a
device down (remove its IP assignment and prevent it from connecting to networks),
and then back up again:

ip link set enp0s3 down

ip link set enp0s3 up

In that example, I'm simply toggling the state for interface enp0s3. First, I'm bringing
it down, and then I'm bringing it back up again.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[115]

Bringing interfaces up and down is all well and good, but what's up with that
naming convention? The new convention in Ubuntu 16.04 may seem a bit strange for
those of you that have used earlier versions, and are more accustomed to network
interface names such as eth0, wlan0, and so on. Since Ubuntu is based on Debian,
it has adopted the new naming convention which will be used starting with Debian
9.0 (codenamed Stretch). Although Debian 9.0 hasn't been released yet at the time of
writing, Ubuntu is still based on it, and has already adopted this change.

The new naming convention has been put in place in order to make interface naming
more predictable. While you may argue that names such as eth0 may be easier
to memorize than say enp0s3, the change helps the name stay persistent between
boots. When you add new network interfaces to a Linux system, there's always the
possibility that other interface names may change as well. For example, if you have a
single network card (eth0) and you add a second (which then becomes eth1), your
configuration may break if the names were to get switched during the next boot.
Imagine for a moment that one interface is connected to the Internet and another
connected to a switch (basically, you have an Internet gateway). If the interfaces
came up in the wrong order, Internet access would be disrupted for your entire
office, due to the fact that the firewall rules you've written are being applied to
the wrong interfaces. Definitely not a pleasant experience!

To help combat this, previous versions of Ubuntu (as well as Debian, and even
CentOS), have opted to use udev to make the names stick. To achieve stickiness with
interface names on older systems, the system would've created the following file:

/etc/udev/rules.d/70-persistent-net-rules

This file existed on older versions of some popular Linux distributions (including
Ubuntu), as a workaround to this problem. This file contains some information that
identifies specific qualities of the network interface, so that with each boot, it will
always come up with the same name. Therefore, the card you recognize as eth0 will
always be eth0. If you have an older version of Ubuntu Server in use, you should be
able to see this file for yourself. Here's some sample output of this file on one of my
older installations:

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="01:2
2:4e:a5:f2:ec", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth*",
NAME="eth0"

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[116]

As you can see, it's using the MAC address of the card to identify it with eth0.
But this becomes a small problem if I want to take an image of this machine and
re-deploy it onto another server. This is a common practice—we administrators
rarely start over from scratch if we don't have to, and if another server is similar
enough to a new server's desired purpose, cloning it will be an option. However,
when we restore the image onto another server, the /etc/udev/rules.d/70-
persistent-net-rules file will come along for the ride. We'll more than likely find
that the new server's network card will have a designation of eth1, even if we only
have one interface. This is because the file already designated a device as eth0, so
we'll need to correct this file ourselves in order to reclaim eth0. The new convention
doesn't necessarily eliminate this headache either, since interface names can still
change. But, at least we won't have a text file we'll need to manage.

The new naming scheme is effective as of systemd v197 and later. For the most part,
the new naming convention references the physical location of the network card on
your system's bus. Therefore, the name it receives cannot change unless you were
to actually remove the network card and place it in a different slot on the system's
board, or change the position of the virtual network device in your hypervisor. If
your machine does include a /etc/udev/rules.d/70-persistent-net-rules file,
it will be honored and the old naming convention will be used instead. This is due to
the fact that you may have upgraded to a newer version of your distribution (which
features the new naming scheme, whereas your previous version didn't), so that
your network devices will retain their names, thereby minimizing disruption.

As a quick overview of how the network names break down, en is for Ethernet,
and wl is for wireless. Therefore, we know that the example interface I mentioned
earlier (enp0s3) references a wired card. The p references which bus is being used,
so p0 refers to the system's first bus (the numbering starts at 0). Next, we have s3,
which references PCI slot 3. Putting it together, enp0s3 references a wired network
interface card on the system's first bus, placed in PCI slot 3. The exact details of the
new naming specification are beyond the scope of this chapter (and could even be
a chapter of its own!), but hopefully this gives you a general idea of how the new
naming convention breaks down. There's much more documentation online if you're
interested in the nitty-gritty details. The important point here is that since the new
naming scheme is based on where the card is physically located, it's much less likely
to abruptly change. In fact, it can't change, as long as you don't physically switch the
positions of your network cards inside the case.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[117]

Getting back to managing our interfaces, another command worth discussion is
ifconfig. The ifconfig command is part of the net-tools suite of utilities, which
has been deprecated (for the most part). Its replacement is the iproute2 suite of
utilities, which includes the ip command we've already discussed. In summary, this
basically means you should be using commands from the iproute2 suite, instead
of commands such as ifconfig. The problem, though, is that most administrators
nowadays still use ifconfig, with no sign of it slowing down. In fact, the net-tools
suite has been recommended for deprecation for years now, and just about every
Linux distribution shipping today still has this suite installed by default. Those that
don't, offer it as an additional package you can install. In the case of Ubuntu Server
16.04, net-tools commands such as ifconfig are alive and well.

The reason commands such as ifconfig have a tendency to stick around so long
after they've been deprecated usually comes down to the "change is hard" mentality,
but quite a few scripts and programs out there are still using ifconfig, and
therefore it's worth discussing here. Even if you immediately stop using ifconfig,
and move to ip from now on, you'll still encounter this command in your travels, so
you may as well know a few examples. Knowing the older commands will also help
you if you find yourself on an older server.

First, when executed by itself with no options, ifconfig will print information
regarding your interfaces like we did with ip addr show earlier. That seems
pretty simple.

If you are unable to use ifconfig to view interface information using a normal user,
try using the fully qualified command:

/sbin/ifconfig

The /sbin directory may or may not be in your $PATH (a set of directories your shell
looks within for commands), so if your system doesn't recognize ifconfig, use the
fully qualified command instead.

Viewing interface information with the ifconfig command

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[118]

Secondly, just like with the ip commands we practiced earlier, we can also bring an
interface down or up with ifconfig as well:

ifconfig enp0s3 down

ifconfig enp0s3 up

There are, of course, other options and variations of ip and ifconfig, so feel free to
look up the main pages for either if you want more information. For the purposes of
this section, the main thing is to remember how to view your current IP assignments,
as well as how to bring an interface up or down.

Assigning static IP addresses
With servers, it's very important that your IP addresses remain fixed and do not
change for any reason. If an IP address does change (such as a dynamic lease),
your users will experience an outage, services will fail, or entire sites may become
unavailable. When you install Ubuntu Server, it will grab a dynamically assigned
lease from your DHCP server, but after you configure the server the way you want
it, it's important to get a permanent IP address in place right away. One exception to
this rule is an Ubuntu-based VPS. Cloud providers that bill you for these servers will
have an automatic system in place to declare an IP address for your new VPS, and
will already have it configured to stick. But in the case of virtual or physical servers
you manage yourself; you'll start off with a dynamic address.

In most cases, you'll have an IP address scheme in place at your office or
organization, which will outline a range of IP addresses that are available for use
with static assignments. If you don't have such a scheme, it's important to create one,
so you will have less work to do later when you bring more servers online. We'll talk
about setting up a DHCP server and IP address scheme in Chapter 7, Managing Your
Ubuntu Server Network, but for now, I'll give you a few quick tips. Your DHCP server
will have a range of IP addresses that will be automatically assigned to any host that
requests an assignment. When setting up a static IP on a server, you'll want to make
sure that the IP address is outside of the range that your DHCP server assigns. For
example, if your DHCP server assigns IP's ranging from 10.10.10.100 through
10.10.10.150, you'll want to use an IP address not included within that range for
your servers.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[119]

There are two ways of assigning a fixed address to a network host, including your
servers. The first is by using a Static IP assignment, as I've already mentioned. With
that method, you'll arbitrarily grab an IP address that's not being used by anything,
and then configure your Ubuntu Server to use that address. In that case, your
server is never requesting an IP address from your network's DHCP server.
It simply obeys you and uses whatever you assign it. This is the method I'll
be going over in this section.

The other way of assigning a fixed address to a server is by using a Static Lease.
(This is also known as a DHCP Reservation, but I like the former because it sounds
cooler). With this method, you configure your DHCP server to assign a specific IP
address to specific hosts. In other words, your server will request an IP address
from your local DHCP server, and your DHCP server is instructed to give a specific
address to your server each time it asks for one. This is the method I prefer, which
I'll go over in Chapter 7, Managing Your Ubuntu Server Network. I'll also explain why I
prefer it when we get to it.

But, you don't always have a choice. It's often the case, that as a Linux administrator,
you may or may not be in charge of the DHCP server. At my organization, our
DHCP server runs Windows, so I don't touch it. I let the Windows administrators
deal with it. Therefore, you may be given a free IP address from your network
administrator, and then you'll proceed to configure your Ubuntu server to use it. To
perform this configuration, we will edit the /etc/network/interfaces file. This file
is a single place for you to manage settings for each of your network interfaces. An
example of this file is below. I've left out the output regarding the loopback adapter,
and what you'll see is the section relating to the primary network card on one of
my servers:

The primary network interface

auto enp0s3

iface enp0s3 inet dhcp

With this default file, we have a primary network interface (enp0s3), and we're
allowing this interface to receive a dynamic IP assignment from a DHCP server. You
can see this on the third line, where DHCP is explicitly called. If you haven't changed
your /etc/network/interfaces file, and you're not using a VPS, yours will look
very similar to this, with the interface name being the main difference.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[120]

If we wanted to manually assign a static IP address, we would need to make
some changes to this file. Here's an example interfaces file, configured with a
static address:

The primary network interface

auto enp0s3

iface enp0s3 inet static

 address 10.10.96.1

 netmask 255.255.252.0

 broadcast 10.10.96.255

 dns-search local.lan

 dns-nameservers 10.10.96.1

I've bolded the sections of the output that I've changed. Essentially, I've changed
dhcp to static and then added five additional lines. With this configuration,
I'm assigning a Static IP address to 10.10.96.1, setting the Subnet Mask to
255.255.252.0, (if you're not using subnetting, you probably want 255.255.255.0),
and the broadcast address to 10.10.96.255. For name resolution, I'm setting the
DNS search to local.lan (you can omit this line if you don't have a domain), and
the DNS server address to 10.10.10.96.1. If you wanted to configure a static
IP address for your server, you would simply change this output to match your
environment, making sure to especially change your interface name if it's not the
same as mine (enp0s3), as well as the values for your connection.

Now that we've edited our interfaces file, we'll need to restart networking for the
changes to take effect. But depending on how you're connected to the server, you
may want to take some precautions first. The reason for this, is if you're connected to
the server via a remote connection (such as SSH), you will lose connection as soon as
we restart networking. Even worse, the second half of the network restart (the part
that actually brings your interfaces back online) won't execute because the restart of
networking will drop your remote connection before it would've completed. This, of
course, isn't an issue if you have physical access to your server. The restart command
(which I'll give you shortly), will complete just fine in that case. But with remote
connections, your networking will go down if you restart it. The command to restart
networking is the following:

systemctl restart networking.service

On older Ubuntu Servers (before systemd), you would use the following
command instead:

/etc/init.d/networking restart

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[121]

In the case of remote connections, you can alleviate the issue of being dropped before
networking comes back up by using tmux, a popular terminal multiplexer. A full
run-through of tmux is beyond the scope of this book, but it is helpful to us in this
case because it keeps commands running in the background, even if our connection
to the server gets dropped. To use it, first install the package:

apt-get install tmux

Then, activate tmux by simply typing tmux in your shell prompt.

From this point on, tmux is now responsible for your session. If you run a command
within tmux, it will continue to run, regardless of whether or not you're attached to
it. To see this in action, first enter tmux and then execute the top command. While
top is running, disconnect from tmux. To do that, press Ctrl + B on your keyboard,
release, and then press D. You'll exit tmux, but if you enter tmux a to reattach
your session, you'll see that top was still running even though you disconnected.
Following this same logic, you can enter tmux prior to executing one of the restart
commands for your server. You'll still (probably) get dropped from your shell, but
the command will complete in the background, which means that networking will
go down, and then come back up with your new configuration.

The tmux utility is extremely powerful, and when harnessed, can
really enhance your work-flow while using the Linux shell. Although
a complete tutorial is outside the scope of this book, I highly
recommend looking into using it. For a full walk-through, check out
the book Getting Started with tmux by Victor Quinn, J.D at https://
www.packtpub.com/hardware-and-creative/getting-
started-tmux or check out some tutorial videos on YouTube.

With networking restarted, you should be able to immediately reconnect to the
server and see that the new IP assignment has taken place by executing ip addr
show or ifconfig. If, for some reason, you cannot reconnect to the server, you may
have made a mistake while editing the /etc/network/interfaces file. In that
case, you'll have to walk over to the console (if it's a physical server), or utilize your
Virtual Machine manager to access the virtual console to log in and fix the problem.
But as long as you've followed along and typed in the proper values for your
interface and network, you should be up and running with a static IP assignment.

www.hellodigi.ir

https://www.packtpub.com/hardware-and-creative/getting-started-tmux
https://www.packtpub.com/hardware-and-creative/getting-started-tmux
https://www.packtpub.com/hardware-and-creative/getting-started-tmux
http://technet24.ir

Connecting to Networks

[122]

Understanding Linux name resolution
In Chapter 7, Managing Your Ubuntu Server Network, we'll have a discussion on setting
up a DNS server for local name resolution for your network. But before we get to
that, it's also important to understand how Linux resolves names in the first place.
Most of you are probably aware of the concept of a Domain-Name Server (DNS),
which matches human-understandable domain names to IP addresses. This makes
browsing your network (as well as the Internet) much easier. However, DNS isn't
always the first thing that your Linux server will use when resolving names.

For more information on the order in which Ubuntu Server checks resources to
resolve names, feel free to take a look at the /etc/nsswitch.conf file. There's a line
in this file that begins with the word hosts. Here is the output of the relevant line
from the file on my server:

hosts: files dns

In this case, the server is configured to first check local files, and then DNS if the
request isn't found. This is the default order, and I see little reason to make any
changes here (but you certainly can). Specifically, the file the server will check is
/etc/hosts. If it doesn't find what it needs there, it will move on to DNS.

There are many other lines in the nsswitch.conf file, but I
won't discuss them here as they are out of scope of the topic of
this section.

The /etc/hosts file, which we briefly discussed while working with our hostname,
tells our server how to resolve itself (it has a hostname mapping to the localhost
IP of 127.0.0.1), but you are also able to create additional names to IP mappings
here as well. For example, if I had a server (minecraftserver.local.lan) at IP
10.10.96.124, I could add the following line to /etc/hosts to make my machine
resolve the server to that IP each time, without it needing to consult a DNS server
at all:

10.10.96.124 minecraftserver

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[123]

In practice, though, this is usually not a very convenient method by which to
configure name resolution. Don't get me wrong, you can certainly list your servers in
this file along with their IP addresses, and your server would be able to resolve those
names just fine. The problem comes with the fact that this method doesn't scale. The
name mappings apply only to the server you've made the /etc/hosts changes on;
other servers wouldn't benefit since they would only check their own /etc/hosts
file. You could add a list of servers to the hosts file on each server, but that would
be a pain to manage. This is the main reason why having a central DNS server
is a benefit to any network, especially for resolving the names of local resources.
However, the /etc/hosts file is used every now and again in the enterprise as a
quick one-off workaround, and you'll probably eventually end up needing to use
this method for one reason or another.

As I mentioned, if the server doesn't find a match in /etc/hosts for the resource
you're trying to find, it will move on to check the DNS server it was assigned.
Another file on your server will determine the DNS server it will then use,
clarified in the /etc/resolv.conf file. An example of this file is as follows:

Dynamic resolv.conf(5) file for glibc resolver(3) generated by
resolvconf(8)

DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN

nameserver 10.10.96.1

nameserver 10.10.96.2

In this example, /etc/resolv.conf output is utilizing servers 10.10.96.1, and
10.10.96.2. Therefore, the server will first check /etc/hosts for a match of the
resource you're looking up, and if it doesn't find it, it will then check /etc/resolv.
conf in order to find out which server to check next. In this case, the server will
check 10.10.96.1.

The network assignment on this server is actually being managed by Network
Manager, as you can see from the warning comment included in the file. You
can certainly alter this file so that the server will check different DNS servers, but
the next time its IP address renews or the connection is refreshed, this file will be
overwritten and will be reset to use whatever DNS servers your DHCP server tells
it to use. Therefore, if you really want to control how your server resolves names
you can create a static assignment, as we did earlier in this chapter, using the
dns-nameservers option in /etc/network/interfaces to override it. This
isn't a problem if you're using a static IP assignment.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[124]

In a typical Enterprise Linux network, you'll set up a local DNS server to resolve
your internal resources, which will then forward requests to a public DNS server
in case you're attempting to reach something that's not internal. We'll get to that in
Chapter 7, Managing Your Ubuntu Server Network, but you should now understand
how the name resolution process works on your Ubuntu Server.

Understanding Network Manager
Network Manager is a fantastic utility for managing network connectivity on your
server, though it's not for everyone. This utility comes installed by default with
Ubuntu Server, but if you're using a cloud appliance (such as a VPS), it's most likely
disabled, or maybe even removed. The reason for this is because even though this
utility is very useful, it's not necessarily the best fit for every use-case.

Network Manager is a service (a.k.a. daemon) that runs in the background and
manages your network connections. On a desktop Linux distribution, it does
everything from managing connectivity to managing your wireless networks.
With it, you can configure profiles, and create custom connections you can
switch between.

On servers, the desktop-related features of Network Manager aren't all that useful,
but the network connectivity management portion certainly is. With Network
Manager, it keeps an eye on whether or not your server is connected to a network.
It even goes as far as to launch your DHCP client when network connectivity is
started or restored, to facilitate the fetching of a dynamic IP address. If your network
connection drops for any reason, Network Manager will request a dynamic address
as soon as it comes back online.

If you're not using DHCP, however, Network Manager is of little benefit. In fact,
it can be somewhat of a nuisance. The best rule of thumb in my opinion is to use
Network Manager when you're using DHCP for IP assignments, and to disable
it when you're manually configuring your network address via /etc/network/
interfaces.

Stopping and disabling Network Manager can be done with the following
commands (which you should only do in the case that you've set up a manual
static IP assignment):

systemctl stop NetworkManager

systemctl disable NetworkManager

systemctl restart networking

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[125]

As I've mentioned before, my preferred approach is static leases via DHCP (in other
words, DHCP reservations for servers). The added benefit of static leases is that you
benefit from being able to utilize Network Manager. It will keep your connection
alive, and any time it reaches out for an IP address, your server will always get the
address you've set aside for it in your DHCP server. (Again, we'll go over how to set
this up in Chapter 7, Managing Your Ubuntu Server Network). In a situation where you
need to set up a static IP, you may as well just disable Network Manager because it
may just get in your way.

Getting started with OpenSSH
OpenSSH is quite possibly the most useful tool in existence for managing Linux
servers. Of all the countless utilities available, this is the one I recommend that
everyone master as early as possible. Technically, I could probably better fit a section
for setting up OpenSSH in Chapter 7, Managing Your Ubuntu Server Network, but this
utility is very handy, and we should start using it as soon as possible. In this section,
I'll give you some information on OpenSSH and how to install it, and then I'll finish
up the section with a few examples of actually using it.

OpenSSH allows you to open a shell on other Linux servers, allowing you to run
commands as if you were there in front of the server. In a Linux Administrator's
workflow, they will constantly find themselves managing a plethora of machines in
different locations. OpenSSH works by having a daemon running on the server that
listens for connections. On your workstation, you'll use your SSH Client to connect
to the server, to begin running commands on it. SSH isn't just useful for servers
either; you can manage workstations with it, as well as network appliances. I've even
used SSH on my laptop to connect to my desktop to issue a reboot command, just
because I was too lazy to walk all the way to my bedroom. It's extremely useful. And
thankfully, it's also very easy to learn.

Depending on the choices you've made during installation, your Ubuntu Server
probably has the OpenSSH server installed already. If you don't remember, just
type which sshd at your shell prompt. If you have it installed, your output should
read /usr/bin/sshd. If you haven't installed the server, you can do so with the
following command:

apt-get install openssh-server

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[126]

Keep in mind, though, that the OpenSSH server is not required to connect to other
machines. Regardless of whether or not you install the server, you will still have
the OpenSSH client installed by default. If you type which ssh at your shell prompt
(omitting the 'd' from sshd) you should see an output of /usr/bin/ssh. If, for some
reason, you don't have this package installed and you received no output from
this command (which would be rare), you can install the OpenSSH client with the
following command:

apt-get install openssh-client

I want to underline the fact that you're not required to install the openssh-server
package in order to make connections to other machines. You only need the
openssh-client package to do that. For the vast majority of Linux administrators, I
cannot think of a good reason to not have the openssh-client package installed. It's
useful when you want to remotely manage another Linux machine or server, but by
itself, it doesn't allow other users to connect to you. It's important to understand that
installing the OpenSSH Server does increase your attack surface, though.

Whether or not to run an OpenSSH server on your machine usually comes down to
a single question: Do you want to allow users to connect remotely to your server?
Most of the time, the answer to that question is yes. The reason is that it's more
convenient to manage all your Linux servers at your desk, without having to walk
into your server room and plug in a display and keyboard every time you want
to do something. But even though you most likely want to have an SSH server
running, you should still keep in mind that OpenSSH would then be listening for
and allowing connections. The fact that OpenSSH allows you to remotely manage
other servers is its best convenience, and also its biggest weakness. If you are able to
connect to a server via SSH, so can others.

There are several best practices for security that you'll want to implement if you
have an OpenSSH server running. In Chapter 12, Securing Your Server, I will walk you
through various configuration changes you can make to help minimize the threat of
miscreants breaking into your server from the outside and wreaking havoc. Securing
OpenSSH is actually not hard at all, and would probably only take just a few
minutes of your time. Therefore, feel free to make a detour to Chapter 12, Securing
Your Server, to read the section there that talks about securing OpenSSH, and then
come back here when you're done. If you have a server that is directly accessible via
the Internet, with users with weak passwords and you allowing connections via SSH,
I can personally guarantee that it will be hijacked within two weeks. As a general
rule of thumb though, you're usually fine as long as your user accounts have strong
passwords, the OpenSSH package is kept up to date with the latest security updates,
and you disable login via root.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[127]

With all of that out of the way, we can get started with actually using OpenSSH.
After you've installed the openssh-server package, you'll need to start it if it hasn't
been already. By default, Ubuntu's openssh-server package is automatically
configured to start and become enabled once installed. To verify, run the
following command:

systemctl status ssh

Output from systemctl, showing a running SSH server

If OpenSSH is running as a daemon on your server, you should see output that tells
you that it's active (running). If not, you can start it with the following command:

systemctl start ssh

If the output of the systemctl status ssh command shows that the daemon is
disabled (meaning it doesn't start up automatically when the server boots), you can
enable it with the following command:

systemctl enable ssh

On older Ubuntu servers (for example, 14.04 and 12.04), you can use the following
two commands in order to start and enable the OpenSSH server respectively:

service ssh starting

update-rc.d ssh defaults

Don't worry about the systemctl or service commands just
yet, we'll go over them in greater detail in Chapter 6, Controlling
and Monitoring Processes.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[128]

With the OpenSSH server started and running, your server should now be listening
for connections. To verify, use the following command to list listening ports,
restricting the output to SSH:

netstat -tulpn |grep ssh

Output from netstat showing that SSH is listening

If, for some reason, your server doesn't show that it has an SSH server listening,
double-check that you've started the daemon. By default, the SSH server listens for
connections on port 22. This can be changed by modifying the port declaration in
the /etc/ssh/sshd_config file, but that's a story for a later chapter. While I won't
be going over the editing of this file just yet, keep in mind that this file is the main
configuration file for the daemon. OpenSSH reads this file for configuration values
each time it's started or restarted.

To connect to a server using SSH, simply execute the ssh command followed by the
name or IP address of the server you'd like to connect to:

ssh 10.10.96.10

By default, the ssh command will use the username you're currently logged in with
for the connection. If you'd like to use a different username, specify it with the ssh
command by including your username followed by the @ symbol just before the IP
address or hostname:

ssh jdoe@10.10.96.10

Unless you tell it otherwise, the ssh command assumes that your target is listening
on port 22. If it isn't, you can give the command a different port with the -p option
followed by a port number:

ssh -p 2242 jdoe@10.10.96.10

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[129]

Once you're connected to the target machine, you'll be able to run shell commands
and administer the system as if you were right in front of it. You'll have all the same
permissions as the user you logged in with, and you'll also be able to use sudo to
run administrative commands if you normally have access to do so on that server.
Basically, anything you're able to do if you were standing right in front of the server,
you'll be able to do with SSH. When you're finished with your session, simply type
exit at the shell prompt, or press Ctrl + D on your keyboard.

If you started background commands on the target via SSH, use
Ctrl + D to end your session, otherwise those processes will be
terminated. We'll talk about background processes in Chapter 6,
Controlling and Monitoring Processes.

As you can see, OpenSSH is a miraculous tool that will benefit you by allowing
you to remotely manage your servers from anywhere you allow SSH access from.
Make sure to read the relevant section in Chapter 7, Managing Your Ubuntu Server
Network, with regards to securing it, though. In the next section, we'll discuss SSH
key management which also benefits convenience, but also allows you to increase
security as well.

Getting started with SSH key
management
When you connect to a host via SSH, you'll be asked for your password, and after
you authenticate you'll be connected. Instead of using your password though,
you can authenticate via Public Key Authentication instead. The benefit to this is
added security, as your system password is never transmitted during the process
of connecting to the server. When you create an SSH key-pair, you are generating
two files, a Public Key and a Private Key. These two files are mathematically
linked, so if you connect to a server that has your public key, it will know it's you
because you (and only you), have the private key that matches it. While public key
cryptography as a whole is beyond the scope of this book, this method is far more
secure than password authentication, and I highly recommend that you use it. To
get the most out of the security benefit of authentication via keys, you can actually
disable password-based authentication on your server so that your SSH key is your
only way in. By disabling password-based authentication and using only keys,
you're increasing your server's security by an even larger margin. We'll go over that
later in the book.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[130]

To get started, you'll first need to generate your key. To do so, use the ssh-keygen
command as your normal user account. The following screenshot shows what this
process generally looks like:

Generating an SSH key pair

First, you'll be asked for the directory in which to save your key files, defaulting
to /home/<user>/.ssh. You'll next be asked for a passphrase, which is optional.
Although it does add an additional step to authenticating via keys, I recommend that
you give it a passphrase (which should be different than your system password).
You can press Enter for the passphrase without entering one if you do not want this.

What this command does is create a directory named .ssh in your home directory, if
it doesn't already exist. Inside that directory, it will create two files, id_rsa and id_
rsa.pub. The id_rsa file is your private key. It should never leave your machine, be
given to another user, or be stored on any external media. If your private key leaks
out, your keys can no longer be trusted. By default, the private key is owned by the
user that created it, with rw permissions given only to its owner.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[131]

The public key, on the other hand, can leave your computer and doesn't need to
be secured as much. Its permissions are more lenient, being readable by everyone
and writable by the owner. You can see this yourself by executing ls -l /
home/<user>/.ssh. The public key is the key that gets copied to other servers to
facilitate you being able to log in via the key pair. When you log in to a server that
has your key, it checks that it's a mathematical match to your private key, and then
lets you log in. You'll also be asked for your passphrase, if you chose to set one.

To actually transmit your public key to a target server, we use the ssh-copy-id
command. In the following example, I'll show a variation of the command that's
copying the key to a server named area51:

ssh-copy-id -i ~/.ssh/id_rsa.pub area51

With that command, replace area51 with the hostname of the target server, or its IP
address if you don't have a DNS record created for it. You'll be asked to log in via
password first, and then your key will be copied over. From that point on, you'll log
in via your key, falling back to being asked for your password if, for some reason,
your key relationship is broken.

So what exactly did the ssh-copy-id command do? Where is your public key
copied to, exactly? What happens with this command is that on the target server, an
.ssh directory is created in your home directory if it didn't already exist. Inside that
directory, a file named authorized_keys is created if it didn't exist. The contents
of ~/.ssh/id_rsa.pub on your machine are copied into the ~/.ssh/authorized_
keys file on the target server. With each additional key you add (for example, you
connect to that server from multiple machines), the key is added to the end of the
authorized_keys file, one per line.

Using the ssh-copy-id command is merely a matter of
convenience, there's nothing stopping you from copying the
contents of your id_rsa.pub file and manually pasting it into
the authorized_keys file of the target server. That method
will actually work just fine as well.

When you connect to a server via SSH that you have set up a key relationship with,
SSH checks the contents of the ~/.ssh/authorized_keys file on that server, looking
for a key that matches the private key (~/.ssh/id_rsa) on your machine. If the two
keys are a mathematical match, you are allowed access. If you set up a passphrase,
you'll be asked to enter it in order to open your public key.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[132]

If you decided not to create a passphrase with your key, you're essentially setting
up password-less authentication, meaning you won't be asked to enter anything
when authenticating. Having a key relationship with your server is certainly more
secure than authenticating to SSH via a password, but it's even more secure with
a passphrase and creating one is definitely recommended. Thankfully, using a
passphrase doesn't have to be inconvenient. With an SSH Agent, you can actually
cache your passphrase the first time you use it, so you won't be asked for it with
every connection.

To benefit from this, your SSH Agent must be running. To start it, enter the
following command as your normal user account on the machine you're starting
your connections from (that is, your workstation):

eval $(ssh-agent)

This command will start an SSH agent, that will continue to run in the background of
your shell. Then, you can unlock your key for your agent to use:

ssh-add ~/.ssh/id_rsa

At this point, you'll be asked for your passphrase. As long as you enter it properly,
your key will remain open and you won't need to enter it again for future
connections, until you close that shell or log out. This way, you can benefit from the
added security of having a passphrase, without the inconvenience of entering your
passphrase over and over.

There will at some point, be a situation where you'll want to change your SSH
passphrase. To do that, you can execute the following command:

ssh-keygen -p

First, press Enter to accept the default file (id_rsa). Then, you'll be asked for your
current passphrase, if you've created one, followed by your new passphrase twice.

These concepts may take a bit of practice if you've never used SSH before. The best
way to practice is to set up multiple Ubuntu Server installations (perhaps several
virtual machines), and practice using SSH to connect to them, as well as deploying
your key to each machine via the ssh-copy-id command. It's actually quite easy
once you get the hang of it.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 4

[133]

Simplifying SSH connections with a
~/.ssh/config file
Before we leave the topic of SSH, there's another trick that benefits convenience, and
that is the creation of a ~/.ssh/config file. This file doesn't exist by default, but if
it's found, SSH will parse it and you'll be able to benefit from it.

The ~/.ssh/config file allows you to list servers that you connect to often, which
can simplify the SSH command automatically. The following are example contents
from a hypothetical ~/.ssh/config file that will help me illustrate what it does:

host myserver
 Hostname 192.168.1.23
 Port 22
 User jdoe

Host nagios
 Hostname nagios.local.lan
 Port 2222
 User nagiosuser

In the example contents, I have two hosts outlined, myserver and nagios. For each,
I've identified a way to reach it by name or IP address (the Hostname line), as well as
the Port and User account to use for the connection. If I use ssh to connect to either
Host by the name I outlined in this file, it will use the values I have stored there,
for example:

ssh nagios

Will operate the same as if I identified the connection details manually,
which would've been the following:

ssh -p 2222 nagiosuser@nagios.local.lan

I'm sure you can see how much simpler it is to type the first command than the
second. With the ~/.ssh/config file, I can have some of those details automatically
applied. Since I've outlined that my nagios server is located at nagios.local.lan,
its SSH user is nagiosuser, and it's listening on port 2222, it automatically will
use those values even though I only typed ssh nagios. Furthermore, you
can also override this entry as well. If you provide a different username when
you use the ssh command, it will use that instead of what you have written in the
~/.ssh/config file.

www.hellodigi.ir

http://technet24.ir

Connecting to Networks

[134]

In the first example (for server myserver), I'm providing an IP address for the
connection, rather than a hostname. This is useful in a situation where you may
not have a DNS entry for your target server. With this example, I don't have to
remember that the IP address for myserver is 192.168.1.23. I simply execute
ssh myserver and it's taken care of for me.

The names of each server within the ~/.ssh/config file are arbitrary, and don't
have to match the target server's hostname. I could've named the first server potato
and it would still route me to 192.168.1.23, so I can create any sort of named
shortcut I want, whatever I find is most convenient for me and easiest to remember.
As you can see, maintaining a ~/.ssh/config file for your most commonly used
SSH connections will certainly help keep you organized and allow you to connect
more easily.

Summary
In this chapter, we worked through several examples of connecting to other
networks. We started off by configuring our hostname, managing network interfaces,
assigning static IP addresses, as well as a look at how name resolution works in
Linux. A decent portion of this chapter was dedicated to topics regarding OpenSSH,
which is an extremely useful utility that allows you to remotely manage your
servers. While we'll revisit OpenSSH in Chapter 12, Securing Your Server, with a look
at boosting its security, overall we've only begun to scratch the surface of this tool.
Entire books have been written about SSH, but the examples in this chapter should
be enough to make you productive with it. The name of the game is to practice,
practice, practice!

In the next chapter, we'll talk about managing software packages. We'll work
through adding and removing packages, updating your system, adding additional
repositories, and more!

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[135]

Managing Software
Packages

Prior to this chapter, I've already walked you through several situations that required
you to install a new package or two on your server, but we have yet to have any
formal discussion on package management. In this chapter, we'll explore package
management in more detail. The Ubuntu platform has a huge range of software
available for it, featuring packages for everything from server administration to
games. In fact, as of the time I write this chapter, there are over 50,000 packages in
Ubuntu's repositories. That's a lot of software—and, in this chapter, we'll take a look
at how to manage these packages. We'll cover how to install, remove, and update
packages, as well as the use of related tools. As we go through these concepts, we
will cover:

•	 Understanding Linux package management
•	 Installing and removing software
•	 Searching for packages
•	 Managing Apt repositories
•	 Keeping your server up to date
•	 Backing up and restoring packages
•	 Making use of Aptitude
•	 Installing Snap packages

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[136]

Understanding Linux package
management
Nowadays, app stores are all the rage on most platforms; you'll have one central
location from which to retrieve applications, allowing you to install them on
your device. Computers, as well as phones and tablets, utilize a central software
repository in which software is curated and made available. The Android platform
has the Google Play store, Apple offers its App Store, and so on. For us Linux folk,
this concept isn't new. The concept of software repositories (that young people refer
to nowadays as app stores), have been around within the Linux community since
long before cellular phones even had color screens.

Linux has had package management since the 90s, popularized by Debian and
then Red Hat. Software repositories are generally made available in the form of
mirrors, to which your server subscribes. Mirrors are available across a multitude of
geographic areas, so, typically, your installation of Ubuntu Server would subscribe
to the mirror closest to you. These mirrors are populated with software packages that
you'll be able to install. Many packages depend on other packages, so various tools
on the Linux platform exist to automatically handle these dependencies for you. Not
all distributions of Linux feature package management and dependency resolution,
but Ubuntu certainly does, benefiting from the groundwork already built by Debian.

Packages contained within these mirrors are constantly changing. Traditionally, an
individual known as a package maintainer is responsible for one or more packages,
and ships new versions to the repositories for approval and, eventually, distribution
to mirrors. Sometimes, the new version of the package is simply a security update.
With the majority of Ubuntu's packages being open source, anyone is able to look at
the source code, find problems, and report issues. When vulnerabilities are found,
the maintainer will then review the claim and then release an updated version to
correct it. This process happens very quickly, as I've seen severe vulnerabilities
patched even on the same day they were reported.

Also, new versions of packages are sometimes a feature update, which is an
update released to introduce new features and isn't necessarily tied to a security
vulnerability. This could be a new version of a desktop application such as Firefox or
a server package such as MySQL. Most of the time, though, new versions of packages
that are vastly different are held for the next Ubuntu release. The reason for this is
that too much change can introduce instability. Instead, known working and stable
packages are preferred, but given the fact that Ubuntu releases every six months,
you don't have to wait very long.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[137]

As I've mentioned earlier in this book, most administrators stick with the Long-Term
Support (LTS) releases, of which Ubuntu 16.04 is one. Every fourth Ubuntu release
becomes an LTS, so a new one is released every other year. With regards to package
updates, this means that you can expect to remain current with the latest security
updates for a period of five years. On normal (non-LTS) releases, you will be able
to keep current for only nine months. This is also why LTS releases are favored on
servers—most organizations prefer to implement a server and keep it working as
is for as long as possible. Nine months is simply faster than most organizations are
willing to move.

However, there is a major issue with using only LTS releases, and that comes in the
form of hardware support. A large majority of hardware drivers are built right into
the kernel. This means that if you have an older release of Ubuntu, you'll likely run
into issues if you try to install it on a just-released piece of hardware, such as a brand
new PC or server. In this situation, you may find that things such as networking
or other hardware won't function properly. Thankfully, there is a third type of
update that package maintainers will often release, and that is hardware enablement
updates. Hardware enablement updates will either come in the form of a new minor
version of a kernel (with drivers back-ported) or an all-new kernel altogether.

How one installs hardware enablement updates varies depending on how the
update was released, but generally they are optional. Typically, the kernel that
was installed when you first set up your server will be the version your server will
use, but new installation media will be created that will install updated kernels for
servers that have not been set up before. This is why it's a good idea to make sure
you're always using the latest installation media when installing Ubuntu. Ubuntu
14.04, for example, originally shipped with kernel 3.13. Later, the kernel installed by
the installation media was updated to 3.16 when Ubuntu 14.04.2 was released, then
to 3.19 with 14.04.3, and then to kernel 4.2 with Ubuntu Server 14.04.4. Those who
installed their server with Ubuntu 14.04.1 or lower would still be running kernel 3.13
unless the administrator had manually updated the hardware enablement stack.

Generally, there's no reason to upgrade to a newer hardware enablement
stack, unless you need to benefit from the newer drivers or your current
kernel is going to be discontinued. You should subscribe to Ubuntu's
mailing lists in order to keep abreast of updates regarding kernel support
for your release.

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[138]

Package management is typically very convenient in Ubuntu, with security updates
and feature updates coming regularly. With just one command (which we'll get
to shortly), you can install a package along with all of its dependencies. Having
done manual dependency resolution myself, I can tell you first hand that having
dependencies handled automatically is a very wonderful thing. The main benefit of
how packages are maintained on a Linux server is that you generally don't have to
search the Internet for packages to download, as Ubuntu's repositories contain most
of the ones you'll ever need. As we continue through this chapter, you'll come to
know everything you need in order to manage this software.

Installing and removing software
Throughout this book, I've had you use the apt-get command multiple times to
download and install various packages, so, technically, you've already worked
through at least some package management. But we've never had a formal
discussion about this command, so in this section we'll go a little more in depth
with it.

As you've seen before, we can use apt-get along with the install keyword and
then a package name in order to install a new package on your system. For example,
the following command will install the openssh-server package:

apt-get install openssh-server

You can also install multiple packages at a time by separating each with a space,
instead of installing each package one at a time. The following example will install
three different packages:

apt-get install <package1> <package2> <package3>

Removing packages follows a very similar syntax; you would only need to replace
the keyword install with remove. For example, we can remove the nano package
with the following command:

apt-get remove nano

And, just like with the install keyword, you can remove multiple packages at the
same time as well. The following example will remove three packages:

apt-get remove <package1> <package2> <package3>

If you'd like to not only remove a package but also wipe out its configuration, you
can use the --purge option:

apt-get remove --purge <package>

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[139]

We can actually simplify these commands a bit. Some people may not know this,
but the apt-get command can actually be shortened to just apt in recent releases of
Ubuntu Server as well as in Debian. Feel free to try the following variations of the
install and remove commands, respectively:

apt install <package>

apt remove <package>

As we go along, I'll continue to use apt-get instead of shortening the command to
just apt, mainly to maintain compatibility with older versions of Ubuntu Server as
much as possible. But, if you're using a newer version of Ubuntu Server, feel free to
use the shortened commands in place of the ones I will provide.

So, what happens when you install a package? If you've run through the process
before, you're probably accustomed to this process already. But, typically, the
process begins with apt calculating dependencies. The majority of packages require
other packages in which to function, so apt will check to ensure that the package
you're requesting is available, and that its dependencies are available as well. First,
you'll see a summary of the changes that apt wants to make to your server. In the
case of installing the apache2 package on an unconfigured Ubuntu Server, I see the
following output on my system:

apt-get install apache2

The following additional packages will be installed:

 apache2-bin apache2-data apache2-utils libapr1 libaprutil1 libaprutil1-
dbd-sqlite3

 libaprutil1-ldap liblua5.1-0 ssl-cert

Suggested packages:

 apache2-doc apache2-suexec-pristine | apache2-suexec-custom openssl-
blacklist

The following NEW packages will be installed:

 apache2 apache2-bin apache2-data apache2-utils libapr1 libaprutil1

 libaprutil1-dbd-sqlite3 libaprutil1-ldap liblua5.1-0 ssl-cert

0 upgraded, 10 newly installed, 0 to remove and 69 not upgraded.

Need to get 1,549 kB of archives.

After this operation, 6,470 kB of additional disk space will be used.

Do you want to continue? [Y/n]

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[140]

Even though I only asked for apache2, apt-get informs me that it also needs to
install apache2-bin, apache2-data, apache2-utils, libapr1, libaprutil1,
libaprutil1-dbd-sqlite3, libaprutil1-ldap, and liblua5.1-0 ssl-cert in
order to satisfy the dependencies for the apache2 package. Apt also suggests that I
install apache2-doc, apache2-suexec-pristine | apache2-suexec-custom, and
openssl-blacklist, though those are optional and are not required. If I wanted to
install apache2, its dependencies, as well as the suggested packages, I could've run
the following command instead:

apt-get install --install-suggests apache2

Most of the time, though, you probably won't want to do this; it's usually better to
keep your installed packages to a lean minimum and install only the packages you
need. As we'll discuss in Chapter 12, Securing Your Server, the fewer packages you
install, the smaller the attack surface of your server.

Another option that is common with installing packages via apt is the -y option,
which assumes yes to the confirmation prompt where you choose if you want to
continue or not. For example, my previous example output included the line Do you
want to continue? [Y/n]. If we used -y, the command would've proceeded to
install the package without any confirmation. This can be useful for administrators in
a hurry, though I personally don't see the need for this unless you are scripting your
package installations.

Continuing on with the example installation of apache2, my output looks like the
following after I press Y and then Enter to accept the changes. Note that I've removed
some redundant lines to save space on this page:

Setting up apache2 (2.4.18-1ubuntu1) ...

Enabling module mpm_event.

Enabling module authz_core.

Enabling module authz_host.

Enabling module authn_core.

Enabling module auth_basic.

Setting up ssl-cert (1.0.37) ...

Processing triggers for libc-bin (2.21-0ubuntu5) ...

Processing triggers for systemd (228-5ubuntu2) ...

Processing triggers for ureadahead (0.100.0-19) ...

Processing triggers for ufw (0.34-2) ...

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[141]

There were several other packages being installed and modules being enabled when
I ran the command, but you should get the basic idea from the example output. As
you can see, apt has done more than simply install the apache2 package. It has also
enabled some of the built-in modules for Apache, as well as setting up systemd
to automatically start the Apache daemon. We see this in the lines that begin with
processing triggers for several of the packages, which are additional steps added to
the package to be completed post-install. Specifically, the "triggers" that are executed
are done in order to receive processing by another package, in particular, the
systemd daemon, which is responsible for starting and enabling daemons in
newer Ubuntu Server releases.

It's rather neat that Ubuntu Server automatically configures most packages to
have their daemons start up and also be enabled so that they start with each boot.
This may seem like a no-brainer, but not everyone prefers this automation. As I've
mentioned, the more packages installed on your server, the higher the attack surface,
but running daemons are each a method of entry for miscreants should there be a
security vulnerability. Therefore, some distributions don't enable and start daemons
automatically when you install packages. The way I see it, though, you should only
install packages you actually intend to use, so it stands to reason that if you go to the
trouble of manually installing a package such as Apache, you probably want to start
using it.

When you install a package with the apt keyword, it searches its local database for
the package you named. If it doesn't find it, it will throw up an error. Sometimes,
this error may be because the package isn't available or perhaps the version that apt
wants to install no longer exists. Ubuntu's repositories move very fast. New versions
of packages are added almost daily. When a new version of a package is added,
its older equivalent may be removed. For this reason, it's recommended that you
update your package sources from time to time. Doing so is easy, using the
following example:

apt-get update

This command doesn't actually update any packages, it merely checks in with your
local mirror to see if any packages have been added or removed, and updates your
local index. This command is useful because installations can fail if your sources
aren't up to date. In most cases, the symptom will either be the package isn't found
or apt bailing out of the process when it encounters a package it's looking for, but
cannot find.

Installing software in Ubuntu Server is actually fairly easy, and some may argue it
is easier than in other platforms. Having a centralized location to house its software
certainly helps, and commands such as apt-get allow you to manage your software
very effectively.

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[142]

Searching for packages
The naming conventions used for packages in Ubuntu Server aren't always obvious.
Worse, package names are often very different from one distribution to another
for even the same piece of software. While this book and other tutorials online will
outline the exact steps needed to install software, if you're ever on your own, it really
doesn't help much if you don't know the name of the package you want to install.
For example, in the previous section I showed the sample output from installing
Apache, which I did by installing the apache2 package via apt-get. If you didn't
know any better, you would probably search for the package by just apache. If
you are coming from another platform (such as CentOS), you may instinctively
have searched for httpd, which is a common name for Apache on that platform. In
another example, you may have wanted to install an SSH server, but you probably
wouldn't have guessed on your own that the package you want to install is not ssh,
but rather is openssh-server when it comes to Ubuntu Server. If we don't give apt
the exact name of the package we want, the installation will fail. You'll get an error
similar to the following:

E: Unable to locate package httpd

The apt-get utility does no guesswork. It assumes you know what you're doing and
you've already done the research in terms of what you want to install. Thankfully, it
also has the capability of searching your package index as well. We can use the apt-
cache utility in order to search for packages:

apt-cache search <search term>

Output from this command will show a list of packages that match your search
criteria, with their names and descriptions. If, for example, you wanted to install
the PHP plugin for Apache and you didn't already know the name of the associated
package, the following would narrow it down:

apt-cache search apache php

In the output, we will get a list of more than a handful of packages, but we can
deduce from the package descriptions in the output that libapache2-mod-php is
most likely the one we want. We can then proceed to install it using apt-get, as we
would normally do. If we're not sure whether or not this is truly the package we
want, we can view more information with the apt-cache show command:

apt-cache show libapache2-mod-php

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[143]

Showing details of the libapache2-mod-php package with apt-cache show

With this command, we can see additional details regarding the package we're
considering installing. In this case, we learn that the libapache2-mod-php package
also depends on PHP itself, so that means if we install this package, we'll get the PHP
plugin as well as PHP.

Another method of searching for a package (if you have a web browser available), is
to connect to the Ubuntu Packages Search page at http://packages.ubuntu.com/
where you can navigate through the packages from their database for any currently
supported version of Ubuntu. You won't always have access to a web browser while
working on your servers, but, when you do, this is a very useful way to search
through packages, view their dependencies, descriptions, and more.

www.hellodigi.ir

http://packages.ubuntu.com/
http://technet24.ir

Managing Software Packages

[144]

Managing software repositories
Often, the repositories that come pre-installed with Ubuntu will suffice for the
majority of your server needs. Every now and then, though, you may need to
install an additional repository in order to take advantage of software not normally
provided by Ubuntu, or versions of packages newer than what you would normally
have available. Adding additional repositories allows you to subscribe to additional
sources of software and install packages from them the same as you would from any
other sources.

Adding additional repositories should be considered a last resort, however. When
you install an additional repository, you're effectively trusting the author of that
repository with your company's server. Although I haven't ever seen this happen
first hand, it's theoretically possible for authors of software to include backdoors
or malware in software packages, and then make them available for others via a
software repository. Therefore, you should only add repositories from sources that
you have reason to trust.

In addition, it sometimes happens that a maintainer of a repository simply gives
up on it and disappears. This I have seen happen first hand. In this situation, the
repository may go offline (which would show errors during apt transactions that
it's not able to connect to the repository), or worse, the repository stays online, but
security updates are never made available, causing your server to become wide
open for attack. Sometimes, you just don't have a way around it. You need a specific
application and Ubuntu doesn't offer it by default. Your only option may be to
compile an application from source or add a repository. The decision is yours, but
just keep security in mind whenever possible.

Software repositories are essentially URLs in a text file, stored in one of two places.
The main Ubuntu repository list is stored in /etc/apt/sources.list. Inside that
file, you'll find a multitude of repositories for Ubuntu's package manager to pull
packages from. In addition, files with an extension of .list are read from the
/etc/apt/sources.list.d/ directory and are also used whenever you use
apt. I'll demonstrate both methods.

A typical repository line in either of these two files will look similar to the following:

deb http://us.archive.ubuntu.com/ubuntu/ xenial main restricted

The first section of each line will be either deb or deb-src, which references whether
the apt command will find binary packages (deb) or source packages (deb-src),
there. Next, we have the actual URL which apt will use in order to reach the
repository. In the third section, we have the codename of the release; in this case,
xenial (which refers to the codename for Ubuntu 16.04, "Xenial Xerus").

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[145]

Continuing, the fourth section of each repository line refers to the Component,
which references whether or not the repository contains software that is free and
open source, and is supported officially by Canonical (the company that oversees
Ubuntu's development). The component can be one of main, restricted, universe,
or multiverse. Repositories with a main component include officially supported
software. This generally means that the software packages have source code
available, so Ubuntu developers are able to fix bugs. Software marked restricted
is still supported, but may have a questionable license. Universe packages are
supported by the community, not Canonical themselves. Finally, multiverse
packages contain software that is neither free nor supported, that you would be
using at your own risk.

As you can see from looking at the /etc/apt/sources.list file on your server,
it's possible for a repository line to feature software from more than one component.
Each repository URL may include packages from several components, and the way
you differentiate them is to only subscribe to the components you need for that
repository. In our previous example, the repository line included both main and
restricted components. This means that, for that particular example, the apt utility
will index both free (main) and non-free (restricted) packages from that repository.

You can add new repositories to the /etc/apt/sources.list file (and it will
function just fine), but that's not typically the preferred method. Instead, as I
mentioned earlier, apt will scan the /etc/apt/sources.list.d/ directory for text
files ending with the .list extension. These text files are the same as the /etc/apt/
sources.list file in the sense that you include one additional repository per line,
but this method allows you to add a new repository by simply creating a file for it,
and you can remove the repository by simply deleting that file. This is safer than
editing the /etc/apt/sources.list file directly, since there's always a chance
you can make a typo and disrupt your ability to download packages from the
official repositories.

In Chapter 10, Serving Web Content, I'll show you how to set up ownCloud. I bring this
up now because installing ownCloud is a great example of how to add a third-party
repository to our server. You don't need to actually perform these steps unless you
actually want to install ownCloud, which is a task better left for Chapter 10, Serving
Web Content, (there's more steps to setting up ownCloud than simply installing
its package). Instead, I'll just show the process so that you will understand how it
works. This is generally the same process you would follow for other sources
of software.

First, we need to know which repository line to use. In the case of ownCloud,
the repository line listed on the download section of their site is the following:

deb http://download.owncloud.org/download/repositories/stable/
xUbuntu_16.04/ /

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[146]

To install the repository, we can create the following file with our text editor and
place that repository line inside it:

/etc/apt/sources.list.d/owncloud.list

Having the repository file included in the /etc/apt/sources.list.d/ directory
isn't enough by itself, we also need to install the GNU Privacy Guard (GnuPG) key
for the repository on our server. This key helps our system verify that the packages
have been signed by the appropriate party. Without it, we would see errors when
we try to install packages from this repository or when we update our system. To
install a key for a repository, you should follow the instructions listed on the site
for the repository you're adding. On the ownCloud site, they mention the following
commands as the ones to use to add the key:

wget -nv https://download.owncloud.org/download/repositories/stable/
xUbuntu_16.04/Release.key -O Release.key

apt-key add - < Release.key

Next, we need to refresh our apt sources in order to take advantage of this new
repository. The following command will take care of that:

apt-get update

Providing the repository is online and functioning properly, we should now have the
software from that repository available to us to install via apt as we would for any
other deb packages.

Generally speaking, the instructions I have provided are just an example of the
typical process. Every software vendor that has a repository available for their
packages may have you perform some variation of this process. Always follow the
instructions from the vendor when installing a new repository. Also, it's wise to
make sure that you also research the vendor, since adding a third-party repository
requires a certain amount of trust between you and the vendor (especially if the
source packages aren't available for you or your team to audit).

On the Ubuntu platform, there also exists another type of repository, known as
a Personal Package Archive (PPA). PPAs are essentially another form of apt
repository, and you'll even interact with their packages with the apt command, as
you would normally. PPAs are usually very small repositories, often including a
single application that serves a single purpose. A PPA is common in situations where
a vendor doesn't make their software available with their own repository, and may
only make their application available in the form of source code you would need
to manually download, compile, and install. With the PPA platform, anyone can
compile a package from source and easily make it available for others to download.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[147]

PPAs suffer from the same security concerns as repositories (you need
to trust the vendor and so on), but are a bit worse considering that the
software isn't audited at all. In addition, if the PPA was to ever go down,
you'd stop getting security updates for the application you install from it.
Only use PPAs when you absolutely need to.

There is one use case for PPAs that may be compelling, specifically, for a server
platform that standard repositories aren't able to handle as well, and that is software
versioning. Typically, a major server component such as PHP or MySQL may be
locked to a specific major version with each Ubuntu Server release. What do you do
if you need to use Ubuntu Server, but the application you need to run is not available
at the version your organization requires? In the past, you would literally need to
choose between the distribution or the package, with some organizations even using
a different distribution of Linux just to satisfy the need to have a specific application
at a specific version. You can always compile the application from source (assuming
its source code is available), but that can cause additional headaches in the sense that
you'd be responsible for compiling new security patches yourself whenever they're
made available. Often, very specific PPAs will be created to house software packages
at a specific major version.

PPAs are generally added to your server with the apt-add-repository command.
The syntax is generally using the apt-add-repository command, with a colon,
followed by a user name, and then the PPA name. The following command is a
hypothetical example:

apt-add-repository ppa:username/myawesomesoftware-1.0

To begin the process, you would start your search by visiting Ubuntu's PPA website,
which is available at the following URL:

https://launchpad.net/ubuntu/+ppas

Once you find a PPA you would like to add to your server, you can add it simply by
finding the name of the PPA and then adding it to your server with the apt-add-
repository command. You should take a look at the page for the PPA, though, in
case there are different instructions. For the most part, the apt-add-repository
command should work fine for you.

www.hellodigi.ir

https://launchpad.net/ubuntu/+ppas
http://technet24.ir

Managing Software Packages

[148]

In the following screenshot, you'll see an example run of this process, where I add a
PPA for MariaDB to one of my servers:

An example of the process of adding a PPA to a server

With this PPA, I'm able to install MariaDB 10, which is useful because not all releases
of Ubuntu Server offer this specific version. I started the process by searching for
a MariaDB PPA on the PPA web page, where I found this specific PPA by a user
known as ondrej. On the page for this PPA, I saw its name listed as ppa:ondrej/
mariadb-10.0, so I combined that name with the apt-add-repository command
(I was logged in as a normal user, so I needed to use sudo). When put together, the
command ended up being the following:
apt-add-repository ppa:ondrej/mariadb-10.0

Next, the user uploaded some very helpful text regarding the purpose of this PPA,
as well as some links to other PPAs by that user that serve a similar purpose (specific
versions of MariaDB that have been made available for various versions of Ubuntu
Server). This text was displayed in the output of my terminal window, followed by
a note that I can press Enter to add the PPA, or press Ctrl + C to cancel the process.
I pressed Enter, then the repository (as well as its GnuPG key), was added to the
server. From this point on, I can add software to my server from this repository by
simply using the apt-get command as I normally would.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[149]

So what exactly did this command do? We know that it installed the PPA to my
server, but where on the filesystem did this get configured? Even though we added
this repository with a special command, all it really did was create a text file in /etc/
apt/sources.list.d, the same directory in which normal repositories can be placed
that I mentioned earlier. The line the PPA added to my server is the same as for any
other package repository:

deb http://ppa.launchpad.net/ondrej/mariadb-10.0/ubuntu xenial main

Therefore, to delete this repository, all I would need to do is remove the file
it created:

rm /etc/apt/sources.list.d/ondrej-ubuntu-mariadb-10_0-xenial.list

PPAs are one of the things that sets Ubuntu apart from Debian, and can be a very
useful feature if harnessed with care. PPAs offer Ubuntu a flexible way of adding
additional software that wouldn't normally be made available, though you will
need to keep an eye on such repositories to ensure they are properly patched when
vulnerabilities arise, and are used only when absolutely necessary.

Keeping your server up to date
Updated packages are made available for Ubuntu quite often, sometimes even daily.
These updates mainly include the latest security updates, but may also include new
features. Since Ubuntu 16.04 is an LTS release, security updates are much more
common than feature updates. Installing the latest updates on your server is a very
important practice, but, unfortunately, it's not something that all administrators keep
up on for one reason or another.

Security updates very rarely affect your server, other than helping to keep it secure
against the latest threats. However, it's always possible that a security update that's
intended to fix a security issue ends up breaking something else. This is rare, but
I've seen it happen. When it comes to production servers, it's often difficult to keep
them updated, since it may be catastrophic to your organization to introduce change
within a server that's responsible for a large portion of your profits. If a server were
to go down, it could be very costly. Then again, if your servers become compromised
and your organization ends up the subject of a CNN hacking story, you'll definitely
wish you had kept your packages up to date!

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[150]

The key to a happy data center is to test all updates before you install them. Many
administrators will feature a system where updates will "graduate" from one
environment into the next. For example, some may create physical or virtual clones
of their production servers, update them, and then see if anything breaks. If nothing
breaks, then those updates would be allowed on the production servers. In a clustered
environment, an administrator may just update one of the production servers, see
how it gets impacted, and then schedule a time to update the rest. In the case of
workstations, I've seen policies where select users are chosen for security updates
before they are uploaded to the rest of the population. I'm not necessarily suggesting
you treat your users as guinea pigs, but everyone's organization is different, and
finding the right balance in regards to installing updates is very important. Although
these updates represent change, there's a reason that Ubuntu's developers went
through the hassle of making them available. These updates fix issues, some of which
are security concerns that are already being exploited as you read this.

To begin the process of installing security updates, the first step is to update your
local repository index. As we've discussed before, the way to do so is to run
apt-get update as root or with sudo. This will instruct your server to check
all of its subscribed repositories to see if any new packages were added or out
of date packages removed. Then, you can start the actual process.

There are two commands you can use to update packages. You can run either
apt-get upgrade and/or apt-get dist-upgrade.

The difference is that running apt-get upgrade will not remove any packages
and is the safest to use. However, this command also won't pull down any new
dependencies either. Basically, the apt-get upgrade command simply updates
any packages on your server that are already installed, without adding or removing
anything. Since this command won't install anything new, this also means your
server will not have updated kernels installed either.

The apt-get dist-upgrade command will update absolutely everything available.
It will make sure all packages on your server are updated, even if that means
installing a new package as a dependency that wasn't required before. If a package
needs to be removed in order to satisfy a dependency, it will do that as well. If an
updated kernel is available, it will be installed.

Generally speaking, the dist-upgrade variation should represent your end goal,
but it's not necessarily where you should start. Updated kernels are important, since
your distribution's kernel receives security updates just as any other package. All
packages should be updated eventually, even if that means something is removed
because it's no longer needed or something new ends up getting installed. I generally
start with the apt-get upgrade command to get things going:

apt-get update && apt-get upgrade

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[151]

In one line, I'm executing both apt-get update as well as apt-get upgrade, using
&& to inform the shell that I would like to run the latter command after the former
finishes. After my server fetches the latest indexes of available packages, my output
will show a list of the packages it wants to update, ending with output similar to
the following:

88 upgraded, 0 newly installed, 0 to remove and 8 not upgraded.

Need to get 33.2 MB of archives.

After this operation, 218 kB of additional disk space will be used.

Do you want to continue? [Y/n]

As you can see, I haven't updated this server in a while, as I have 88 updates
available. From the output, you can also see that there are eight updates that won't
be installed as part of this command, since we're running apt-get upgrade instead
of apt-get dist-upgrade. I can press Y and then Enter to start the process, but,
before I do, I generally like to look at the output to see which packages are going
to be updated. I've omitted the entire output for the sake of saving space, but you
would see a list of the packages your server wants to update, so you can have a
chance to see what it wants to do before you allow it to continue. This is important—
if a package is marked for an update and it's critical to your organization, you may
want to consider what may happen if the package is updated while people are using
it. I learned this the hard way earlier in my career, when the MySQL package was
updated on a server, which I allowed to happen during production hours thinking
I could always restart the MySQL service in the evening to complete the install.
Actually, the MySQL service was automatically restarted as part of installing the
update, which ended up causing a few minutes of downtime while I also needed to
restart the Apache service to reconnect to the database. Thankfully, this server wasn't
heavily used. I bring this up just as an example to demonstrate why you should take
a look at the list of packages your server wants to update before you allow it to do so.

Anyway, after you confirm the changes by pressing Y and then Enter, apt will fetch
all of the listed packages and install them. This, of course, may take a while if you
have 88 or more packages waiting, as I did when I ran through this process on my
test server for the sake of grabbing example output. Assuming that this process
finishes successfully, we can run the apt-get dist-upgrade command to update
the rest; specifically, the packages that were held back because they would've
installed new packages or removed existing ones. Even if I don't plan on running
an actual dist-upgrade, I'll often run it just long enough to see what apt wanted to
do, as I can always cancel the process by pressing N and then Enter when I see the
confirmation prompt.

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[152]

In my case, when I ran apt-get dist-upgrade on my test server, I received the
following output:

The following packages were automatically installed and are no longer
required:

 linux-headers-4.3.0-5 linux-headers-4.3.0-5-generic linux-image-4.3.0-
5-generic

 linux-image-extra-4.3.0-5-generic

Use 'sudo apt autoremove' to remove them.

The following NEW packages will be installed:

 gcc-6-base initramfs-tools-core linux-base linux-headers-4.4.0-4

 linux-headers-4.4.0-4-generic linux-image-4.4.0-4-generic

 linux-image-extra-4.4.0-4-generic

The following packages will be upgraded:

 gcc-5-base initramfs-tools initramfs-tools-bin libgcc1 libstdc++6
linux-generic

 linux-headers-generic linux-image-generic

8 upgraded, 7 newly installed, 0 to remove and 0 not upgraded.

Need to get 67.6 MB of archives.

After this operation, 290 MB of additional disk space will be used.

Do you want to continue? [Y/n]

As you can see from the output, apt wanted to install some new packages to satisfy
dependencies (gcc-6-base, initramfs-tools-core, linux-base, and several
others), as well as update my running kernel (linux-image-4.4.0-4-generic)
and its headers (linux-headers-4.4.0-4-generic). If I approve of installing these
updates, I can press Y and then Enter at this point to accept these changes and allow
apt to get to work on updating them.

Another reason why running apt-get upgrade followed by apt-get
dist-upgrade is useful is because it narrows down the list of packages by quite a bit.
When I ran apt-get upgrade on my server, I was offered 88 packages, so I didn't
even bother to list the entire output, since that would've taken up most of a page.
But, given the nature of apt-get upgrade, those packages were all generally safe to
install, anyway, as that command doesn't change what packages you have installed,
only their versions. That narrowed down the list of packages to just a handful when
I ran the second command (apt-get dist-upgrade). Since those updates included
kernel updates and some newly installed packages, I would have a decision to make,
and I can do so without looking through more than 80 packages.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[153]

In regards to updating the kernel, this process deserves some additional discussion.
Some distributions are very risky when it comes to updating the kernel. On my Arch
Linux installations, only one kernel is installed at any one time. Therefore, when
that kernel gets updated, you really need to reboot the machine so that it can use it
properly (sometimes, various system components may have difficulty in the case
where you have a pending reboot after installing a new kernel).

Ubuntu, on the other hand, handles kernel upgrades very efficiently. When you
update a kernel in Ubuntu, it doesn't replace the kernel your server is currently
running on. Instead, it installs the updated kernel alongside your existing one. In
fact, these kernels will continue to be stacked and none of them will be removed as
new ones are installed. When new versions of the Ubuntu kernel are installed, the
GRUB boot loader will be updated automatically to boot the new kernel the next
time you perform a reboot. Until you do, you can continue to run on your current
kernel for as long as you need to, and you shouldn't notice any difference. The only
real difference is the fact you're not taking advantage of the additional security
patches of the new kernel until you reboot, which you can do during your next
maintenance window. The reason this method of updating is great is because if you
run into a problem where the new kernel doesn't boot, you'll have a chance to press
Esc at the beginning of the boot process, where you'll be able to choose the option
Advanced options for Ubuntu, which will bring you to a list of all of your installed
kernels. Using this list, you can select between your previous (known, working)
kernels and continue to use your server as you were before you updated the kernel.
This is a valuable safety net!

Selecting a different kernel during the boot process

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[154]

In my sample output of the apt-get dist-upgrade command, you may be curious
about the following section if you aren't already aware of Ubuntu's way of
package management:

The following packages were automatically installed and are no longer
required:

 linux-headers-4.3.0-5 linux-headers-4.3.0-5-generic linux-image-4.3.0-
5-generic

 linux-image-extra-4.3.0-5-generic

Use 'sudo apt autoremove' to remove them.

Here, we see a list of packages that apt doesn't think we need anymore. It may be
right, but this is something we would need to investigate. In this case, it sees that
we're installing a new kernel (and packages related to the kernel), so it doesn't think
we'll need the old versions after the new ones are installed. This isn't just related
to kernels; apt keeps track of packages that are installed as dependencies for other
packages. When you remove a package that depends on those packages, or you
update a package that required installation of something else (but no longer does),
apt sees this as an opportunity to inform you that you can perform some cleanup.
As instructed in the output, we can use the apt-get autoremove command as root
or with sudo to remove them. This is a great way of keeping our installed packages
clean, but should be used with care.

First, you should never remove outdated kernels from your server until you verify
that the newly installed kernel is working correctly. Generally, you would probably
want to wait at least a week before running apt-get autoremove when kernel
packages are involved. When it comes to other packages, they are generally safe to
remove with the apt-get autoremove command, since the majority of them will
be packages that were installed as a dependency of another package that has since
been removed. However, double check that you really do want to remove each of the
packages before you allow it to do so.

Later on in this chapter, I'll give you an example of how to unmark
a package for automatic removal, in case autoremove wants to
remove a package you'd rather hang.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[155]

After you update the packages on your server, you may want to restart services
in order to take advantage of the new security updates. In the case of kernels, you
would need to reboot your entire server in order to take advantage of kernel updates,
but other updates do not require a reboot. Instead, if you restart the associated
service, you'll generally be fine (if the update itself didn't already trigger a restart of
a service). For example, if your DNS service (bind9) was updated, you would only
need to execute the following to restart the service:

systemctl restart bind9

Or, on older servers without systemd, execute the following:

/etc/init.d/bind9 restart

These are two of the many unique points of the Linux platform: not needing to
restart an entire server just for a few updates and being able to strategically plan
your upgrade process. As I've mentioned before, it's important that you keep your
servers up to date. It's also important that you come up with not only an update
plan but also a roll-back plan in case things go wrong. You can do so by creating
LVM snapshots (which can be restored in case an update goes wrong), or simply
reinstalling an older version of a package manually (or by any other method you
can come up with).

Previously downloaded packages are stored in the following directory:

/var/cache/apt/archives

There, you should find the actual packages that were downloaded as a part of
your update process. In a case where you need to restore an updated package to
a previously installed version, you can manually install a package with the dpkg
command. Generally, the syntax will be similar to the following:

dpkg -i /path/to/package.deb

To be more precise, you would use a command such as the following to reinstall a
previously downloaded package, using an older Linux kernel as an example:

dpkg -i /var/cache/apt/archives/linux-generic_4.3.0.7.8_amd64.deb

However, with the dpkg command, dependencies aren't handled automatically, so
if you are missing a package that your target package requires as a dependency, the
package will still be installed, but you'll have unresolved dependencies you'll need to
fix. You can try to resolve this situation with apt:

apt-get -f install

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[156]

The apt-get -f install command will attempt to fix your installed packages,
looking for packages that are missing (but are required by an installed package), and
will offer to install the missing dependencies for you. In the case where it cannot find
a missing dependency, it will offer to remove the package that requires the missing
packages if the situation cannot be worked out any other way.

Well, there you have it. At this point, you should be well on your way to not only
installing packages, but keeping them updated as well. Before I close out this
chapter, though, there are a few more concepts related to package management
that will be useful for you to know.

Backing up and restoring packages
As you maintain your server, your list of installed packages will grow. If, for some
reason, you needed to rebuild your server, you would need to reproduce exactly
what you had installed before, which can be a pain. It's always recommended that
you document all changes made to your server via a change control process, but, at
the very least, keeping track of which packages are installed is an absolute must. In
some cases, a server may only include one or two extra packages in order to meet
its goal, but, in other cases, you may need an exact combination of software and
libraries in order to get things working. Thankfully, the dpkg command allows
us to export and import a list of packages to install.

To export a list of installed packages, we can use the following command:

dpkg –get-selections > packages.list

This command will dump a list of package selections to a standard text file. If you
open it, you'll see a list of your installed packages, one per line. A typical line within
the exported file will look similar to the following:

tmux install

With this list, we can import our selections back into the server if we need to reinstall
Ubuntu Server, or into a new server that will serve a similar purpose. First, before we
manage any packages, we should update our index:

apt-get update

Next, we'll need to ensure we have the dselect package installed. At your shell
prompt, type which dselect and you should see output similar to the following:

/usr/bin/dselect

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[157]

If you don't see output, you'll need to install the dselect package with apt:

apt-get install dselect

Once that's complete, you can now import your previously saved package list, and
have the missing packages reinstalled on your server. The following commands will
complete the process:

dselect update

dpkg --set-selections < packages.list

apt-get dselect-upgrade

After you have run those commands, the packages that are contained in your
packages list, but aren't already installed, will be installed once you confirm the
changes. This method allows you to easily restore the packages previously installed
on your server, if for some reason you need to rebuild it, as well as setting up a new
server to be configured in a similar way to an existing one.

Making use of aptitude
The aptitude command is a very useful, text-based utility for managing packages
on your server. Some administrators use it as an alternative to apt, and it even has
additional features that you won't find anywhere else. To get started, you'll need to
install aptitude, if it isn't already:

apt-get install aptitude

The most basic usage of aptitude allows you to perform functions you would
normally be able to perform with apt. In the following table, I outline several
example aptitude commands, as well as their apt equivalent:

aptitude command apt equivalent
aptitude install <packagename> # apt-get install <packagename>

aptitude remove <packagename> # apt-get remove <packagename>

aptitude search <search term> # apt-cache search <packagename>

aptitude update # apt-get update

aptitude upgrade # apt-get upgrade

aptitude dist-upgrade # apt-get dist-upgrade

For the most part, the commands I listed in the preceding table operate in much
the same way as their apt equivalents. The output from an aptitude command
will typically look very close to the apt version. There are some noteworthy
differences, though.

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[158]

First, compare the output from the search commands. Both commands will list
package names, as well as a description for each package. The aptitude version
places additional blank space in between the application name and description,
which makes it look nicer. However, it also includes an additional column that the
apt version doesn't include, which represents the state of the package. This column
is the first column you'll see when you search for packages with aptitude, and will
show i if the package is already installed, p if the package is not installed, and v if
the package is virtual (a virtual package exists merely as a pointer to other packages).
There are other values for this column; feel free to consult the man page for aptitude
for more information.

Another useful trick with aptitude is the ability to fix a situation where the apt-
get command lists a package as no longer being necessary, even though you
would rather keep it around. If you recall, we went over this subject a few sections
ago. Basically, if a package is installed as a dependency for another package (but
the original package was removed), the package will be marked as automatically
installed, which means it becomes a candidate for cleanup with the apt-get
autoremove command. In some cases, you may wish to keep such a package around,
and you'd rather the autoremove command not remove it from your system. To
unmark a package as automatically installed, aptitude comes to our rescue with the
following command:

aptitude unmarkauto <packagename>

After you unmark a package as automatically installed, it will no longer be a
candidate for autoremove, and you can then use the apt-get autoremove
command without fear that the package will be removed.

However, the aptitude command offers yet another nice feature in the form of a
(somewhat) graphical interface you can interact with on the shell, if you enter the
aptitude command (as root or with sudo) with no arguments or options:

aptitude

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[159]

Aptitude in action

The aptitude command features an ncurses interface, which is essentially a
terminal equivalent to a graphical application. You are able to interact with aptitude
in this mode by using your arrow keys to move around, Enter to confirm selections,
and q to quit. Using Aptitude's graphical utility, you are basically able to browse
the available packages, which are split into several categories. For example, you can
expand Not Installed Packages to narrow down the list to anything not currently
installed, then you can narrow down the list further by expanding a category (you
simply press Enter to expand a list). Once you've chosen a category, you'll see a list of
packages within that category that you can scroll through with your arrow keys. To
manipulate packages, you'll access the menu by pressing Ctrl + T on your keyboard,
which will allow you to perform additional actions. Once in the menu, you can mark
the package as a candidate for installation by using your arrow keys to navigate
to Package, and then you can mark the package as needing to be installed by
selecting Install. You can also mark a package as needing to be removed or purged
(meaning the package and its configuration are both removed). In addition, you
can mark a package as automatically installed (Mark Auto) or manually installed
(Mark Manual). Once you've made your selections, the first menu item (Actions)
has an option to Install/Remove packages, which can be used to finalize your new
selections or removals. To exit from aptitude, access the menu and then select Quit.

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[160]

There's more that you can do with the graphical version of
aptitude, so feel free to play around with it on a test server and
read its man pages to learn more. In addition to being an awesome
way to manage packages, it also has a built-in game of Minesweeper!

As you can see, aptitude is a very useful utility, and some even prefer it to plain
apt. Personally, I still use apt, though I always make sure aptitude is installed on
my servers in case I need to benefit from its added functionality.

Installing Snap packages
Ubuntu 16.04 is the first LTS release of Ubuntu with support for Snap packages,
which is a brand-new way for developers to distribute software. With Snap
packages, developers can bundle all of the necessary prerequisites along with their
application, greatly simplifying the deployment process for publishing their software
and making it available to end users. Users benefit as well because Snap packages
are easy to install and don't interfere with the underlying distribution.

To fully understand the benefits of using Snap packages, let's first consider
the weaknesses of the current method of deploying software in Ubuntu, Apt
repositories. Since Ubuntu's inception in 2004, the project has used Apt repositories
to deploy software to its users. Before the release of a new version of Ubuntu, the
repositories are "frozen," and from that point forward, no major changes are allowed,
other than security updates. Historically, exceptions to this rule have been made,
such as pushing out the latest versions of Firefox to desktop users. For the most part,
though, once a new version of the Ubuntu distribution is released, no major updates
to any applications are published. This means, for example, that an application will
typically be stuck at the exact same version for the entire life cycle of that release
of Ubuntu. If you want a newer version, your only options have been to either
wait until the next release of Ubuntu or compile a newer version of the
application yourself.

The benefit to the approach of using frozen repositories is generally that Ubuntu is
more reliable. With no major changes throughout the life cycle of a release, you'll be
using relatively stable versions of packages, rather than untested and bleeding edge
software that may break. The downside is that, if you want newer software, you'll
have to wait for a newer release of the distribution or find some other way of getting
the software, which may include third-party repositories that may end up breaking
the current packages you have installed.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[161]

For developers, Apt repositories have been a blessing and a curse. When it comes
to deploying software to Linux users, supporting Ubuntu has been a no-brainer.
It's one of the largest Linux communities around. Developers have had the choice
to push their applications directly to Debian or Ubuntu repositories, or create their
own repository and offer their software through that. With the latter method, users
will benefit from a newer application as soon as it's released by subscribing to the
vendor's Apt repository. However, this methodology can also be frustrating for
developers, as different versions of Ubuntu feature different libraries and additional
testing is required to ensure the software works with every supported Ubuntu
release. While there's certainly nothing wrong with that approach, and developers
have used this approach for decades, it does represent an additional layer of
complexity that a developer of a Linux application has to go through in order to
reach their customers.

Snap packages operate independently of repositories. A user can install a Snap
package in Ubuntu without disturbing the underlying distribution. This also allows
developers to target their users more easily, since they no longer need to worry about
which libraries a user may have installed. For example, if someone is developing an
application that requires GTK version 3.20, but the target distribution only features
GTK 3.18, that's no problem, as a Snap package can have the required libraries
built-in, independent of the underlying distribution. The application would still
work either way. End users benefit when it comes to Snap packages because they no
longer need to wait for a new Ubuntu release in order to take advantage of the latest
version of their favorite applications. As soon as developers make the Snap package
available, end users will be able to install it.

As this book is being prepared for publication, Snap packages are still a very new
concept and are only now starting to materialize. At the time of writing there aren't
very many Snap packages available, and the technology is still maturing. Until Snap
packages become more popular, installing packages via apt will still be the way to
go for the time being. As I write this, there are only about 42 Snap packages available
for Ubuntu, which is not many when you compare this number to the over 50,000
packages available via Apt. I predict that Snap packages will become very popular,
and will be a major benefit for users. Developers will be able to target the Ubuntu
platform more easily, and end users will be able to use newer versions of packages
than they'd normally have available. It's a win for everyone.

To manage Snap packages, we use the snap command. The snap command features
several options we can use to search for, install, and remove Snap packages from our
server or workstation. To begin, we can use the snap find command to display a list
of Snap packages available to us:

snap find

www.hellodigi.ir

http://technet24.ir

Managing Software Packages

[162]

With no options, the snap find command will display all Snap packages available,
but if we wish to search for something in particular, we can also give it a string to
search for. At the time of writing the list of available Snap packages is very small,
so you probably won't need to use a search string, as you can see the entire library
in one terminal screen. But, as the list grows in the future, you can shorten the list
by supplying a name. One Snap package that's available currently (and makes for a
useful example) is nmap, which you can search for with the following command:

snap find nmap

When I run the command, I see the following output.

nmap 7.12SVN-0.4 Nmap ("Network Mapper") is a free and open source
utility for network discovery and security auditing

The nmap utility is available in Ubuntu's default repositories, so you don't need to
use the Snap package to install it. One thing you'll notice, though, is that the Snap
version is newer than the version that ships with Ubuntu. At the time of writing
Ubuntu's Apt version of the nmap package is 7.01, while Snap offers us a
newer version, 7.12. If we wish to install the Snap version, we can use the
following command:

snap install nmap

Now, if we check the location of nmap with the which nmap command, we see that
the Snap version of nmap is run from a special place:

which nmap

/snap/bin/nmap

Now, when we run nmap, we're actually running it from /snap/bin/nmap. If we
also have the nmap utility installed from Ubuntu's Apt repositories, then we can run
either one at any time, since Snap packages are independent of the Apt packages. If
we wish to run Ubuntu's version, we simply run it from /usr/bin/nmap.

Removing an installed Snap package is easy. We simply use the remove option:

snap remove nmap

If we issue that command, then nmap (or whichever Snap package we designate) is
removed from the system.

To update a package, we use the refresh option:

snap refresh nmap

With that command, the package will be updated to the newest version available.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 5

[163]

As you can see, managing Snap packages is fairly straightforward. Using the snap
suite of commands, we can install, update, or remove packages from our server
or workstation. The snap find command allows us to find new Snap packages to
install. Unfortunately, there aren't very many packages available for us to work
with just yet, but, as the technology advances and evolves, I'm sure many great
applications will be available via this method. By the time this book is released,
I'm sure the number of Snap packages will have already grown.

Summary
In this chapter, we have taken a crash course through the world of package
management. As you can see, Ubuntu Server offers an amazing number of software
packages, and very useful tools we can use to manage them. We began the chapter
with a discussion on how package management with Ubuntu works, then we
worked through installing packages, searching for packages, and managing
repositories. We have also discussed best practices for keeping our server up to date,
as well as the commands available for us to install the latest updates. The aptitude
command is also a neat alternative to the apt suite of commands, and in this chapter
we looked at its GUI mode as well as how it differs from Apt. Snap packages were
also covered, which is an exciting up-and-coming technology that will greatly
enhance software distribution on Ubuntu.

In Chapter 6, Controlling and Monitoring Processes, we're going to take a look at
monitoring and managing the processes running on our server. We'll take a look at
job management, as well as starting and stopping processes.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[165]

Controlling and Monitoring
Processes

On a typical Linux server, there can be over a hundred processes running at any
given time. The purposes of these processes ranges from system services such
as Apache, Network Time Protocol (NTP), and others, to processes that serve
information to others, such as the Apache web server. As an administrator of Ubuntu
servers, you will need to be able to manage these processes, as well as manage the
resources available to them. In this chapter, we'll take a look at process management,
including the ps command, managing job control commands, and more. As we
work through these concepts, we will cover:

•	 Showing running processes with the ps command
•	 Managing jobs
•	 Killing misbehaving processes
•	 Utilizing htop
•	 Managing system processes
•	 Enabling services to run at boot time
•	 Managing processes on legacy servers with upstart
•	 Monitoring memory usage
•	 Scheduling tasks with Cron
•	 Understanding load average

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[166]

Showing running processes with the ps
command
While managing our server, we'll need to understand what processes are running
and how to manage these processes. Later in this chapter, we'll work through
starting, stopping, and monitoring processes. But before we get to those concepts,
we first need to be able to determine what is actually running on our server. The ps
command allows us to do this.

When executed by itself, the ps command will show a list of processes running by
the user that called the command.

The output of the ps command, when run as a normal user and with no options

In the example screenshot I provided, you can see that when I ran the ps command
as my own user with no options, it showed me a list of processes that I am running
as myself. In this case, I have a couple of vim sessions open, and in the last line, we
also see ps itself, which is also included in the output.

On the left side of the output, you'll see a number for each of the running processes.
This is known as the Process ID (PID), which is what I'll refer to it as from now on.
Before we continue on, the PID is something that you really should be familiar with,
so we may as well cover it right now.

Each process running on your server is assigned a PID, which differentiates it from
other processes on your system. You may understand a process as vim, or top, or
some other name. However, our server knows processes by their ID. When you
open a program or start a process, it's given a PID by the kernel. As you work with
managing your server, you'll find that the PID is useful to know, especially for the
commands we'll be covering in this very chapter. If you want to kill a misbehaving
process, for example, a typical work-flow would be for you to find the PID of that
process and then reference that PID when you go to kill the process (which I'll show
you how to do in a later section). PIDs are actually more involved than just a number
assigned to running processes, but for the purposes of this chapter, that's the main
purpose we'll need to remember.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[167]

You can also use the pidof command to find the PID of a process if you
know the name of it. For example, I showed a screenshot of two vim
processes running with the PIDs 991 and 993 respectively. If you run the
following command:
pidof vim

The output will give you the PID(s) of the process without you having to
use the ps command.

Continuing with the ps command, there are several useful options you can give the
command in order to change the way in which it shows its output. If you use the a
option, you'll see more information than you normally would:

ps a

The output of the ps a command

With ps a, we're seeing the same output as before, but with additional information,
as well as column headings at the top. We now see a heading for the PID, TTY,
STAT, TIME, and COMMAND. From this new output, you can see that the two vim
processes I have running are editing files named test and test2 respectively. This is
great to know, because if one of them was misbehaving, you would probably want to
know which one was which so you know to stop the appropriate process.

The TTY, STAT, and TIME fields are new; we didn't see those when we ran ps by
itself. We saw the other fields, although we didn't see a formal heading at the top.
The PID column we've already covered, so I won't go into any additional detail
about that. The COMMAND field tells us the actual command being run, which is
very useful if we either want to ensure we're managing the correct process or see
what a particular user is running (I'll demonstrate how to show processes for other
users soon).

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[168]

What may not be obvious at first are the STAT, TIME and TTY fields. The STAT
field gives us the status code of the process, which refers to which state the process
is currently in. The state can be uninterruptible sleep (D), defunct (Z), stopped (T),
interruptible sleep (S), and in the run queue (R). There is also paging (W), but that is
not used anymore, so there's no need to cover it. Interruptible sleep means that the
program is idle: it's waiting for input in order to awaken. Uninterruptible sleep is a
state in which a process is generally waiting on input and cannot handle additional
signals (we'll briefly talk about signals later on in this chapter). A defunct process
(also referred to as a zombie process) has, for all intents and purposes, finished its
job but is waiting on the parent to perform cleanup. Defunct processes aren't actually
running, but remain in the process list and should normally close on their own. If
such a process remains indefinitely and doesn't close, it can be a candidate for the
kill command, which we will discuss later. A stopped process is generally a process
that has been sent to the background, which will be discussed in the next section.

The TTY column tells us which TTY the process is attached to. A TTY refers to a
Teletypewriter, which is a term used from a much different time-period. In the past,
a Teletypewriter would be used to electronically send signals to a typing device
on the other end of a wire. Obviously, we don't use machines like these nowadays,
but the concept is similar from a virtual standpoint. On our server, we're using our
keyboard to send input to a device which then displays output to another device. In
our case, the input device is our keyboard and the output device is our screen, which
is either connected directly to our server or is located on our computer which is
connected to our server over a service such as SSH. On a Linux system, processes run
on a TTY, which is (for all intents and purposes), a terminal that grabs output and
manages that output, similar to a Teletypewriter in a virtual sense. A terminal is our
method of interacting with our server.

In the screenshot I provided, we have one process running on a TTY of tty1, and the
other processes are running on pty0. The tty we see is the actual terminal device,
and pty references a virtual (pseudo) terminal device. Our server is actually able
to run several tty sessions, typically 1 to 7. Each of these can be running their own
programs and processes. To understand this better, try pressing Ctrl + Alt+ any
function key, from F1 through F7 (if you have a physical keyboard plugged into a
physical server). Each time, you should see your screen cleared and then moved to
another terminal. Each of these terminals is independent of one another. Each of
your function keys represents a specific TTY, so by pressing Ctrl + Alt + F6, you're
switching your display to TTY 6.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[169]

Essentially, you're switching from TTY1 through to TTY7, with each being able to
contain their own running processes. If you run ps a again, you'll see any processes
you start on those TTYs show up in the output as a tty session, such as tty2 or
tty4. Processes that you start in a terminal emulator will be given a designation
of pty, because they're not running in an actual TTY, but rather a Pseudo-TTY.
This was a long discussion for something that ended up being simple (TTY or
Pseudo-TTY), but with this knowledge you should be able to differentiate
between a process running on the actual server or through a shell.

Continuing, let's take a look at the TIME field of our ps command output. This field
represents the total amount of time the CPU has been utilized for that particular
process. However, the time is 0:00 for each of the processes in the screenshot I've
provided. This may be confusing at first. In my case, the vim processes in particular
have been running for about 15 minutes or so since I took the screenshot, and they
still show 0:00 utilization time even now. Actually, this isn't the amount of time
the process has been running, but rather the amount of time the process has been
actively engaging with the CPU. In the case of vim, each of these processes is just a
buffer with a file open. For the sake of comparison, the Linux machine I'm writing
this chapter on has a process ID of 759 with a time of 92:51. PID 759 belongs to my
X server, which provides the foundation for my graphical user environment and
windowing capabilities. However, this laptop currently has an uptime of 6 days
and 22 hours as I type this, which is roughly equivalent to 166 hours, which is not
the same amount of time that PID 759 is reporting for its TIME. Therefore, we can
deduce that even though my laptop has been running 6 days straight, the X server
has only utilized 92 hours and 51 minutes of actual CPU time. In summary, the
TIME column refers to the amount of time a process needs the CPU to calculate
something and is not necessarily equal to how long something has been running, or
for how long a graphical process is showing on your screen.

Let's continue on with the ps command and look at some additional options. First,
let's see what we get when we add the u option to our previous example, which gives
us the following example command:

ps au

When you run it, you should notice the difference from the command ps a
right away. With this variation, you'll see processes listed that are being run by
your user ID, as well as other users. When I run it, I see processes listed in the output
for my user (jay), as well as root. The u option will be a common option you're
likely to use, since most of the time while managing servers you're probably more
interested in keeping an eye on what kinds of shenanigans your users are getting
themselves into. But perhaps the most common use of the ps command is the
following variation:

ps aux

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[170]

With the x option added, we're no longer limiting our output to processes within
a TTY (either native or pseudo). The result is that we'll see a lot more processes,
including system-level processes, that are not tied to a process we started ourselves.
In practice, though, the ps aux command is most commonly used with grep to
look for a particular process or string. For example, let's say you want to see a list
of all nginx worker processes. To do that, you may execute a command such as
the following:

ps aux | grep nginx

Here, we're executing the ps aux command as before, but we're piping the output
into grep, where we're looking only for lines of output that include the string nginx.
In practice, this is the way I often use ps, as well as the way I've noticed many other
administrators using it. With ps aux, we are able to see a lot more output, and then
we can narrow that down with a search criteria by piping into grep. However, if all
we wanted to do was to show processes that have a particular string, we can also do
the following:

ps u -C nginx

Another useful variation of the ps command is to sort the output by sorting the
processes using the most CPU first:

ps aux --sort=-pcpu

Unfortunately, that command shows a lot of output, and we would have to scroll
back to the top in order to see the top processes. Depending on your terminal, you
may not have the ability to scroll back very far (or at all), so the following command
will narrow it down further:

ps aux --sort=-pcpu | head -n 5

Now that is useful! With that example, I'm using the ps aux command with the
--sort option, sorting by the percentage of CPU utilization (-pcpu). Then I'm piping
the output into the head command, where I'm instructing it to show me only five
lines (-n 5). In fact, I can do the same but with the most-used memory instead:

ps aux --sort=-pmem | head -n 5

If you want to determine which processes are misbehaving and using a non-ordinary
amount of memory or CPU, those commands will help you narrow it down. The ps
command is a very useful command for your admin toolbox. Feel free to experiment
with it beyond the examples I've provided; you can consult the man pages for the ps
command to learn even more tricks. In fact, the second section of the man page for ps
(under examples) gives you even more neat examples to try out.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[171]

Managing jobs
Up until now, everything we have been doing on the shell has been right in front of
us, from execution to completion. We've installed applications, run programs, and
walked through various commands. Each time, we've had control of our shell taken
from us, and we've only been able to start a new task when the previous one has
finished. For example, if we were to install the vim-nox package with the apt-get
command, we would watch helplessly while apt takes care of fetching the package
and installing it for us. While this is going on, our cursor goes away and our shell
completes the task for us without allowing us to queue up another command. We
can always open a new shell to the server and multi-task by having two windows
open at once, each doing different tasks. Actually, we don't have to do that, unless
we want to. We can actually background a process without waiting for it to complete
while working on something else. Then, we can bring that process back to the front
to return working on it or to see whether or not it has finished successfully. Think
of this as a similar concept to a windowing desktop environment, or user interfaces
on the Windows or Mac OS X operating systems. We can work on an application,
minimize it to get it out of the way, and then maximize it to continue working with
it. Essentially, that's the same concept of backgrounding a process in a Linux shell.

In my opinion, the easiest way to learn a new concept is to try it out, and the easiest
example I can think of is by using a text editor. In fact, this example is extremely
useful and may just become a part of your daily workflow. To do this exercise, you
can use any command line text editor you prefer, such as vim or nano. On Ubuntu
Server, nano is usually installed by default, so you already have it if you want to go
with that. If you prefer to use vim, feel free to install the vim-nox package:

apt-get install vim-nox

If you want to use vim, you can actually install vim rather
than vim-nox, but I always default to vim-nox since it
features built-in support for scripting languages.

Again, feel free to use whichever text editor you want. Teaching you how to use a
text editor is beyond the scope of this book, so just use whatever you feel comfortable
with. I find that in the Linux community, vim seems to be the standard for most
administrators. However, the nano text editor is much easier to use and should be
your choice if you have no experience with using text editors on the Linux shell. In
the following examples, I'll be using vim. However, if you use nano, just replace vim
with nano every time you see it.

Anyway, to see backgrounding in action, open up your text editor. Feel free to open
a file or just start a blank session. With the text editor open, we can background it at
any time by pressing Ctrl + Z on our keyboard.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[172]

You can only background vim when you are not in Insert Mode,
since it captures Ctrl + Z rather than passing it to the shell.

Did you see what happened? You were immediately taken away from your editor
and were returned to the shell so you can continue to use it. You should have seen
some output similar to the following:

[1]+ Stopped vim

Here, we see the job number of our process, its status, and then the name of the
process. Even though the process of your text editor shows a status of Stopped,
it's still running. You can confirm this by using the following variation of the
ps command:

ps au |grep vim

In my case, I see the vim process running with a PID of 1070:

jay 1070 0.0 0.9 39092 7320 pts/0 T 15:53 0:00 vim

At this point, I can execute additional commands, navigate around my filesystem,
and get additional work done. When I want to bring my text editor back, I can use
the fg command to foreground the process, which will bring it right back. If I have
multiple background processes, the fg command will bring back the one I was
working on most recently.

I gave you an example of the ps command to show that the process was still running
in the background, but there's actually a dedicated command for that purpose, and
that is the jobs command. If you execute the jobs command, you'll see in the output a
list of all the processes running in background. Here's some example output:

[1]- Stopped vim file1.txt

[2]+ Stopped vim file2.txt

The output shows that I have two vim sessions in use, one modifying file1.txt,
and the other modifying file2.txt. If I were to execute the fg command, that's
going to bring up the vim session that's editing file2.txt, since that was the last
one I was working in. That may or may not be the one I want to return to editing,
though. Since I have the job ID on the left, I can bring up a specific background
process by using its ID with the fg command:

fg 1

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[173]

Knowing how to background a process can add quite a bit to your workflow.
For example, let's say, hypothetically, that I'm editing a config file for a server
application, such as Apache. While I'm editing this config file, I need to consult the
documentation (man page), for Apache because I forgot the syntax for something. I
could open a new shell and an SSH session to my server and view the documentation
in another window. This can get very messy if I open up too many shells. Better
yet, I can background the current vim session, read the documentation, and then
foreground the process with the fg command to return to working on it. All from
one SSH session!

To background a process, you don't have to use Ctrl + Z; you can actually
background a process right when you execute it by entering a command with the
ampersand symbol (&) typed at the end. To show how this works, I'll use htop as an
example. Admittedly, this may not necessarily be the most practical example, but it
does work to show you how to start a process and have it backgrounded right away.
We'll get to the htop command later in this chapter, but for now feel free to install
this package and then run it with the ampersand symbol:

apt-get install -y htop

htop &

The first command, as you already know, installs the htop package on our server.
With the second command, I'm opening htop but backgrounding it immediately.
What I'll see when it's backgrounded is its job ID and PID. Now, at any time, I can
bring htop to the foreground with fg. Since I just backgrounded it, fg will bring
htop back since it considers it the most recent. As you know, if it wasn't the most
recent, I could reference its job ID with the fg command to bring it back even if
it wasn't my most recently used job. Go ahead and practice using the ampersand
symbol with a command and then bringing it back to the foreground. In the case of
htop, it can be useful to start it, background it, and then bring it back any time you
need to check the performance of your server.

Keep in mind, though, that when you exit your shell, all your backgrounded
processes will close. If you have unsaved work in your vim sessions, you'll lose what
you were working on. For this reason, if you utilize background processes, you may
want to check to see if you have any pending jobs still running by executing the jobs
command before logging out.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[174]

In addition, you'll probably notice that some applications background cleanly, while
others don't. In the case of using a text editor and htop, those applications stay
quietly running in the background, allowing us to perform other tasks and allowing
us to return to those commands later. However, some applications may still spit out
diagnostic text regularly in your main window, whether they're backgrounded or
not. To get even more control over your bash sessions, you can learn how to use a
multiplexer, such as tmux or screen, to allow these processes to run in their own
session such that they don't interrupt your work. Going over the use of a program
such as tmux is beyond the scope of this book, but it is a useful utility to learn if
you're interested.

Killing misbehaving processes
Regarding the ps command, by this point you know how to display processes
running on your server, as well as how to narrow down the output by string or
resource usage. But what can you actually do with that knowledge? As much as we
hate to admit it, sometimes the processes our server runs fail or misbehave and you
need to restart them. If a process refuses to close normally, you may need to kill that
process. In this section, we introduce the kill and killall commands to serve
that purpose.

The kill command accepts a PID as an option and attempts to close a process
gracefully. In a typical workflow where you need to terminate a process that won't
do so on its own, you will first use the ps command to find the PID of the culprit.
Then, knowing the PID, you can attempt to kill the process. For example, if PID
31258 needed to be killed, you could execute the following:

kill 31258

If all goes well, the process will end. You can restart it or investigate why it failed by
perusing its logs.

To better understand what the kill command does, you first will need to
understand the basics of Linux Signals. Signals are used by both administrators as
and developers and can be sent to a process either by the kernel, another process, or
manually with a command. A signal instructs the process of a request or change, and
in some cases, to completely terminate. An example of such a signal is SIGHUP, which
instructs processes that their controlling terminal has exited. One situation in which
this may occur is when you have a terminal emulator open, with several processes
inside it running. If you close the terminal window (without stopping the processes
you were running), they'll be sent the SIGHUP signal, which basically tells them to
quit (essentially, it means the shell quit or hung up).

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[175]

Other examples include SIGINT (where an application is running in the foreground
and is stopped by pressing Ctrl + C on the keyboard), and SIGTERM, which when
sent to a process asks it to cleanly terminate. Yet another example is SIGKILL, which
forces a process to terminate uncleanly. In addition to a name, each signal is also
represented by a value, such as 15 for SIGTERM and 9 for SIGKILL. Going over each
of the signals is beyond the scope of this chapter (the advanced topics of signals are
mainly only useful for developers), but you can view more information about them
by consulting the man page if you're curious:

man 7 signal

For the purposes of this section, the two types of signal we're most concerned about
are SIGTERM(15) and SIGKILL(9). When we want to stop a process, we would send
one of these signals to it, and the kill command allows us to do just that. By default,
the kill command sends signal 15 (SIGTERM), which tells the process to cleanly
terminate. If successful, the process will free its memory and gracefully close. With
our previous example kill command, we sent signal 15 to the process, since we
didn't clarify which signal to send.

Terminating a process with SIGKILL(9) is considered an extreme last resort.
When you send signal 9 to a process, it's the equivalent of ripping out the carpet
from underneath it or blowing it up with a stick of dynamite. The process will be
force-closed without giving it any time to react at all, so it's one of those things you
should avoid using unless you've literally tried absolutely everything you can think
of. In theory, sending signal 9 can cause corrupted files, memory issues, or other
shenanigans to occur. As for me, I've never actually run into long-term damage to
software from using it, but theoretically it can happen, so you would want to only
use it in extreme cases. One case where such a signal may be necessary is regarding
defunct (zombie) processes in a situation where they don't close on their own. These
processes are basically dead already and are typically waiting on their parent process
to reap them. If the parent process never attempts to do so, they will remain on the
process list. This in and of itself may not really be a big issue, since these processes
aren't technically doing anything. But if their presence is causing problems and you
can't kill them, you could try to send SIGKILL to the process. There should be no
harm in killing a zombie process, but you would want to give them time to be
reaped first.

To send signal 9 to a process, you would use the -9 option of the kill command. It
should go without saying, though: make sure you're executing it against the proper
process ID!

kill -9 31258

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[176]

Just like that, the process will vanish without a trace. Anything it was writing to will
be in limbo, and it will be removed from memory instantly. If, for some reason, the
process still manages to stay running (which is extremely rare), you probably would
need to reboot the server to get rid of it, which is something I've only seen in a few,
very rare cases. If kill -9 doesn't get rid of the process, nothing will.

Another method of killing a process is with the killall command, which is
probably safer than the kill command (if for no other reason than there's a smaller
chance you'll accidentally kill the wrong process). Like kill, killall allows you
to send SIGTERM to a process, but unlike kill, you can do so by name. In addition,
killall doesn't just kill one process, it kills any process it finds with the name
you've given it as an option. To use killall, you would simply execute killall
along with the name of a process:

killall myprocess

Just like the kill command, you can also send signal 9 to the process as well:

killall -9 myprocess

Again, use that only when necessary. In practice, though, you probably won't use
killall -9 very often (if ever), because it's rare for multiple processes under the
same process name to become locked. If you need to send signal 9, stick to the kill
command if you can.

The kill and killall commands can be incredibly useful in the situation of a
"stuck" process, but these are commands you would hope you don't have to use
very often. Stuck processes can occur in situations where applications encounter a
situation from which they can't recover, so if you constantly find yourself needing to
kill processes, you may want to check for an update to the package responsible for
the service or check your server's RAM (which I will show you how to do in Chapter
13, Troubleshooting Ubuntu Servers).

Utilizing htop
When wanting to view the overall performance of your server, nothing beats htop.
Although not typically installed by default, htop is one of those utilities that I
recommend everyone installs, since it's indispensable when wanting to check on the
resource utilization of your server. If you don't already have htop installed, all you
need to do is install the htop package:

apt-get install htop

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[177]

When you run htop at your shell prompt, you will see the htop application in all its
glory. In some cases, it may be beneficial to run htop as root, since doing so does
give you additional options such as being able to kill processes, though this is
not required.

Running htop

At the top of the htop display, you'll see a progress meter for each of your cores (the
server in my screenshot only has one core), as well as a meter for memory and swap.
In addition, the upper portion will also show you your Uptime, Load average, and
the number of Tasks you have running. The lower section of htop's display will
show you a list of processes running on your server, with fields showing you useful
information such as how much memory or CPU is being consumed by each process,
as well as the command being run, the user running it, and its PID. To scroll through
the list of processes, you can press Page Up or Page Down or use your arrow keys.
In addition, htop features mouse support, so you are also able to click on columns
at the top in order to sort the list of processes by that criteria. For example, if you
click on MEM% or CPU%, the process list will be sorted by memory or CPU usage
respectively. The contents of the display will be updated every two seconds.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[178]

The htop utility is also customizable. If you prefer a different color scheme, for
example, you can press F2 to enter Setup mode, navigate to Colors on the left, and
then you can switch your color scheme to one of the six that are provided. Other
options include the ability to add additional meters, add or remove columns, and
more. One tweak I find especially helpful on multi-core servers is the ability to add
an average CPU bar. Normally, htop shows you a meter for each core on your server,
but if you have more than one, you may be interested in the average as well. To do
so, enter Setup mode again (F2), then with Meters highlighted, arrow to the right to
highlight CPU and then press F5 to add it to the left column. There are other meters
you can add as well, such as Load average, Battery, and more.

When you open htop, you will see a list of processes for every user on the system.
When you have a situation where you don't already know which user/process is
causing extreme load, this is ideal. However, a very useful trick (if you want to
watch a specific user) is to press U on your keyboard, which will open up the Show
processes of: menu. On this menu, you can highlight a specific user by highlighting
it with the up or down arrow keys and then pressing Enter to only show processes
for that user. This will greatly narrow down the list of processes.

Another useful view is the Tree view, which allows you to see a list of processes
organized by their parent/child relationship, rather than just a flat list. In practice,
it's common for a process to be spawned by another process. In fact, all processes
in Linux are spawned from at least one other process, and this view shows that
relationship directly. In a situation where you are stopping a process only to have it
immediately respawn, you would need to know what the parent of that process is
in order to stop it from resurrecting itself. Pressing F5 will switch htop to Tree view
mode, and pressing it again will disable the Tree view.

As I've mentioned, htop updates its stats every two seconds by default. Personally, I
find this to be ideal, but if you want to change how fast it refreshes, you can call htop
with the -d option and then apply a different number of seconds (entered in tenths
of seconds) for it to refresh. For example, to run htop but have it update every 7
seconds, start htop with the following command:

htop -d 70

To kill a process with htop, use your up and down arrow keys to highlight the
process you wish to kill and press F9. A new menu will appear, giving you a list
of signals you are able to send to the process with htop. SIGTERM, as we discussed
before, will attempt to gracefully terminate the process. SIGKILL will terminate
it uncleanly. Once you highlight the signal you wish to send, you can send it by
pressing Enter or cancel the process with Esc.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[179]

As you can see, htop can be incredibly useful, and has (for the most part) replaced
the legacy top command that was popular in the past. The top command is
available by default in Ubuntu Server and is worth a look, if only as a comparison
to htop. Like htop, the top command gives you a list of processes running on your
server, as well as their resource usage. There are no pretty meters and there is less
customization possible, but the top command serves the same purpose. In most
cases, though, htop is probably your best bet going forward.

Managing system processes
System processes, also known as daemons, are programs that run in the background
on your server, and are typically started automatically when it boots. We don't
usually manage these services directly as they run in the background to perform
their duty, with or without needing our output. For example, if our server is a
DHCP server and runs the isc-dhcp-server process, this process will run in the
background, listening for DHCP requests and providing new IP assignments to
them as they come in. Most of the time, when we install an application that runs as a
service, Ubuntu will configure it to start when we boot our server, so we don't have
to start it ourselves. Assuming the service doesn't run into an issue, it will happily
continue performing its job forever until we tell it to stop. In Linux, services are
managed by the init system, also referred to as PID 1 since the init system of a Linux
system always receives that PID.

Recently, the way in which processes are managed in Ubuntu Server has changed
considerably. As of Ubuntu 15.04, Ubuntu has switched to systemd for its init
system, which was previously Upstart until just recently. Ubuntu 16.04 is the first
LTS release of Ubuntu with systemd, so if you generally stick to LTS releases,
Ubuntu 16.04 may be your first exposure to it. The previous LTS release (Ubuntu
14.04) used Upstart, so depending on whether or not you've used Ubuntu since 15.04,
that may be what you're accustomed to. Even though Ubuntu 16.04 uses systemd,
and that is the preferred init system going forward, Ubuntu 14.04 is still supported
at the time of writing, and it's very possible that you may have a mix of both as the
older systems age out. For that reason, I'll go over both init systems in this section.

First, let's take a look at the way in which you manage services with systemd. With
systemd, services are known as Units, though, for all intents and purposes, the terms
mean the same thing. The systemd suite features the systemctl command, which
allows you to start, stop, and view the status of processes on your server. To help
illustrate this, I'll use Open SSH as an example, though you'll use the same command
if you're managing other services, as all you would need to do is change the
service name.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[180]

The systemctl command, with no options or parameters, assumes the list-units
option, which dumps a list of units to your shell. This can be a bit messy, though,
so if you already know the name of a unit you'd like to search for, you can pipe the
output into grep and search for a string. This is handy in a situation where you may
not know the exact name of the unit, but you know part of it:

systemctl |grep ssh

If you want to check a service, the best way is to actually use the status keyword,
which will show you some very useful information regarding the unit. This
information includes whether or not the unit is running, if it's enabled (meaning it's
configured to start at boot time), as well as the most recent log entries for the unit:

systemctl status ssh

Running htop

In my screenshot, you can see that I used sudo in order to run the systemctl
status ssh command, but I didn't have to. You can actually check the status of most
units without needing root access, but you may not see all the information available.
If I were to have checked the status of the ssh unit without using root or sudo, I
wouldn't have seen the log entries, since only root has access to view them. Another
thing you may notice in the screenshot is that the name of the ssh unit is actually
ssh.service, but you don't need to include the .service part of the name, since
that is implied by default. Sometimes, while viewing the status of a process with
systemctl, the output may be condensed to save space on the screen. To avoid this
and see the full log entries, add the -l option:

systemctl status -l ssh

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[181]

Another thing to pay attention to is the vendor preset of the unit. As I've
mentioned before, most packages in Ubuntu that include a service will enable it
automatically, but other distributions which feature systemd may not. In the case
of the ssh example, you can see that the vendor preset is set to enabled. This
means that once you install openssh-server, the unit will automatically be enabled.
You can confirm this by checking the Active line (where the example output says
active (running)), which tells us that the unit is running. The Loaded line clarifies
that the Unit is enabled, so we know that the next time we start the server, ssh
will be loaded automatically. A unit automatically becoming enabled and starting
automatically may vary in packages that are configured differently, so make sure
you check this output whenever you install a new application.

Starting and stopping a unit is just as easy; all you have to do is change the keyword
you use with systemctl to start or stop in order to have the desired effect:

systemctl stop ssh

systemctl start ssh

There are additional keywords, such as restart (which takes care of the previous
two command examples at the same time), and some units even feature reload,
which allows you to activate new configuration settings without needing to bring
down the entire application. An example of why this is useful is with Apache, which
serves web pages to local or external users. If you stop Apache, all users will be
disconnected from the website you're serving. If you add a new site, you can use
reload rather than restart, which will activate any new web pages you've added to
the configuration without disturbing the existing ones. Not all units feature a reload
option, so you should check the documentation of the application that provides the
unit to be sure.

If a unit is not currently enabled, you can enable it with the enable keyword:

systemctl enable ssh

It's just as easy to disable a unit as well:

systemctl disable ssh

The systemd suite includes other commands as well, such as journalctl. The
reason I refer to systemd as a suite (and not just as an init system) is because it
handles more than just starting and stopping processes, with more features being
added every year. The journalctl command allows us to view logfiles, but I'll
wait until Chapter 13, Troubleshooting Ubuntu Servers, which is where I'll give you an
introduction on how that works. For the purposes of this chapter, however, if you
understand how to start, stop, enable, disable, and check the status of a Unit, you're
good to go for now.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[182]

If you have a server with an older version of Ubuntu Server installed, commands
from the systemd suite will not work, as systemd is still relatively new. Older
versions of Ubuntu use Upstart, which we will take a look at now.

Managing running services with Upstart is done with the service command.
To check the status of a process with Upstart, we can do the following:

service ssh status

In my case, I get the following output:

ssh start/running, process 907

As you can see, we don't get as much output as we do with systemctl on systemd
systems, but it at least tells us that the process is running and provides us with its
PID. Stopping the process and starting it again gives us similar (limited) output:

service ssh stop
ssh stop/waiting
service ssh start
ssh start/running, process 1304

While the Upstart method of managing services may not give us as verbose
information as systemd, it's fairly straightforward. We can start, stop, restart,
reload, and check the status of a service of a given name. For the purposes of
managing processes, that's pretty much it when it comes to Upstart.

If you're curious, Upstart stores the configuration for its
services in the /etc/init/ directory, with each service having
its own file with a .config extension. Feel free to open one of
these files to see how Upstart services are configured.

Some services are started using init scripts stored in /etc/init.d, rather than
with Upstart or systemd commands. The /etc/init.d directory is used primarily
with another init system, sysvinit, which is very old now by today's standards.
However, some distributions that are still supported feature this even older init
system, such as Debian 7 and Gentoo to name but two. In the early days, Ubuntu
used sysvinit as well, before eventually replacing it with Upstart, so some of these
init scripts remain, while some applications that have yet to be updated for newer
init systems still use them. In most cases, Upstart and systemd can still manage
these processes, but will call their init scripts in /etc/init.d if there is no built-in
Upstart or systemd service file. Even if there is, you are still able to utilize this older
method even on newer systems, but there's no telling how long this compatibility
layer will remain. At the time of writing, though, the legacy init scripts are still
well supported.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[183]

The older methods of starting, stopping, restarting, reloading, and checking the
status of services with the older sysvinit style is performed with the following
commands respectively (again, using ssh as an example):

/etc/init.d/ssh start

/etc/init.d/ssh stop

/etc/init.d/ssh restart

/etc/init.d/ssh reload

/etc/init.d/ssh status

At this point, with multiple init systems, it may be confusing as to which methods
you should be using. But it breaks down simply. If you're using a version of Ubuntu
that's 15.04 or newer, go with the systemd examples, since that is the new init system
in use nowadays. If your server is using an Ubuntu version older than 15.04, use
the upstart commands. In either case, if the normal commands don't work for a
particular service, try the older sysvinit commands. 99.9% of the time, though, the
init system that your version of Ubuntu Server ships with will work since just about
any application worth using has been ported over.

The systemd init system actually has additional features that its predecessors didn't
have. For example, you can enable a service to start as a particular user, rather than
system-wide. To do so, the application has to support being started as a user, which
would allow you to enable it with a command similar to the following:

systemctl enable myservice@myuser

In the hypothetical example I just provided, I'm enabling a Unit called myservice for
user myuser. A real-life example of why enabling a service to run as a user is useful
is syncthing. Although an in-depth walk-through of syncthing is beyond the scope
of this book, it makes a great example since it supports being enabled system-wide
as well as per user. This is a great thing, since syncthing is a file synchronization
application, and each user on a system will have different files to sync, so each user
can have his or her own configuration that won't affect other users. As usual, check
the documentation that comes with the application you want to install to see what it
supports as far as how to enable it.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[184]

Monitoring memory usage
Understanding how Linux manages memory can actually be a somewhat complex
topic, as understanding how much memory is truly free can be a small hurdle for
newcomers to overcome. There's even a website dedicated to the topic of Linux
RAM usage, which features a rather hilarious leading graphic: http://www.
linuxatemyram.com/.

The front page of the linuxatemyram.com website

You'll soon see that how Linux manages memory on your server is actually fairly
straight forward. For the purpose of monitoring memory usage on our server, we
have the free command at our disposal, which we can use to see how much memory
is being consumed at any given time. My favorite variation of this command is free
-m, which shows the amount of memory in use in terms of megabytes. You can
also use free -g to show the output in terms of gigabytes, but the output won't be
precise enough on most servers. Giving the free command no option will result in
the output being shown in terms of kilobytes:

Output of the free -m command on an Ubuntu 16.04 server

To follow along, refer to the previous graphic, and I will explain how to interpret the
results of the free command.

www.hellodigi.ir

http://www.linuxatemyram.com/
http://www.linuxatemyram.com/
http://technet24.ir
http://technet24.ir

Chapter 6

[185]

At first glance, it may appear as though this server is in trouble, with only 11 MB
free. You'll see this in the first row, third column under free. In actuality, the number
you'll really want to pay attention to is the number under available, which is 672
MB in this case. That's now much memory is actually free. Since this server has 740
MB of total RAM available (you'll see this on the first row, under total), this means
that most of the RAM is free, and this server is not really working that hard at all.

Some additional explanation is necessary to truly understand these numbers.
You could very well stop reading this section right now as long as you take away
from it that the available column represents how much memory is free for your
applications to use. However, it's not quite that simple. Technically, when you look
at the output, the server really does have 11 MB free. The amount of memory listed
under available is legitimately being used by the system in the form of a cache, but
would be freed up in the event that any application needed to use it. If an application
starts and needs a decent chunk of memory in order to run, the kernel will provide it
some memory from this cache if it needed it.

Linux, like most modern systems, subscribes to the belief that "unused RAM is
wasted RAM." RAM that isn't being used by any process is given to what is known
as a Disk Cache, which is utilized to make your server run more efficiently. When
data needs to be written to a storage device, it's not directly written right away.
Instead, this data is written to the disk cache (a portion of RAM that's set aside), and
then synchronized to the storage device later in the background. The reason this
makes your server more efficient is that this data being stored in RAM would be
written to and retrieved faster than it would be from disk. Applications and services
can synchronize data to the disk in the background without forcing you to wait for it.
This cache also works for reading data, as when you first open a file, its contents are
cached. The system will then retrieve it from RAM if you read the same file again,
which would be more efficient. If you just recently saved a new file and retrieve it
right away, it's likely still in the cache and then retrieved from there, rather than
from the disk directly.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[186]

To understand all of these columns, I'll outline the meaning of each in the
following table:

Column Meaning
total The total amount of RAM installed on the server.
used Memory that is used (from any source). This is calculated as follows:

total - free - buffers - cache.
free Memory not being used by anything, cache or otherwise.
shared Memory used by tmpfs.
buff/cache The amount of memory being used by the buffers and cache.
available Memory that is free for applications to use.

Those of you that have been using Linux for a while may notice that the way in
which memory is shown has changed in Ubuntu 16.04. In the past, there used to
be three rows of information in the output from the free command, rather than
two, with the second being dedicated to showing you the buffers and cached.
In the new style of output, the free command doesn't even show the buffers and
cache split into separate values, but rather shows the two combined. The following
screenshot shows an example of the older style of output from the free command.
Quite a few distributions from 2015 onwards will feature the new format:

Output of the free -m command on an older server

With the older style, to determine how much memory is free, there is no available
field as there is with the new output, so you use the second column of the second
row as the amount of free memory, which is 410 MB in the screenshot. Other than
the difference in the number of rows and the way the numbers are presented, the rest
of the information is fairly the same.

In either case, the last row shows us how much swap is available and being used, and
shows the information in the same way regardless of how old or new your server is
and what version of the free command is installed. The first value of the final line
shows us how much swap is available, the middle shows how much is being used,
and the last shows us how much is free. As you probably already know, the lower
the amount of swap being used, the better. However, Linux servers will almost
always use a small portion of swap, even when free memory isn't really a problem.
In the previous screenshot, the server is using 3 MB of swap, which isn't a big deal.
If it was using a significant portion of swap, that would be a real problem which we
would need to investigate.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[187]

How frequently a Linux server utilizes swap is referred to as its swappiness. By
default, the swappiness value on a Linux server is typically set to 60. You can verify
this with the following command:

cat /proc/sys/vm/swappiness

The higher the swappiness value, the more likely your server will utilize swap. If
the swappiness value is set to 100, your server will use swap as much as possible.
If you set it to 0, swap will never be used at all. This value correlates roughly to the
percentage of RAM being used. For example, if you set swappiness to 20, swap will
be used when RAM becomes (roughly) 80 percent full. If you set it to 50, swap will
start being used when half your RAM is being used, and so on.

To change this value on the fly, you can execute the following command:

sysctl vm.swappiness=30

This method doesn't set swappiness permanently, however. When you execute that
command, swappiness will immediately be set to the new value and your server
will act accordingly. Once you reboot, though, the swappiness value will revert back
to the default. To make the change permanent, open the following file with your
text editor:

/etc/sysctl.conf

A line in that file corresponding to swappiness will typically not be included by
default, but you can add it manually. To do so, add a line such as the following to the
end of the file and save it:

vm.swappiness = 30

Changing this value is one of many techniques within the realm of performance
tuning. While the default value of 60 is probably fine for most, there may be a
situation where you're running a performance-minded application and can't afford
to have it swap any more than it absolutely has to. In such a situation, you would
try different values for swappiness and use whichever one works best during your
performance tests.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[188]

Scheduling tasks with Cron
Earlier in this chapter, we worked through starting processes and enabling them
to run all the time and as soon as the server boots. In some cases, you may need
an application to perform a job at a specific time, rather than always be running in
the background. This is where Cron comes in. With Cron, you can set a process,
program, or script to run at a specific time—down to the minute. Each user is able to
have his or her own set of Cron jobs (known as a crontab), which can perform any
function that a user would be able to do normally. The root user has a crontab as
well, which allows system-wide administrative tasks to be performed. Each crontab
includes a list of Cron jobs (one per line), which we'll get into shortly. To view a
crontab for a user, we can use the crontab command:

crontab -l

With no options, the crontab command will show you a list of jobs for the user that
executed the command. If you execute it as root, you'll see root's crontab. If you
execute it as user jdoe, you'll see the crontab for jdoe, and so on. If you want to
view a crontab for a user other than yourself, you can use the -u option and specify
a user, but you'll need to execute it as root or with sudo to view the crontab of
other users:

crontab -u jdoe -l

By default, no user has a crontab until you create one or more jobs. Therefore, you'll
probably see output such as the following when you check the crontabs for your
current users:

no crontab for jdoe

To create a Cron job, first log in as the user account you want the task to run under.
Then, issue the following command:

crontab -e

If you have more than one text editor on your system, you may see output similar to
the following:

Text editor selection while editing a crontab

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[189]

In this case, you'll simply press the number corresponding to the text editor you'd
like to use when creating your Cron job. To choose an editor and edit your crontab
with a single command; the following will work:

EDITOR=vim crontab -e

With that example, you can replace vim with whatever text editor you prefer. At this
point, you should be placed in a text editor with your crontab file open. The default
crontab file for each user features some helpful comments that give you some useful
information regarding how Cron works. To add a new job, you would scroll to the
bottom of the file (after all the comments), and insert a new line. Formatting is very
particular here, and the example comments in the file give you some clue as to how
each line is laid out. Specifically, this part:

m h dom mon dow command

Each Cron job has six fields, each separated by at least one space or tab spaces. If
you use more than one space, or tab, Cron is smart enough to parse the file properly.
In the first field, we have the minute in which we would like the job to occur. In the
second field, we place the hour in the 24 hour format, from 0—23. The third field
represents the day of the month. For this field, you can place a 5 (5th of the month),
23 (23rd of the month), and so on. The fourth field corresponds to the month, such as
3 for March or 12 for December. The fifth field is the day of the week, numbered from
0—6 to represent Sunday through Saturday. Finally, in the last field, we have the
command to be executed. A few example crontab lines are as follows:

3 0 * * 4 /usr/local/bin/cleanup.sh

* 0 * * * /usr/bin/apt-get update

0 1 1 * * /usr/local/bin/run_report.sh

With the first example, the cleanup.sh script, located in /usr/local/bin, will be
run at 12:03 am every Friday. We know this because the minute column is set to 3,
the hour column is set to 0, the day column is 4 (Friday), and the command column
shows a fully qualified command of /usr/local/bin/cleanup.sh.

A command being fully qualified is important with Cron. For example, in the second
example, we could have simply typed apt-get update for the command and that
would probably work just fine. However, not including the full path to the program
is considered bad Cron etiquette. While the command would probably execute just
fine, it depends on the application being found in the PATH of the user that's calling
it. Not all servers are set up the same, so this might not work depending on how the
shell is set up. If you include the full path, the job should run regardless of how the
underlying shell is configured.

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[190]

Continuing with the second example, we're running /usr/bin/apt-get update to
update our server's repository index every morning at midnight. The asterisks on
each line refer to "any," so with the minute column being simply *, that means that
this task is eligible for any minute. Basically, the only field we clarified was the hour
field, which we set to 0 in order to represent 12:00 am.

With the third example, we're running the /usr/local/bin/run_report.sh script
on the first day of every month at 1:00 am. If you notice, we set the third column (day
of month) to 1, which is the same as February 1st, March 1st, and so on. This job will
be run if it's the first day of the month, but only if the current time is also 1:00 am,
since we filled in the first and second column, which represent the minute and
hour respectively.

Once you finish editing a user's crontab and save it, Cron is updated and from that
point forward will execute the task at the time you selected. The crontab will be
executed according to the current time and date on your server, so you would want
to make sure that that is correct as well, otherwise you'll have your jobs execute at
unexpected times. You can view the current date and time on your server by simply
issuing the date command.

To get the hang of creating jobs with Cron, the best way (as always) is to practice.
The second example Cron job is probably a good one to experiment with, as
updating your repository index isn't going to hurt anything.

Understanding load average
Before we close this chapter, a very important topic to understand when monitoring
processes and performance is Load Average, which is a series of numbers that
represents your server's trend in CPU utilization over a given time. You've probably
already seen these series of numbers before, as there are several places in which
the load average appears. If you run the htop or top command, the load average is
shown within the output of each. In addition, if you execute the uptime command,
you can see the load average in the output of that command as well. You can also
view your load average by viewing the text file that stores it in the first place:

cat /proc/loadavg

The load average is broken down into three sections, each representing one minute,
five minutes, and fifteen minutes respectively. A typical load average may look
something like the following:

0.36, 0.29, 0.31

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[191]

In this example, we have a load average of 0.36 in the one minute section, 0.29 in
the five minute section, and 0.31 in the fifteen minute section. In particular, each
number represents how many tasks were waiting on attention from the CPU for
that given time period. Therefore, these numbers are really good. The server isn't
that busy, since virtually no task is waiting on the CPU at any one moment. This is
contrary to something such as overall CPU percentages, which you may have seen
in task managers of other platforms. While viewing your CPU usage percentage can
be useful, the problem with this is that your CPUs will constantly go from a high
percent of usage to a low percent of usage, which you can see for yourself by just
running htop for a while. When a task does some sort of processing, you might see
your cores shoot up to 100 percent and then right back down to a lower number.
That really doesn't tell you much, though. With load averages, you're seeing the
trend of usage over three given time frames, which is more accurate in determining
if your server's CPUs are running efficiently or are choking on a workload they just
can't handle.

The main question, though, is when you should be worried, which really depends
on what kinds of CPU are installed in your server. Your server will have one or more
processors, each with one or more cores. To Linux, each of these cores, whether they
are physical or virtual, are the same thing (a CPU). In my case, the machine I took
the earlier output from has a CPU with four cores. The more CPUs your server has,
the more tasks it's able to handle at any given time and the more flexibility you have
with the load average.

When a load average for a particular time period is equal to the number of CPUs on
the system, that means your server is at capacity. It's handling a consistent number
of tasks that are equal to the number of tasks it can handle. If your load average is
consistently more than the number of cores you have available, that's when you'd
probably want to look into the situation. It's fine for your server to be at capacity
every now and then, but if it always is, that's a cause for alarm.

I'd hate to use a cliché example in order to fully illustrate this concept, but I can't
resist, so here goes. A load average on a Linux server is equivalent to the check-
out area at a supermarket. A supermarket will have several registers open, where
customers can pay to finalize their purchases and move along. Each cashier is only
able to handle one customer at a time. If there are more customers waiting to check
out then there are cashiers, the lines will start to back up and customers will get
frustrated. In a situation where there are four cashiers and four customers being
helped at a time, the cashiers would be at capacity, which is not really a big deal
since no one is waiting. What can add to this problem is a customer that is paying by
check and/or using a few dozen coupons, which makes the check-out process much
longer (similar to a resource-intensive process).

www.hellodigi.ir

http://technet24.ir

Controlling and Monitoring Processes

[192]

Just like the cashiers, a CPU can only handle one task at a time, with some tasks
hogging the CPU longer than others. If there are exactly as many tasks as there are
CPUs, there's no cause for concern. But if the lines start to back up, we may want to
investigate what is taking so long. To take action, we may hire an additional cashier
(add a new CPU) or ask a disgruntled customer to leave (kill a process).

Let's take a look at another example load average:

1.87, 1.53, 1.22

In this situation, we shouldn't be concerned, because this server has four CPUs,
and none of them have been at capacity within the one, five, or fifteen minute
time periods. Even though the load is consistently higher than 1, we have CPU
resources to spare, so it's no big deal. Going back to our supermarket example, this
is equivalent to having four cashiers with an average of almost two customers being
assisted during any one minute. If this server only had one CPU, we would probably
want to figure out what's causing the line to begin to back up.

It's normal for a server to always have a workload (so long as it's lower than the
number of CPUs available), since that just means that our server is being utilized,
which is the whole point of having a server to begin with (servers exist to do work).
While typically, the lower the load average the better, depending on the context,
it might actually be a cause for alarm if the load is too low. If your server's load
average drops to an average of zero-something, that might mean that a service that
would normally be running all the time has failed and exited. For example, if you
have a database server that constantly has a load within the 1.x range that suddenly
drops to 0.x, that might mean that you either have legitimately less traffic or
the database server service is no longer running. This is why it's always a good
idea to develop baselines for your server, in order to gauge what is normal and
what isn't.

Overall, load averages are something you'll become very familiar with as a Linux
administrator if you haven't already. As a snapshot in time of how heavily utilized
your server is, it will help you to understand when your server is running efficiently
and when it's having trouble. If a server is having trouble keeping up with the
workload you've given it, it may be time to consider increasing the number of cores
(if you can) or scaling out the workload to additional servers. When troubleshooting
utilization, planning for upgrades, or designing a cluster, the process always starts
with understanding your server's load average so you can plan your infrastructure to
run efficiently for its designated purpose.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 6

[193]

Summary
In this chapter, we learned how to manage processes and monitor our server's
resource usage. We began with a look at the ps command, which we can use to view
a list of processes that are currently running. We also took a look at managing jobs,
as well as killing processes that for one reason or another are misbehaving. We took
a look at htop, which is a very handy utility for viewing an overview of our resource
utilization. In addition, we learned how to monitor memory usage, schedule jobs
with Cron, and gained an understanding of load average.

In Chapter 7, Managing Your Ubuntu Server Network, we'll dive back into networking,
where we'll learn how to set up our own DHCP and DNS servers for our network,
and more. See you there!

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[195]

Managing Your Ubuntu
Server Network

In Chapter 4, Connecting to Networks, we discussed connecting networks. We saw
how to set the hostname, manage network interfaces, configure connections, use
Network Manager, and more. In this chapter, we'll revisit networking, specifically
to set up the resources that will serve as the foundation of our network. The majority
of this chapter will focus on setting up the DHCP and DNS servers, which are very
important components of any network. In addition, we'll also set up a Network
Time Protocol (NTP) server to keep our clocks synchronized. We'll even take a look
at setting up a server to act as an Internet gateway for the rest of our network.

Along the way, we'll cover the following topics:

•	 Planning your IP address scheme
•	 Serving IP addresses with isc-dhcp-server
•	 Creating a secondary DNS server
•	 Setting up an Internet gateway
•	 Keeping your system clock in sync with NTP

Planning your IP address scheme
The first step in rolling out any solution is to plan it properly. Planning out your
network layout is one of the most important decisions you'll ever make in your
organization. Even if as an administrator you're not responsible for the layout and
just go along with what your network administrator provides, understanding this
layout and being able to deploy your solutions to fit within it is also very important.

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[196]

Planning an IP address scheme involves predicting how many devices will need to
connect to your network and being able to support them. In addition, a good plan
will account for potential growth and allow expansion as well. The main thing that
factors into this is the size of your user base. Perhaps you're a small office with only
a handful of people, or a large corporation with thousands of users and hundreds of
virtual machines. Even if you're only a small office, there's always room for growth if
your organization is doing well, which is another thing to take into consideration.

Typically, most off-the-shelf routers and network equipment come with an
integrated Dynamic Host Control Protocol (DHCP) server, with a default Class C
(/24) network. Essentially, this means that if you do not perform any configuration
at all, you're limited to 254 addresses. For a small office, this may seem like plenty.
After all, if you don't even have 254 users on your network, you may think that
you're all set. As I mentioned before, potential growth is always something to keep in
mind. But even if we remove that from the equation, IP addresses are used up quite
quickly nowadays—even when it comes to internal addressing. An average user may
consume three IP addresses each, and sometimes more. For example, perhaps a user
not only has a laptop (which itself can have both a wired and wireless interface, both
consuming an IP), but perhaps they also have a mobile phone (which likely features
Wi-Fi), and a Voice over IP (VoIP) phone (there goes another address). If that user
somehow managed to convince their supervisor that they also need a desktop
computer as well as their laptop, there will be a total of five IP addresses for
that one user. Suddenly, 254 addresses doesn't seem like all that many.

The obvious answer to this problem is splitting up your network into subnets.
Although I won't go into the details of how to subnet your network (this book is
primarily about servers and not a course on network administration), I mentioned
it here because it's definitely something you should take into consideration. In
the next section, I'll explain how to set up your own DHCP server with a single
network. However, if you need to expand your address space, you can easily do so
by updating your DHCP configuration. When coming up with an IP address layout,
always assume the worst and plan ahead. While it may be a cinch to expand your
DHCP server, planning a new IP scheme roll-out is very time consuming, and to be
honest, annoying.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[197]

When I set up a new network, I like to divide the address space into several
categories. First, I'll usually set aside a group of IP addresses specifically for DHCP.
These addresses will get assigned to clients as they connect, and I'll usually have
them expire and need to be renewed in about 1 day. Then, I'll set aside a block of IP
addresses for network appliances, another block for servers, and so on. In the case of
a typical 24-bit network, I might decide on a scheme like the following (assuming it's
a small office with no growth planned):

Network: 192.168.1.0/24
Network equipment: 192.168.1.1 – 192.168.1.10
Servers: 192.168.1.11 – 192.168.1.99
DHCP: 192.168.1.100 – 192.168.1.240
Reservations: 192.168.1.241 – 192.168.1.254

Of course, no IP address scheme is right for everyone. The one I provided is simply a
hypothetical example, so you shouldn't copy mine and use it on your network unless
it matches your needs. I'll use this scheme for the remainder of this chapter, since it
works fine as an example. To explain my sample roll-out, we start off with a 24-bit
network, 192.168.1.0. If you're accustomed to the classful model, this is the same as
a Class C network. The address 192.168.1.0 refers to the network itself, and that IP
is not assignable to clients. In fact, the last IP address in this block (192.168.1.255)
is not assignable either, since that is known as the Broadcast Address. Anything
that's sent to the broadcast address is effectively sent to every IP in the block, so we
can't really use it for anything but broadcasts.

Next, I set aside a group of IP addresses starting with 192.168.1.1 through
192.168.1.10 for use by network appliances. Typical devices that would fit into
this category would be managed switches, routers, wireless access points, and so
on. These devices typically have an integrated web console for remote management,
so it would be best to have a static IP address assignment. That way, I'll have an IP
address available which I can use to access these devices. I like to set these up as the
first devices so that they all get the lowest numbers when it comes to the last number
(octet) of each IP. This is just personal preference.

Next, we have a block of IP addresses for servers, 192.168.1.11 through
192.168.1.99. This may seem like quite a few addresses for servers, and it is.
However, with the rise of virtualization and how simple it has become to spin up a
server, this block could get used up faster than you think. It's up to you whether
or not you need 88 addresses here, as I put in my example layout, so feel free to
adjust accordingly.

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[198]

Now we have our DHCP pool, which consists of addresses 192.168.1.101 through
192.168.1.240. These IP addresses are assignable to any devices that connect to
our network. As I mentioned, I typically have these assignments expire in 1 day to
prevent one-off devices from claiming and holding onto an IP address for too long,
which can lead to devices fighting over a DHCP lease. In this situation, you'd have
to clear your DHCP leases to reset everything, and I find that to be too much of a
hassle. When we get to the section on setting up a DHCP server, I'll show you how to
set the expiration time.

Finally, we have addresses 192.168.1.241 through 192.168.1.254 for the
purposes of DHCP reservations. I call these "static leases", but both terms mean the
same thing. These addresses will be assigned by DHCP, but each device with a static
lease will be given the same IP address each time. You don't have to separate these
into their own pool, since DHCP will not assign the same address twice. It may be
a good idea to separate them, if only to be able to tell from looking at an IP address
that it's a static lease, due to it being within a particular block. Static leases are good
for devices that aren't necessarily a server, but still need a predictable IP address.
An example of this may be an administrator's desktop PC. Perhaps they want to be
able to connect to the office via VPN, and be able to easily find their computer on the
network and connect to it. If the IP was dynamically assigned instead of statically
assigned, it would be harder for them to find it.

After you carve up your IP addresses, the next thing is creating a spreadsheet to
keep track of your static IP assignments. It doesn't have to be anything fancy, but it
will certainly help you later. Ideally, your IP layout and the devices that populate
it would be best placed within an internal wiki or knowledge-base solution that
you may already be using. But if you don't have anything like that set up yet, a
spreadsheet can serve a similar purpose. In my example IP spreadsheet, I include
a designation of (R) if the IP address is a reservation or (S) if the IP address is a
manually assigned static address. I also include the Mac address of each device,
which will come in handy when we set up our DHCP server in the next section:

An example IP address layout spreadsheet

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[199]

Although subnetting is beyond the scope of this book, it's definitely something
you should look into if you're not already familiar with it. As you can see from my
example layout, our number of available addresses is rather limited with a 24-bit
network. However, this layout will serve as an example we can follow that's good
enough for the remainder of the chapter.

Serving IP addresses with
isc-dhcp-server
While most network appliances you purchase nowadays often come with their
own DHCP server, rolling your own gives you ultimate flexibility. Some of these
built-in DHCP servers are full-featured and come with everything you need, while
others may contain just enough features for it to function, but nothing truly exciting.
Ubuntu servers make great DHCP servers, and rolling your own server is actually
very easy to do.

First, the server that serves DHCP will need a static IP address. This means you'll
need to configure the /etc/network/interfaces file with a manual IP assignment,
with an IP address that no other device is using.

If you have yet to set a static IP, Chapter 4, Connecting to Networks, has a
section that will walk you through the process.

Once you assign a static IP address, the next step is to install the isc-dhcp-server
package:

apt-get install isc-dhcp-server

Depending on your configuration, the isc-dhcp-server service may have started
automatically, or your server may have attempted to start it and failed to do so with
an error. You can check the status of the daemon with the following command:

systemctl status isc-dhcp-server

The output will either show that the service failed or is running. If the service failed
to start, that's perfectly fine—we haven't even configured it yet. If it's running, then
you need to stop it for now, since it's not a good idea to leave an unconfigured DHCP
server running on your network. It might conflict with your existing one:

systemctl stop isc-dhcp-server

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[200]

On older servers (before systemd was introduced), we can stop the service with the
following command instead:

/etc/init.d/isc-dhcp-server stop

Now that you've installed the isc-dhcp-server package, you'll have a default
configuration file for it at /etc/dhcp/dhcpd.conf. This file will contain some default
configuration, with some example settings that are commented out. Feel free to take
a look at this file to get an idea of some of the settings you can configure. We'll create
our own dhcpd.conf file from scratch. So when you're done looking at it, copy the
existing file to a new name:

mv /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.conf.orig

Now, we're ready to create our own dhcpd.conf file. Open /etc/dhcp/dhcpd.conf
in your preferred text editor. Since the file no longer exists (we moved it), we should
start with an empty file. Here's an example dhcpd.conf file that I will explain so that
you understand how it works:

default-lease-time 86400;
max-lease-time 86400;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name "local.lan";
authoritative;
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
}

As always, change the values I've used with those that match your network. I'll
explain each line so that you'll understand how it affects the configuration of your
DHCP server.

default-lease-time 43200;

When a device connects to your network and requests an IP address, the expiration
of the lease will be set to the number of seconds in default-lease-time if the
device doesn't explicitly ask for a longer lease time. Here, I'm setting that to 43200
seconds, which is equivalent to half a day. This basically means that the device
will need to renew its IP address every 43200 seconds, unless it asks for a
longer duration.

max-lease-time 86400;

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[201]

While the previous setting dictated the default lease time for devices that don't ask
for a specific lease time, the max-lease-time is the most that the device is allowed
to have. In this case, I set this to one day (86400 seconds). Therefore, no device that
receives an IP address from this DHCP server is allowed to hold onto their lease for
longer than this without first renewing it.

option subnet-mask 255.255.255.0;

With this setting, we're informing clients that their subnet mask should be set to
255.255.255.0, which is for a default 24-bit network. If you plan to subnet your
network, you'll put in a different value here. 255.255.255.0 is fine if all you need is
a 24-bit network.

option broadcast-address 192.168.1.255;

With this setting, we're informing the client to use 192.168.1.255 as the broadcast
address, which is typically the last address in the subnet and cannot be assigned
to a host.

option domain-name "local.lan";

Here, we're setting the domain name of all hosts that connect to the server to include
local.lan. Feel free to change this to the domain name of your organization, or you
can leave it as is if you don't have one.

authoritative;

With the authoritative; setting (the opposite is non authoritative;), we're
declaring our DHCP server as authoritative to our network. Unless you are
planning to have multiple DHCP servers for multiple networks (which is rare),
the authoritative; option should be included in your config file.

Now, we get to the most important part of our configuration file for DHCP. The
following block details the specific information that will be provided to clients:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
}

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[202]

This block is probably self-explanatory, but we're basically declaring our pool
of addresses for the 192.168.1.0 network. We're declaring a range of IPs from
192.168.1.100 through 192.168.1.240 to be available from clients. Now when
our DHCP server provides an address to clients, it will choose one from this
pool. We're also providing a default gateway (option routers) and DNS server of
192.168.1.1. This is assuming that your router and local DNS server are both listed
at that address, so make sure that you change it accordingly. Otherwise, anyone who
receives a DHCP lease from your server will not be able to connect to anything. For
the address pool (range), feel free to expand it or shrink it accordingly. For example,
you might need more addresses than the 140 that are allowed in my sample range,
so you may change it to something like 192.168.1.50 through 192.168.1.250. Feel
free to experiment.

If you have more than one network interface on your server, you'll want to designate
one interface as the one that isc-dhcp-server should listen on for DHCP requests.
You can do that by editing the /etc/default/isc-dhcp-server file, where you'll
see a line toward the bottom similar to the following:

INTERFACES=""

If you only have one interface on your server, you don't need to do anything to this
file or to that line (despite what several articles online may tell you). If you do have
more than one, you can simply type the name of the interface within the quotes,
that way your DHCP server won't get confused as to which interface it should be
listening on:

INTERFACES="enp0s3"

In case you forgot, the command to list the details of the interfaces on your server is
ip addr, or the shortened version, ip a.

Now that we have our DHCP server configured, we should be able to start it:

systemctl start isc-dhcp-server

On older Ubuntu servers with upstart rather than systemd, we can use the
following command to start it instead:

/etc/init.disc-dhcp-server start

Next, double-check that there were no errors:

systemctl status isc-dhcp-server

On older servers, the following should give us the status:

/etc/init.d/isc-dhcp-server status

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[203]

Assuming all went well, your DHCP server should be running. When an IP lease is
assigned to a client, it will be recorded in /var/lib/dhcp/dhcpd.leases file. While
your DHCP server runs, it will also record information to your server's system log,
located at /var/log/syslog. To see your DHCP server function in all its glory, you
can follow the log as it gets written to with the following:

tail -f /var/log/syslog

The -f flag of the tail command is indispensable, and it is something you'll likely
use quite often as a server administrator. With the -f option, you'll watch the log as
it gets written to, rather than needing to refresh it manually.

While your DHCP server runs, you'll see notices appear within the syslog file
whenever a DHCP request was received and when a lease is offered to a client. A
typical DHCP request will appear in the log similar to the following (the name of my
DHCP server is hermes, in case you were wondering):

May 5 22:07:36 hermes dhcpd: DHCPDISCOVER from 52:54:00:88:f8:bc via
enp0s3
May 5 22:07:36 hermes dhcpd: DHCPOFFER on 192.168.1.103 to
51:52:01:87:f7:bc via enp0s3

Active and previous DHCP leases are stored in the /var/lib/dhcp/dhcpd.leases
file, and a typical lease entry in that file would look similar to the following:

lease 192.168.1.138 {
 starts 0 2016/05/06 16:37:30;
 ends 0 2016/05/06 16:42:30;
 cltt 0 2016/05/06 16:37:30;
 binding state active;
 next binding state free;
 rewind binding state free;
 hardware ethernet 32:6e:92:01:1f:7f;
}

When a new device is added to your network and receives an IP address from your
new DHCP server, you should see the lease information populate into that file. This
file can be incredibly helpful, because whenever you connect a new device, you
won't have to interrogate the device itself to find out what its IP address is. You
can just check the /var/lib/dhcp/dhcpd.leases file. If the device advertises its
hostname, you'll see it within its lease entry. A good example of how this can be
useful is connecting a Raspberry Pi to your network. Once you plug it in and turn
it on, you'll see its IP address in the dhcpcd.leases file, and then you can connect
to it via SSH without having to plug in a monitor to it. Similarly, you can view
the temporary IP address of a new network appliance you plug in so that you can
connect to it and configure it.

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[204]

If you have any trouble setting up the isc-dhcp-server daemon, double-check that
you have set all the correct and matching values within your static IP assignment
(the /etc/network/interfaces file), as well as within your /etc/dhcp/dhcpd.
conf file. For example, your server must be within the same network as the IPs
you're assigning to clients. The error messages that the isc-dhcp-server service
provides can be very misleading. In my tests, I've seen the service complain that it's
not configured to listen on any address, when the actual problem was the server
having an IP address that was not within the same scope as the pool addresses.
As long as everything matches, you should be fine and it should start properly.

Setting up name resolution (DNS) with
bind
I'm sure most of you are familiar with the purpose of a Domain Name System
(DNS) server. Its simplest definition is that it's a service that's responsible for
matching an IP address to a hostname. When you connect to the Internet, name-to-
IP matching happens constantly as you browse. After all, it's much easier to connect
to https://www.google.com/ with its domain name, than it is to remember its IP
address. When you connect to the Internet, your workstation or server will connect
to an external DNS server in order to figure out the IP addresses for the websites you
attempt to visit.

It's also very common to run a local DNS server, as well. The benefit is that you'll be
able to resolve your local hostnames as well, something that an external DNS server
would know nothing about. For example, if you want to connect to your mail server,
it would be much easier to connect to it by a name (such as mail.mydomain.local)
than it would be to remember its IP address. With a local DNS server, you would
create what is known as a Zone File, which would contain information regarding
the hosts and IP address in use within your network so that local devices would be
able to resolve them. In the event that your local DNS server is unable to fulfill your
request (such as a request for an external website), the server would pass the request
along to an external DNS server, which would then carry out the request.

A detailed discussion of DNS, how it functions, and how to manage it is outside the
scope of this book. However, a basic understanding is really all you need in order to
make use of a DNS server within your network. In this section, I'll show you how to
set up your very own DNS server to allow your devices to resolve local hostnames,
which should greatly enhance your network.

First, we'll need to install the Berkeley Internet Name Daemon (BIND) package on
our server:

apt-get install bind9

www.hellodigi.ir

https://www.google.com/
http://technet24.ir
http://technet24.ir

Chapter 7

[205]

Then, we can start it:

systemctl start bind9

On older servers, we can start bind9 with the following command instead:

/etc/init.d/bind9 start

At this point, we have the bind9 service running on our server, though it's not
actually configured to do much at this point. The most basic function of bind is to
act as what's called a Caching Name Server, which means that the server doesn't
actually match any names itself. Instead, it caches responses from an external server.
We'll configure bind with actual hosts later, but setting up a caching name server is a
good way to get started.

To do so, open the /etc/bind/named.conf.options file in your favorite text editor.

Within the file, you should see a block of text that looks similar to the following:

 // forwarders {
 // 0.0.0.0;
 // };

Uncomment these lines. The forward slashes are the comment marks as far as this
configuration file is concerned, so remove them. Then, we can add a few external
DNS server IP addresses. For these, you can use the IP addresses for your ISP's DNS
servers, or you could simply use Google's DNS servers (8.8.8.8 and 8.8.4.4)
instead:

 forwarders {
 8.8.8.8;
 8.8.4.4;
};

After you save the file, restart the bind9 service:

•	 With systemd:
systemctl restart bind9

•	 For older servers with upstart:

/etc/init.d/bind9 restart

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[206]

As long as you've entered in everything correctly, you should now have a working
DNS server. Of course it isn't resolving anything, but we'll get to that. Now, all you
should need to do is configure other devices on your network to use your new DNS
server. The easiest way to do this is to reconfigure the isc-dhcp-server service
we set up in the previous section. Remember the section that designates a pool of
addresses from the server to the clients? It also contained a section to declare the
DNS server your clients will use as well. Here's that section again, with the relevant
lines in bold:

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.100 192.168.1.240;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;
}

To configure the devices on your network to use your new DNS server, all you
should need to do is change the configuration option domain-name-servers
192.168.1.1; to point to the IP address of your new server. When clients request a
DHCP lease (or attempt to renew an existing lease), they will be configured with the
new DNS server automatically. If you don't want to wait, you can simply edit the
/etc/resolv.conf file on a host to point it to your new DNS server. If you need
a refresher, we worked through that in Chapter 4, Connecting to Networks.

With the caching name server we just set up, hosts that utilize it will check it first for
any hosts they attempt to look up. If they look up a website or host that is not within
your local network, their requests will be forwarded to the forwarding addresses you
configured for bind. In my example, I used Google's DNS servers, so if you used my
configuration your hosts will first check your local server and then check Google's
servers when resolving external names. Depending on your network hardware and
configuration, you might even see a slight performance boost. This is because the
DNS server you just set up is caching any lookups done against it. For example, if
a client looks up https://www.packtpub.com in a web browser, your DNS server
will forward the request along since that site doesn't exist locally and it will also
remember the result. The next time a client within your network looks up that site,
the response will be much quicker because your DNS server cached it.

To see this yourself, execute the following command twice on a node that is utilizing
your new DNS server:

dig www.packtpub.com

In the response, look for a line toward the end that gives you your query time. It will
look similar to the following:

;; Query time: 98 msec

www.hellodigi.ir

https://www.packtpub.com
http://technet24.ir
http://technet24.ir

Chapter 7

[207]

When you run it again, the query time should be much lower:

;; Query time: 1 msec

This is your caching name server in action! Even though we haven't even set up
any zone files to resolve your internal servers, your DNS server is already adding
value to your network. You just laid the groundwork we'll use for the rest of
our configuration.

Now, let's add some hosts to our DNS server so we can start fully utilizing it. The
configuration file for bind is located at /etc/bind/named.conf. In addition to some
commented lines, it will have the following three lines of configuration within it:

include "/etc/bind/named.conf.options";
include "/etc/bind/named.conf.local";
include "/etc/bind/named.conf.default-zones";

As you can see, the default bind configuration is split among several configuration
files. Here, it includes three others: named.conf.options, named.conf.local, and
named.conf.default-zones (the first of which we already took care of editing). In
order to resolve local names, we need to create what is known as a zone File, which
is essentially a text file that includes some configuration, a list of hosts, and their IP
addresses. In order to do this, we need to tell bind where to find the zone file we're
about to create. Within /etc/bind/named.conf.local, we need to add a block of
code like the following to the end of the file:

zone "local.lan" IN {
 type master;
 file "/etc/bind/net.local.lan";
};

Notice that the zone is named local.lan, which is the same name I gave our
domain in our DHCP server configuration. It's best to keep everything consistent
when we can. If you use a different domain name than the one I used in my example,
make sure that it matches here as well. Within the block, we're creating a master
zone file and informing bind that it can find a file named net.local.lan, stored in
the /etc/bind directory. This should be the only change we'll need to make to the
named.conf.local file, we'll only create a single zone file (for the purpose of this
section). Once you save this file, we'll need to create our /etc/bind/net.local.lan
file. So go ahead and open that file in a text editor. Since we haven't created it yet, it
should be blank. Here's an example of this zone file, completely filled out with some
sample configuration:

$TTL 1D
@ IN SOA local.lan. hostmaster.local.lan. (

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[208]

201608161 ; serial

8H ; refresh
4H ; retry
4W ; expire
1D) ; minimum
IN A 192.168.1.1
;
@ IN NS hermes.local.lan.
fileserv IN A 192.168.1.3
mailserv IN A 192.168.1.5
mail IN CNAME mailserv.
web01 IN A 192.168.1.7

Feel free to edit this file to match your configuration. You can edit the list of
hosts at the end of the file to match your hosts within your network, as the ones I
included are merely examples. You should also ensure that the file matches the IP
scheme for your network. Next, I'll go over each line in order to give you a deeper
understanding of what each line of this configuration file is responsible for.

$TTL 1D

The Time to Live (TTL) determines how long a record may be cached within a DNS
server. If you recall from earlier where we practiced with the dig command, you
saw that the second time you queried a domain with dig, the query time was less
than the first time you ran the command. This is because your DNS server cached
the result, but it won't hold onto it forever. At some point, the lookup will expire.
The next time you look up that same domain after cached result expired, your
server will go out and fetch the result from the DNS server again. In my examples,
I used Google's DNS servers. That means at some point, your server will query
those servers again once the record times out.

@ IN SOA local.lan. hostmaster.local.lan. (

With the Start of Authority (SOA) line, we're establishing that our DNS server is
authoritative over the local.lan domain. We also set hostmaster@local.lan as
the e-mail address of the responsible party for this server, but we enter it here in a
different format for bind (hostmaster.local.lan). This is obviously a fake address,
but for the purposes of an internal DNS server, that's not an issue we'll need to
worry about.

201608161 ; serial

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[209]

Of all the lines of configuration within a zone file, the serial is by far the one that
will frustrate us the most. This is because it's not enough to simply update the zone
file any time we make a change to it (change an IP address, add or remove a host,
and so on); we also need to remember to increase the serial number by at least one.
If we don't, bind won't be aware that we've made any changes, as it will look at
the serial before the rest of the file. The problem with this is that you and I are both
humans, and we're prone to forgetting things. I've forgotten to update the serial
many times and became frustrated when the DNS server refuses to resolve new hosts
that were recently added. Therefore, it's very important for you to remember that
any time you make a change to any zone file, you'll need to also increment the serial.
The format doesn't really matter; I used 201608161, which is simply the year,
two-digit month, two-digit day, and an extra number to cover us if we make
more than one change in a day (which can sometimes happen). As long as you
increment the serial by one every time you modify your zone file, you'll be in good
shape—regardless of what format you use. However, the sample format I gave here
is actually quite common in the field.

8H ; refresh
4H ; retry
4W ; expire
1D) ; minimum

These values control how often slave DNS servers will be instructed to check in for
updates. With the refresh value, we're instructing any slave DNS servers we may
have to check in every 8 hours to see whether or not the zone records were updated.
The retry field dictates how long the slave will wait to check in, in case there was
an error doing so the last time. The last two options in this section, expire and
minimum, set the minimum and maximum age of the zone file, respectively. As I
mentioned though, a full discussion of DNS with bind could constitute be an entire
book on its own. For now, I would just use these values until you have a reason to
need to experiment.

IN A 192.168.1.1
@ IN NS hermes.local.lan.

Here, we identify the name server itself. In my case, the server is called hermes and
it's located at 192.168.1.1.

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[210]

Next, in our file we'll have several host entries to allow our resources to be
resolved on our network by name. In my example, I have three hosts: fileserv,
mailserv, and web01. In the example, these are all address records, which means
that any time our server is asked to resolve one of these names, it will respond
with the corresponding IP address. If our DNS server is set as a machine's primary
DNS server, it will respond with 192.168.1.3 when asked for fileserv, and
192.168.1.7 when asked for web01. The entry for mail is special as it is not an
address record, but instead a Canonical Name (CNAME) record. In this case, it just
points back to mailserv. Essentially, that's what a CNAME record does: it creates a
pointer of sorts to another resource. In this case, if someone tries to access a server
named mail, we redirect them to the actual server mailserv. Notice that on the
CNAME record, we're not inputting an IP address, but instead the hostname of the
original resource:

fileserv IN A 192.168.1.3
mailserv IN A 192.168.1.5
mail IN CNAME mailserv.
web01 IN A 192.168.1.7

Now that we have a zone file in place, we should be able to start using it.
First, we'll need to restart the bind9 service:

systemctl restart bind9

After the command finishes, check to see if there are any errors:

systemctl status bind9

If there are any problems, you should see specific information in the output that
should point you in the right direction. If not, you can also check the system log for
clues regarding bind as well:

cat /var/log/syslog | grep bind9

The most common mistake made is not being consistent within the file. For example,
if you're using a different IP scheme (such as 10.10.10.0/24), you'll want to
make sure you didn't forget to replace any of my example IP addresses with the
proper scheme. Assuming that everything went smoothly, you should be able to
point devices on your network to use this new DNS server. Make sure you test not
only pinging devices local to your network, but outside resources as well, such as
websites. If the DNS server is working properly, it should resolve your local names,
and then forward your requests to your external DNS servers (the two we set as
forwarders), if it doesn't find what you're looking for locally. In addition, you'll also
want to make sure that port 53 is open in your network's firewall, which is the port
that DNS uses. It's extremely rare that this would be an issue, but I have seen
it happen.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[211]

To further test our DNS server, we can use the dig command, as we did before while
we were experimenting with caching. Try dig against a local and external resource.
For example, you could try dig against a URL as well as a local server:

dig webserv.local.lan

dig www.packtpub.com

You should see a response similar to the following:

;; Query time: 76 msec

;; SERVER: 192.168.1.1#53(192.168.1.1)

;; WHEN: Sun Mar 06 12:02:24 EST 2016

;; MSG SIZE rcvd: 283

Notice the second line, beginning with SERVER. It should be showing the IP address
of the local DNS server we just set up.

One thing that may confuse the output of the dig command is local
resolvers, which are becoming more and more common. Several Linux
distributions are including local DNS resolvers, which is essentially a
local DNS server built into the distribution to handle caching, which also
benefits security. You may see the following output instead:
;; SERVER: 127.0.1.1#53(127.0.1.1)

In this case, we have a local resolver (the IP address 127.0.1.1 points
to the local machine). If this happens, there is nothing wrong with your
DNS server. Local resolvers are becoming very common with some
distributions, with Fedora being one example. If you do have a local
resolver in place, consult the documentation for your distribution for how
to temporarily disable or bypass it for purposes of our tests.

Creating a secondary DNS server
Depending on just one server to provide a resource to your network is almost never
a good idea. If our DNS server has a problem and fails, our network users will be
unable to resolve any names, internal or external. To rectify this, we can actually set
up a slave DNS server that will cache zone records from the master, and allow name
resolution to work in case the primary fails. This is not required, but redundancy is
always a good thing.

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[212]

To set up a secondary DNS server, we first need to configure our primary server
to allow it to transfer zone records to a slave server. To do so, we'll need to edit
the /etc/bind/named.conf.options file, which currently looks similar to
the following:

options {
 directory "/var/cache/bind";
 forwarders {
 8.8.8.8;
 8.8.4.4;
 };
 dnssec-validation auto;

 auth-nxdomain no;
 listen-on-v6 { any; };
};

I've omitted some redundant lines from the file (such as comments). When we edited
this file the last time, we uncommented the forwarders section and added two
external DNS servers there. In order to allow the transfer of zone records to another
server, we'll need to add a new line to this file. Here's the contents of this file again,
with a new line added to it:

options {
 directory "/var/cache/bind";
 allow-transfer { localhost; 192.168.1.2; };
 forwarders {
 8.8.8.8;
 8.8.4.4;
 };
 dnssec-validation auto;

 auth-nxdomain no;
 listen-on-v6 { any; };
};

Basically, we added one line to the file, which allows zone transfer to an IP address
of 192.168.1.2, which you'd want to change to be the IP address for your secondary
DNS server. Next, restart the bind9 service on your primary server, and it should be
ready to allow transfer to another machine.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[213]

On the slave DNS server, the first thing you'll need to do is to install the bind9
packages as we did with the first server. Then, we'll configure the slave server quite
similar to the master server, but with some notable differences. On the slave server,
you'll omit the allow-transfer line that we added to the /etc/bind/named.conf.
options file, since the slave server is only going to receive records, not transfer them.
Like before, you'll uncomment the forwarders section in the /etc/bind/named.
conf.options file. In the /etc/bind/named.conf.local file, you'll add an entry for
our zone just as we did with the first server, but we'll configure this file differently
than we did the last time:

zone "local.lan" IN {
 type slave;
 masters { 192.168.1.1; };
 file "/var/lib/bind/net.local.lan";
};

Inside the /etc/bind/named.conf.local file on the slave server, we first identify
it as a slave (type slave;) and then we set the master server to 192.168.1.1 (or
whatever the IP address of your primary DNS server is). Then, we save our zone
file to a different location than we did on the master; in this case, it is /var/lib/
bind/net.local.lan. This is due to how the permissions differ on the slave and the
master server, and /var/lib/bind is a good place to store this file. After the new
configuration is in place, restart bind9 on both the slave and the master servers. At
this point though, we should test both servers out one last time to ensure both are
working properly.

In this chapter, I've mentioned the dig command a few times. It's a great way to
interrogate DNS servers to ensure they're providing the correct records. One thing I
haven't mentioned so far is that you can specify a DNS server for the dig command
to check, rather than having it use whatever DNS server the system was assigned. In
my examples, I have two DNS servers set up, one at 192.168.1.1 and the other at
192.168.1.2. Specifying a DNS server to interrogate with the dig command is
easy enough:

dig @192.168.1.1 fileserv

dig @192.168.1.2 fileserv

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[214]

You should see results from both of your DNS servers. When you check the status of
the bind9 daemon on your slave server (systemctl status bind9), you should see
entries that indicate a successful transfer. The output will look similar to this:

May 06 13:19:47 ubuntu-server named[2615]: transfer of 'local.lan/IN'
from 10.10.99.184#53: connected using 192.168.1.2#35275

May 06 13:19:47 ubuntu-server named[2615]: zone local.lan/IN: transferred
serial 201602093

May 06 13:19:47 ubuntu-server named[2615]: transfer of 'local.lan/IN'
from 10.10.99.184#53: Transfer status: success

May 06 13:19:47 ubuntu-server named[2615]: transfer of 'local.lan/IN'
from 10.10.99.184#53: Transfer completed: 1 messages, 10 records, 290

May 06 13:19:47 ubuntu-server named[2615]: zone local.lan/IN: sending
notifies (serial 201602093)

From this point onwards, you should have a redundant bind slave to work with, but
the server is useless until you inform your clients to use it. To do that, we need to
revisit our DHCP server configuration yet again. Specifically, the /etc/dhcp/dhcpd.
conf file. Here are the sample contents of the file again, so you don't need to flip back
to the earlier section:

default-lease-time 86400;
max-lease-time 86400;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name "local.lan";
authoritative;
subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1;
}

On the last line, we inform clients to set their DNS server to 192.168.1.1. However,
since we now have a slave server, we should change this file to include it so that it's
passed along to clients:

default-lease-time 86400;
max-lease-time 86400;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name "local.lan";
authoritative;

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[215]

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.100 192.168.1.240;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.1, 192.168.1.2;
}

Basically, all we did was add the secondary server to the option domain-name-
servers line. We separated the first with a comma, then we ended the line with a
semicolon as we did before. At this point (assuming you've tested your secondary
DNS server and trust it), you can restart the isc-dhcp-server daemon, and your
nodes will have the primary and secondary DNS servers assigned to them the next
time they check in for an IP address or to renew their existing lease.

That about does it for our journey into setting up bind. From now on, you have a
DHCP server and a DNS server or two in your network, providing addressing and
name resolution. We've pretty much set up two of the most common services that
run on commercial routers, but we haven't actually set up a router just yet. In the
next section though, we'll change that.

Setting up an Internet gateway
As long as we're setting up network services, we may as well go all the way and set
up a router to act as a gateway for our network. In most commercial routers, we'll
have DNS and DHCP built-in, as well as routing. Quite often, these services will all
run on the same box. Depending on how you set up your DNS and DHCP servers
in the previous sections, you may have even set up your primary DNS and DHCP
servers on the same machine, which is quite common. However, your Internet
connection will likely be terminated on a separate box, possibly a commercial
routing device or Internet gateway from your Internet service provider.

Depending on what kind of Internet connection you have, Linux itself can likely
replace whatever device that your Internet modem connects to. A good example
of this is a cable modem that your office or home router may utilize. In this case,
the modem provides your Internet connection, and then your router allows other
devices on your network to access it. In some cases, your modem and router may
even be the same device.

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[216]

Linux servers handle this job very well, and if you want to consolidate your DHCP,
DNS, and routing into a single server, that's a very easy (and common) thing to
do. Specifically, you'll need a server with at least two Ethernet ports, as well as a
network switch that would allow you to connect multiple devices. If you need to
connect devices with wireless network cards, you'll need an access point as well.
Therefore, depending on the hardware you have, this method of setting up your
networking may or may not be efficient. But if you do have the hardware available,
you'll be able to manage the entire networking stack with Ubuntu Server quite easily.

In fact, we'll only need to execute a single command to set up routing between
interfaces, which is technically all that's required in order to set up an Internet
gateway. But before we get into that, it's also important to keep in mind that if you
do set up an Internet gateway, you'll need to pay special attention to security. The
device that sits between your network and your modem will be a constant attack
target, just like any other gateway device would be. When it comes to commercial
routers, they're also attacked constantly. However, in most cases, they'll have some
sort of default security or firewall built-in. In all honesty, the security features built-
in to common routing equipment are extremely poor and most of them are easy to
hack when someone wants in bad enough. The point is that these devices have some
sort of security to begin with (regardless of how good or bad), whereas a custom
Internet gateway of your own won't have any security at all until you add it.

When you set up an Internet gateway, you'll want to pay special attention to setting
up the firewall, restricting access to SSH, using very strong passwords, keeping up
to date on security patches, as well as installing an authentication monitor such as
fail2ban. We'll get into those topics in Chapter 12, Securing Your Server. The reason
I bring this up now though is that if you do set up an Internet gateway, you'll
probably want to take a detour and read that chapter right away, just to make sure
that you secure it properly.

Anyway, let's move on. A proper Internet gateway, as I've mentioned, will have
two Ethernet ports. On the first, you'll plug in your cable modem or Internet device,
and you'll connect a switch on the second. By default though, routing between these
interfaces will be disabled, so traffic won't be able to move from one Ethernet port to
the other. To rectify this, use the following command:

echo 1 > /proc/sys/net/ipv4/ip_forward

That's actually it. With that single command, you've just made your server into a
router. However, that change will not survive a reboot. To make it permanent,
open the /etc/sysctl file as root and look for the following line:

#net.ipv4.ip_forward=1

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[217]

Uncomment the line and save the file. With that change made, your server will allow
routing between interfaces even after a reboot. Of all the topics we've covered in this
chapter, that one was probably the simplest. However, I must remind you again to
definitely secure your server if it's your frontend device to the Internet, as computer
security students always enjoy practicing on a real-life Linux server. With good
security practices, you'll help ensure that they'll leave you alone, or at least have a
harder time breaking in.

Keeping your system clock in sync
with NTP
It's incredibly important for Linux servers to keep their time synchronized, as
strange things can happen when a server's clock is wrong. One issue I've run into
that's especially a problem is file synchronization utilities, which will exhibit strange
behavior when there are time issues. However, Ubuntu servers feature the Network
Time Protocol client and server within the default repositories to help keep your
time in sync. If it's not already installed, all you should need to do is install the
ntp package:

apt-get install ntp

Once installed, the ntp daemon will immediately start and will keep your time up
to date. To verify, check the status of the ntp daemon with one of the following
commands depending on the age of your server:

systemctl status ntp

/etc/init.d/ntp status

The output should show that ntp is running:

Active: active (running) since Sun 2016-05-06 14:09:28 EST; 3s ago

If all you wanted was a working NTP client, then you're actually all set. The default
configuration is fine for most. But further explanation will help you understand how
this client is configured. You'll find the configuration file at /etc/ntp/ntp.conf,
which will contain some lines of configuration detailing which servers your local
ntp daemon will attempt to synchronize time with:

pool 0.ubuntu.pool.ntp.org iburst
pool 1.ubuntu.pool.ntp.org iburst
pool 2.ubuntu.pool.ntp.org iburst
pool 3.ubuntu.pool.ntp.org iburst

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[218]

As you can see, our server will synchronize with Ubuntu's time servers if we leave
the default configuration as-is. For most users, that's perfectly fine. There's nothing
wrong with using Ubuntu's servers. However, if you have a great number of clients
in your organization, it may make sense to set up your own NTP server so that
only one server is talking to the outside world instead of every one of your nodes.
Essentially, this is how you can become a friendly neighbor online. If you have
hundreds of workstations in your organization that are configured to check Ubuntu's
NTP servers, that's quite a bit of traffic those servers will need to endure. To be fair,
Ubuntu's servers won't have any trouble handling this traffic, though it's a nice
gesture to configure one server in your network to synchronize with Ubuntu's time
servers, then configure your local nodes to synchronize with just your local server. If
everyone did this, then Ubuntu's time servers would see far less traffic.

Setting up a local NTP server is actually quite straightforward. All you should need
to do is designate a server within your network for this purpose. You could even use
the Internet gateway you set up in the previous section if you wanted to. Once you
have that server set up to synchronize, you should be able to configure your local
nodes to talk to that server and synchronize their clocks with it.

Before we get ahead of ourselves though, we should make sure that the server we
installed NTP on is synchronizing properly. This will give us a chance to use the
ntpq command, which we can use to view statistics about how well our server is
synchronizing. The ntpq -p command should print out statistics we can use to
verify connectivity:

Example output from the ntpq -p command

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 7

[219]

To better understand the output of the ntpq -p command, I'll go through each
column. First, the remote column details the NTP servers we're connected to. The
refid column refers to the NTP servers that the remote servers are connected to. The
st column refers to a server's stratum, which refers to how close the server is from
us (the lower the number, the closer, and typically, better). The t column refers to
the type, specifically whether the server is using unicast, broadcast, multicast,
or manycast.

Continuing, the when column refers to how long ago it was since the last time the
server was polled. The poll column indicates how often the server will be polled,
which is 64 seconds for most of the entries in the example screenshot. The reach
column contains the results of the most recent eight NTP updates. If all eight are
successful, this field will read 377. This number is in octal, so eight successes in octal
will be represented by 377. When you first start the ntp daemon on your server, it
may take some time for this number to reach 377.

Finally, we have the delay, offset, and jitter columns. The offset column refers
to the delay in reaching the server, in milliseconds. Offset references the difference
between the local clock and the server's clock. Finally, the jitter column refers to
the network latency between your server and theirs.

Assuming that the results of the ntpq -p command look good and your server is
synchronizing properly, you already essentially have an NTP server at your disposal,
since there is little difference between a client and a server. As long as your server
is synchronizing properly and port 123 is open between them through the firewall,
you should be able to reconfigure your nodes to connect to your server, by changing
the pool addresses in your clients configuration (within /etc/ntp.conf), to point to
either the IP address or the Fully Qualified Hostname (FQDN) of your NTP server
instead of Ubuntu's servers. Once you restart the ntp service on your other nodes,
they should start synchronizing with the master server.

Before we close out this chapter, there is one additional change you should consider
implementing to the /etc/ntp.conf file, however. Look for the following line
within that file:

#restrict 192.168.123.0 mask 255.255.255.0 notrust

Change this line by first uncommenting it, changing the network address and subnet
mask to match the details for your network, and then remove the notrust keyword
at the end. The line should look similar to the following, but depending on your
network configuration:

restrict 192.168.1.0 mask 255.255.255.0

www.hellodigi.ir

http://technet24.ir

Managing Your Ubuntu Server Network

[220]

So, what does this option do for us? Basically, we're limiting access to our
NTP server to local clients only, and we're only allowing read-only access
for security purposes.

Now that you have a working NTP server, feel free to experiment and point your
existing nodes to it and have them synchronize. Depending on the size of your
network, a local NTP server may or may not make sense, but at the very least, NTP
should be installed on every Linux workstation and server to ensure proper time
synchronization. In most cases, the workstation version of Ubuntu will already be
configured to synchronize to the Ubuntu time servers, but when it comes to the
server version, NTP isn't typically installed for you.

Summary
In this chapter, we explored additional networking topics. We started off with some
notes on planning an IP address scheme for your network so that you can create
groups for the different types of nodes, such as servers and network equipment, as
well as plan a pool of addresses for DHCP. We also set up a DHCP and DNS server,
with an additional section on creating a DNS slave for added redundancy.
We closed off this chapter with discussions on setting up an Internet gateway,
as well as configuring NTP.

In the next chapter, we'll take a look at transferring and sharing files over the
network. This will include covering NFS and Samba shares, as well as using
scp, rsync, and sshfs. Stay tuned!

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[221]

Accessing and Sharing Files
Within an enterprise network, having one or more servers available to store files and
make data accessible over the network is a great asset. Perhaps you've used a file
server before, or even set one up on a different platform. With Ubuntu Server, there
are multiple methods to not only store files, but to also transfer files from one node
to another over a network link. In this chapter, we'll look into setting up a central
file server using both Samba and NFS, as well as how to transfer files between nodes
with utilities such as scp and rsync. We'll also go over some situations in which one
solution may work better than another. As we go through these concepts, we will
cover the following topics:

•	 File server considerations
•	 Sharing files with Windows users using Samba
•	 Setting up NFS shares
•	 Transferring files with rsync
•	 Transferring files with SCP
•	 Mounting remote filesystems with SSH Filesystem (SSHFS)

File server considerations
There are two methods you can use to share files with your users, Samba and NFS.
In fact, there's nothing stopping you from hosting both Samba and NFS shares on
a single server. However, each of the two popular solutions is valid for particular
use cases. Before we get started with setting up our file server, we should first
understand the differences between Samba and NFS, so we can make an informed
decision as to which one is more appropriate for our environment. As a general
rule of thumb, Samba is great for mixed environments (where you have Windows
as well as Linux clients), and NFS is more appropriate for use in Linux or UNIX
environments, but there's a bit more to it than that.

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[222]

Samba is a great solution for many environments, because it allows you to share files
with Windows, Linux, and Mac OS X machines. Basically, pretty much everyone
will be able to access your shares, provided you give them permission to do so. The
reason this works is because Samba is a reimplementation of the Server Message
Block (SMB) protocol, which is primarily used by Windows systems. However, you
don't need to use the Windows platform in order to be able to access Samba shares,
since many platforms offer support for this protocol. Even Android phones are able
to access Samba file shares with the appropriate app, as well as other platforms.

You may be wondering, why I am going to cover two different solutions in this
chapter. After all, if Samba shares can be accessed by pretty much everything and
everyone, why bother with anything else? Even with Samba's many strengths, there
are also weaknesses as well. First of all, permissions are handled very differently,
so you'll need to configure your shares in specific ways in order to prevent access
to users that shouldn't be able to see confidential data. With NFS, full support of
standard UNIX permissions is provided, so you'll only need to be able to configure
your permissions once. If permissions and confidentiality are important to you, you
may want to look closer at NFS.

That's not to say that Windows systems cannot access NFS shares, because some
versions actually can. By default, no version of Windows supports NFS outright,
but some editions offer a plugin you can install that enables this support. The name
of the NFS plugin in Windows has changed from one version to another (such as
Services for UNIX, Subsystem for UNIX-based Applications, and NFS Client),
but the idea is the same. You'll need to enable a specific plugin for your version of
Windows in order to access NFS shares. The problem is that Microsoft limits access
to the NFS plugin to only the more expensive Windows editions, such as Ultimate
and Enterprise when it comes to Windows 7, and just Enterprise when it comes
to Windows 8 and 10. Depending on how many Windows machines exist in your
environment that need to access NFS shares, this could be a significant licensing cost
to your organization. This is yet another reason why Samba is a great choice when
you're dealing with the Windows platform; you can circumvent the cost of upgraded
licenses, since even home editions of Windows can access Samba shares.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[223]

In regards to an all Linux environment or in a situation where you only have
Linux machines that need to access your shares, NFS is a great choice because its
integration is much tighter with the rest of the distribution. Permissions can be more
easily enforced and, depending on your hardware, performance may be higher.
In addition, NFS can be a bit more time-consuming to set up in an environment,
though by no means is it overly difficult to do. The specifics of your computing
environment will ultimately make your decision for you. Perhaps you'll choose
Samba for your mixed environment, or NFS for your all Linux environment. Maybe
you'll even set up both NFS and Samba, having shares available for each platform.
My recommendation is to learn and practice both, since you'll use both solutions at
one point or another during your career.

Before you continue on to read the sections on setting up Samba and NFS, I
recommend you first decide where in your filesystem you'd like to act as a parent
directory for your file shares. This isn't actually required, but I think it makes for
better organization. There is no one right place to store your shares, but personally
I like to create a /shared directory at the root filesystem and create subdirectories
for my network shares within it. For example, I can create /shared/documents, /
shared/public, and so on for Samba shares. With regards to NFS, I usually create
shared directories within /exports. You can choose how to set up your directory
structure. As you read the remainder of this chapter, make sure to change my
example paths to match yours if you use a different style.

Sharing files with Windows users using
Samba
In this section, I'll walk you through setting up your very own Samba file server.
I'll also go over a sample configuration to get you started so that you can add your
own shares.

First, we'll need to make sure that the samba package is installed on our server:

apt-get install samba

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[224]

When you install the samba package, you'll have a new daemon installed on your
server, smbd. The smbd daemon will be automatically started and enabled for you.
You'll also be provided a default configuration file for Samba, located at /etc/
samba/smb.conf. For now, I recommend stopping Samba since we have yet
to configure it:

systemctl stop smbd

On older servers, you can stop Samba with the following command (note that the
name of the daemon is also different on older Ubuntu versions):

/etc/init.d/samba stop

Since we're going to configure Samba from scratch, we should start with an empty
configuration file. Let's back up the original file, rather than overwrite it. The default
file includes some useful notes and samples, so we should keep it around for future
reference:

mv /etc/samba/smb.conf /etc/samba/smb.conf.orig

Now, we can begin a fresh configuration. Although it's not required, I like to split my
Samba configuration up between two files, /etc/samba/smb.conf and /etc/samba/
smbshared.conf. You don't have to do this, but I think it makes the configuration
cleaner and easier to read. First, here is a sample /etc/samba/smb.conf file:

[global]
server string = File Server
workgroup = MYWORKGROUP
security = user
map to guest = Bad User
name resolve order = bcast hosts wins
include = /etc/samba/smbshared.conf

As you can see, this is a really short file. Basically, we're including only the lines we
absolutely need to in order to set up a file server with Samba. Next, I'll explain each
line and what it does.

[global]

With the [global] stanza, we're declaring the global section of our configuration,
which will consist of settings that will impact Samba as a whole. There will also be
additional stanzas for individual shares, which we'll get to later.

server string = File Server

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[225]

The server string is somewhat of a description field for the File Server. If
you've browsed networks from Windows computers before, you may have seen this
field. Whatever you type here will show underneath the server's name in Windows
Explorer. This isn't required, but it's nice to have.

workgroup = MYWORKGROUP

Here, we're setting the workgroup, which is the exact same thing as a workgroup
on Windows PCs. In short, the workgroup is a namespace that describes a group of
machines. When browsing network shares on Windows systems, you'll see a list of
workgroups, and then one or more computers within that workgroup. In short, this
is a way to logically group your nodes. You can set this to whatever you like. If you
already have a workgroup in your organization, you should set it here to match the
workgroup names of your other machines. The default workgroup name is simply
WORKGROUP on Windows PCs, if you haven't customized the workgroup name
at all.

security = user

This setting sets up Samba to utilize usernames and passwords for authentication to
the server.

map to guest = Bad User

This option configures Samba to treat unauthenticated users as guest users. Basically,
unauthenticated users will still be able to access shares, but they will have guest
permissions instead of full permissions. If that's not something you want, then you
can omit this line from your file. Note that if you do omit this, you'll need to make
sure that both your server and client PCs have the same user account names on
either side. Ideally, we would want to use directory-based authentication, but
that's beyond the scope of this book.

name resolve order = bcast hosts wins

The name resolve order setting configures how Samba resolves hostnames. In this
case, we're using the broadcast name first, followed by any mappings that might
exist in our /etc/hosts file, followed by wins. Since wins has been pretty much
abandoned (and replaced by DNS), we include it here solely for compatibility.

include = /etc/samba/smbshared.conf

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[226]

Remember how I mentioned that I usually split my Samba configurations into two
different files? On this line, I'm calling that second file /etc/samba/smbshared.
conf. The contents of the smbshared.conf file will be inserted right here, just as if
we only had one file. We haven't created the smbshared.conf file yet. Let's take care
of that next. Here's a sample smbshared.conf file.

[Documents]
 path = /share/documents
 force user = myuser
 force group = users
 public = yes
 writable = no

[Public]
 path = /share/public
 force user = myuser
 force group = users
 create mask = 0664
 force create mode = 0664
 directory mask = 0777
 force directory mode = 0777
 public = yes
 writable = yes

As you can see, I'm separating share declarations into its file. We can see several
interesting things within smbshared.conf. First, we have two stanzas, [Documents]
and [Public]. Each stanza is a share name, which will allow Windows users to
access the share under //servername/share-name. In this case, this file will give
us two shares: //servername/Documents and //servername/Public. The Public
share is writable for everyone, though the Documents share is restricted to read-only.
The Documents share has the following options.

path = /share/documents

This is the path to the share, which must exist on the server's filesystem. In this case,
when a user reads files from //servername/Documents on a Windows system, they
will be reading data from /share/documents on the Ubuntu Server that's housing
the share.

force user = myuser
force group = users

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[227]

These two lines are basically bypassing user ownership. When a user reads this
share, they are treated as myuser instead of their actual user account. Normally, you
would want to set up LDAP or Active Directory to manage your user accounts and
handle their mapping to the Ubuntu Server, but a full discussion of directory-based
user access is beyond the scope of this book, so I provided the force options as an
easy starting point. The user account you set here must exist on the server.

public = yes
writable = no

With these two lines, we're configuring what users are able to do once they connect
to this share. In this case, public = yes means that the share is publicly available,
though writable = no prevents anyone from making changes to the contents of this
share. This is useful if you want to share files with others, but you want to restrict
access from anyone being able to modify the content.

The Public share has some additional settings that weren't found in the
Documents share.

create mask = 0664
force create mode = 0664
directory mask = 0777
force directory mode = 0777

With these options, I'm setting up how permissions of files and directories will
be handled when new content is added to the share. Directories will be given 777
permissions and files will be given permissions of 664. Yes, these permissions are
very open; note that the share is named Public, which implies full-access anyway,
and its intent is to house data that isn't confidential or restricted.

public = yes
writable = yes

Just as I did with the previous share, I'm setting up the share to be publicly available,
but this time I'm also configuring it to allow users to make changes.

To take advantage of this configuration, we need to start the Samba daemon.
Before we do though, we would want to double-check the directories we entered
into our smbshared.conf file exist, so if you're using my example, you'll need to
create /shared/documents and /shared/public. Also, the user account that was
referenced in the force user and the group referenced in the force group must
both exist, and have ownership over the shared directories. With that out of the
way, feel free to start Samba:

systemctl start smbd

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[228]

On older Ubuntu Servers, use the following command:

/etc/init.d/samba start

That really should be all there is to it; you should now have a Documents and
Public share on your file server that Windows users should be able to access. In fact,
your Linux machines should be able to access these shares as well. On Windows,
Windows Explorer has the ability to browse file shares on your network. If in doubt,
try pressing the Windows key and the R key at the same time to open the run dialog,
and then type the Universal Naming Convention (UNC) path to the share (//
servername/Documents or //servername/Public). You should be able to see any
files stored in either of those directories. In the case of the Public share, you should
be able to create new files there as well.

On Linux systems, if you have a desktop environment installed, most of them feature
a file manager that supports browsing network shares. Since there are a handful of
different desktop environments available, the method varies from one distribution
or configuration to another. Typically, most Linux file managers will have a network
link within the file manager, which will allow you to easily browse your local shares.
Otherwise, you can also access a Samba share by adding an entry for it in the /etc/
fstab file, such as the following:

//myserver/shared/documents /mnt/documents cifs username=myuser,noauto
0 0

In order for the fstab entry to work, your Linux client will need to have the Samba
client packages installed. If your distribution is Debian-based (such as Ubuntu), you
would need to install the smbclient and cifs-utils packages:

apt-get install smbclient cifs-utils

Then, assuming the local directory exists (/mnt/documents in the example),
you should be able to mount the share with the following command:

mount /mnt/documents

In the fstab entry, I included the noauto option so that your system won't mount
the Samba share at boot time (you'll need to do so manually with the mount
command). If you do want the Samba share automatically mounted at boot time,
change noauto to auto. However, you may receive errors during the boot if for
some reason the server hosting your Samba shares isn't accessible.

If you'd prefer to mount the Samba share without adding an fstab entry, the
following example command should do the trick, just replace the share name
and mount point to match your local configuration:

mount -t cifs //myserver/Documents -o username=myuser /mnt/documents

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[229]

Setting up NFS shares
NFS is a great method of sharing files from a Linux or UNIX server to a Linux or
UNIX server. As I mentioned earlier in the chapter, Windows systems can access
NFS shares as well, but it comes with an additional licensing penalty. NFS is
preferred in a Linux or UNIX environment though, since it fully supports Linux
and UNIX style permissions. As you can see from our earlier dive into Samba, we
essentially forced all shares to be treated as being accessed by a particular user,
which was messy, but was the easiest example of setting up a Samba server.
Samba can certainly support per-user access restrictions and benefit greatly from
a centralized directory server, though that would basically be a book of its own!
NFS is a bit more involved to set up, but in the long run, I think it's easier and
integrates better.

Earlier, we set up a parent directory on our filesystem to house our Samba shares,
and we should do the same thing with NFS. While it wasn't mandatory to have a
special parent directory with Samba (I had you do that in order to be neat, but you
weren't required to), NFS really does want its own directory to house all of its shares.
It's not required with NFS either, but there's an added benefit in doing so, which I'll
go over before the end of this section. In my case, I'll use /exports as an example, so
you should make sure that directory exists:

mkdir /exports

Next, let's install the required NFS packages on our server. The following command
will install NFS and its dependencies:

apt-get install nfs-kernel-server

Once you install the nfs-kernel-server package, the nfs-kernel-server
daemon will start up automatically. However, it'll immediately fail and exit with
the following error (which you'd see if you check the status of nfs-kernel-server
with systemctl):

exportfs: can't open /etc/exports for reading

This error is to be expected, because we haven't actually configured anything yet.
What's happening here is the /etc/exports file (which is the main file that NFS
reads its share information from), doesn't contain any useful settings, just some
commented lines. Let's back up the /etc/exports file, since we'll be creating
our own:

mv /etc/exports /etc/exports.orig

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[230]

To set up NFS, let's first create some directories that we will share to other users.
Each share in NFS is known as an Export. I'll use the following directories as
examples, but you can export any directory you like:

/exports/backup
/exports/documents
/exports/public

In the /etc/exports file (which we're creating fresh), I'll insert the following
four lines.

/exports *(ro,fsid=0)
/exports/backup 192.168.1.0/255.255.255.0(rw,no_subtree_check)
/exports/documents 192.168.1.0/255.255.255.0(ro,no_subtree_check)
/exports/public 192.168.1.0/255.255.255.0(rw,no_subtree_check)

The first line is Export Root, which I'll go over a bit later. The next three lines are
individual shares or exports. The backup, documents, and public directories are
being shared from the /exports parent directory. Each of these lines is not only
specifying which directory is being shared with each export, but also which network
is able to access them. In this case, after the directory is called out in a line, we're
also setting which network is able to access them (192.168.1.0/255.255.255.0 in
our case). This means that if you're connecting from a different network, your access
will be denied. Each connecting machine must be a member of the 192.168.1.0/24
network in order to proceed (so make sure you change this to match your IP
scheme). Finally, we include some options for each export, for example,
rw,no_subtree_check.

As far as what these options do, the first (rw) is rather self-explanatory. We can set
here whether or not other nodes will be able to make changes to data within the
export. In the examples I gave, the documents export is read-only (ro), while the
others allow read and write.

The next option on each example is no_subtree_check. This option is known to
increase reliability, and is mainly implied by default. However, not including it
may make NFS complain when it restarts, but nothing that will actually stop it from
working. Particularly, this option disables what is known as subtree checking, which
has had some stability issues in the past. Normally, when a directory is exported,
NFS might scan parent directories as well, which is sometimes problematic, and can
cause issues when it comes to open file handles.

There are several other options that can be included in an export, and you can read
more about them by checking the man page for export:

man export

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[231]

One option you'll see quite often in the wild is no_root_squash. Normally, the root
user on one system is mapped to nobody on the other for security reasons. In most
cases, one system having root access to another is a bad idea. The no_root_squash
option disables this, and it allows the root user on one end to be treated as the root
user on the other. I can't think of a reason personally where this would be useful (or
even recommended), but I have seen this option quite often in the wild, so I figured
I would bring it up. Again, check the man pages for export for more information on
additional options you can pass to your exports.

Next, we have one more file to edit before we can actually seal the deal on our NFS
setup. Open /etc/idmapd.conf in your text editor. Look for an option that is similar
to the following:

Domain = localdomain

First, remove the # symbol from that line to uncomment it. Then, change the domain
to match the one used within the rest of your network. You can leave this as-is as
long as it's the same on each node, but if you recall from Chapter 7, Managing Your
Ubuntu Server Network, we used a sample domain of local.lan in our DHCP
configuration, so it's best to make sure you use the same domain name everywhere—
even the domain provided by DHCP. Basically, just be as consistent as you can and
you'll have a much easier time overall. You'll also want to edit the /etc/idmapd.
conf file on each node that will access your file server, to ensure they are configured
the same as well.

The /etc/idmapd.conf file is necessary for mapping permissions on one node to
another. In Chapter 2, Managing Users, we talked about the fact each user has an ID
(UID) assigned to them. The problem though is that from one system to another, a
user will not typically have the same ID. For example, user jdoe may be UID 1001
on Server A, but 1007 on Server B. When it comes to NFS, this greatly confuses
the situation, because UIDs are used in order to reference permissions. Mapping
IDs with idmapd allows this to stay consistent and handles translating each user
properly, though it must be configured correctly and consistently on each node.
Basically, as long as you use the same domain name on each server and client and
configure the /etc/idmapd.conf file properly on each, you should be fine.

With our /etc/exports and /etc/idmapd.conf files in place, and assuming you've
already created the exported directories on your filesystem, we should be all set to
restart NFS to activate our configuration:

systemctl restart nfs-kernel-server

On older servers, you'll use:

/etc/init.d/nfs-kernel-server restart

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[232]

After restarting NFS, you should check the deamon's output via systemctl to ensure
that there are no errors:

systemctl status -l nfs-kernel-server

As long as there are no errors, our NFS server should be working. Now, we just need
to learn how to mount these shares on another system. Unlike Samba, using a Linux
file manager and browsing the network will not show NFS exports, we'll need to
mount them manually. Client machines, assuming they are Debian-based (Ubuntu
fits this description) will need the nfs-common package installed in order to access
these exports:

apt-get install nfs-common

With the client installed, we can now use the mount command to mount NFS exports
on a client. For example, with regards to our documents export, we can use the
following variation of the mount command to do the trick:

mount myserver:/documents /mnt/documents

Replace myserver with either your server's hostname or its IP address. From this
point forward, you should be able to access the contents of the documents export
on your file server. Notice, however, that the exported directory on the server was
/exports/documents, but we only asked for /documents instead of the full path
with the example mount command. The reason this works is because we identified
an export root of /exports. To save you from flipping back, here's the first line from
the /etc/exports file, where we identified our export root:

/exports *(ro,fsid=0)

With the export root, we basically set the base directory for our NFS exports. We
set it as read-only (ro), because we don't want anyone making any changes to
the /exports directory itself. Other directories within /exports have their own
permissions and will thus override the ro setting on a per-export basis, so there's no
real reason to set our export root as anything other than read-only. With our export
root set, we don't have to call out the entire path of the export when we mount it;
we only need the directory name. This is why we can mount an NFS export from
myserver:/documents instead of having to type the entire path. While this does
save us a bit of typing, it's also useful because from the user's perspective, they aren't
required to know anything about the underlying filesystem on the server. There's
simply no value for the user to have to memorize the fact that the server is sharing a
documents directory from /exports, all they're interested in is getting to their data.
Another benefit is if we ever need to move our export root to a different directory
(during a maintenance period), our users won't have to change their configuration to
reference the new place; they'll only need to unmount and remount the exports.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[233]

So, at this point, you'll have three directories being exported from your file server,
and you can always add others as you go. However, anytime you add a new export,
they won't be automatically added and read by NFS. You can restart NFS to activate
new exports, but that's not really a good idea while users may be connected to them,
since that will disrupt their access. Thankfully, the following command will cause
NFS to reread the /etc/exports file without disrupting existing connections. This
will allow you to activate new exports immediately without having to wait for users
to finish what they're working on:

exportfs -a

With this section out of the way, you should be able to export a directory on your
Ubuntu Server, and then mount that export on another Linux machine. Feel free
to practice creating and mounting exports until you get the hang of it. In addition,
you should familiarize yourself with a few additional options and settings that are
allowable in the /etc/exports file, after consulting with the man page on export.
When you've had more NFS practice than you can tolerate, we'll move on to a few
ways in which you can copy files from one node to another without needing to set
up an intermediary service or daemon.

Transferring files with rsync
Of all the countless tools and utilities available in the Linux and UNIX world, few
are as beloved as rsync. rsync is a utility that you can use to copy data from one
place to another very easily, and there are many options available to allow you
to be very specific on how you want the data transferred. Examples of its many
use-cases include copying files while preserving permissions, copying files while
backing up replaced files, and even setting up incremental backups. If you don't
already know how to use rsync, you'll probably want to get lots of practice with it,
as it's something you'll soon see will be indispensable during your career as a Linux
administrator, and it is also something that the Linux community generally assumes
you already know. rsync is not hard to learn. Most administrators can learn the
basic usage in about an hour, but the countless options available will lead you to
learn new tricks even years down the road.

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[234]

Another aspect that makes rsync flexible is the many ways you can manipulate the
source and target directories. I mentioned earlier that rsync is a tool you can use to
copy data from one place to another. The beauty of this is that the source and target
can literally be anywhere you'd like. For example, the most common usage of rsync
is to copy data from a directory on one server to a directory on another server over
the network. However, you don't even have to use the network; you can even copy
data from one directory to another on the same server. While this may not seem like
a useful thing to do at first, consider that the target directory may be a mount-point
that leads to a backup disk, or an NFS share that actually exists on another server.
This also works in reverse, you can copy data from a network location to a local
directory if you desired.

To get started with practicing with rsync, I recommend that you find some sample
files to work with. Perhaps you have a collection of documents you can use,
MP3 files, videos, text files, basically any kind of data you have lying around. It's
important to make a copy of this data. If we make a mistake we could overwrite
things, so it's best to work with a copy of the data, or the data you don't care about
while you're practicing. If you don't have any files to work with, you can create
some text files. The idea is to practice copying files from one place to another, it
really doesn't matter what you copy or to where you send it. I'll walk you through
some rsync examples that will progressively increase in complexity. The first few
examples will show you how to back up a home directory, but later examples will be
potentially destructive so you will probably want to work with sample files until you
get the hang of it.

Here's our first example:

rsync -r /home/myusr /backup

With that command, we're using rsync (as root) to copy the contents of the home
directory for the myuser directory to a backup directory, /backup (make sure the
target directory exists). In the example, I used the -r option, which means rsync will
grab directories recursively as well (you should probably make a habit of including
this if you use no other option). You should now see a copy of the myuser home
directory inside your /backup directory.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[235]

However, we have a bit of a problem. If you look at the permissions in the /backup/
myuser directory, you can see that everything in the target is now owned by root.
This isn't a good thing; when you back up a user's home directory, you'll want to
retain their permissions. In addition, you should retain as much metadata as you can,
including things like timestamps. Let's try another variation of rysnc. Don't worry
about the fact that /backup already has a copy of the myuser home directory from our
previous backup. Let's perform the backup again, but instead we'll use the -a option:

rsync -a /home/myuser /backup

This time, we replaced the -r option with -a (archive) that retains as much metadata
as possible (in most cases, it should make everything an exact copy). What you
should notice now is that the permissions within the backup match the permissions
within the user's home directory we copied from. The timestamps of the files will
now match as well. This worked because whenever rsync runs, it will copy what's
different from the last time it ran. The files from our first backup were already there,
but the permissions were wrong. When we ran the second command, rsync only
needed to copy that was different, so it applied the correct permissions to the files. If
any new files were added to the source directory since we last ran the command, the
new or updated files would be copied over as well.

The archive mode (the -a option that we used with the previous command)
is actually very popular; you'll probably see it a lot in the wild. The -a option is
actually a wrapper option that includes the following options at the same time:

-rlptgoD

If you're curious what each of these options do, consult the man page for rsync. As a
spoiler, the -r option copies data recursively (which we already knew), the -l option
copies symbolic links, -p preserves permissions, -g preserves group ownership, -o
preserves the owner, and -D preserves device files. If you put those options together,
we get --rlptgoD. Therefore, -a is actually equal to -rlptgoD. I find -a easier
to remember.

The archive mode is great and all, but wouldn't it be nice to be able to watch what
rsync is up to when it runs? Add the -v option and try the command again:

rsync -av /home/myuser /backup

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[236]

This time, rsync will display on your terminal what it's doing as it runs (-v activates
the verbose mode). This is actually one of my favorite variations of the rsync
command, as I like to copy everything and retain all the metadata, as well as
watch what rsync is doing as it works.

What if I told you that rsync supports SSH by default? It's true! Using rsync, you
can easily copy data from one node to another, even over SSH. The same options
apply, so you don't actually have to do anything different other than point rsync to
the other server, rather than to another directory on your server:

rsync -av /home/myuser admin@192.168.1.5:/backup

With this example, I'm copying the home directory for myuser to the /backup
directory on server 192.168.1.5. I'm connecting to the other server as the admin
user. Make sure you change the user account and IP address accordingly, and also
make sure the user account you use has access to the /backup directory. When you
run this command, you should get prompted for the SSH password as you would
when using plain SSH to connect to the server. After the connection is established,
the files will be copied to the target server and directory.

Now, we'll get into some even cooler examples (some of which are potentially
destructive), and we probably won't want to work with an actual home directory
for these, unless it's a test account and you don't care about its contents. As I've
mentioned before, you should have some test files to play with. When practicing,
simply replace my directories for yours. Here's another variation worth trying:

rsync -av --delete /src /target

Now I'm introducing you to the --delete option. This option allows you to
synchronize two directories. Let me explain why this is important. With every
rsync example up until now, we've been copying files from point A to point B, but
we weren't deleting anything. For example, let's say you've already used rsync to
copy contents from point A to point B. Then, you delete some files in point A. When
you use rsync to copy files from point A to point B again, the files you deleted in
point A won't be deleted in point B. They'll still be there. This is because by default,
rsync copies data between two locations but it doesn't remove anything. With the
--delete option, you're effectively synchronizing the two points, thus you're telling
rsync to make them the same by allowing it to delete files in the target that are no
longer in the source.

Next, we'll add the -b (backup) option:

rsync -avb --delete /src /target

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[237]

This one is particularly useful. Normally, when a file is updated on /src and then
copied over to /target, the copy on /target is overwritten with the new version.
But what if you don't want any files to be replaced? The -b option renames files on
the target that are being overwritten, so you'll still have the original file. If you add
the --backup-dir option, things get really interesting:

rsync -avb --delete --backup-dir=/backup/incremental /src /target

Now, we're copying files from /src to /target as we were before, but we're now
sending replaced files to the /backup/incremental directory. This means that when
a file is going to be replaced on the target, the original file will be copied to /backup/
incremental. This works because we used the -b option (backup) but we also used
the --backup-dir option, which means that replaced files won't be renamed, they'll
simply be moved to the designated directory. This allows us to effectively perform
incremental backups.

Building on our previous example, we can use the Bash shell itself to make
incremental backups work even better. Here we have two commands:

CURDATE=$(date +%m-%d-%Y)

rsync -avb --delete --backup-dir=/backup/incremental/$CURDATE /src /
target

With this example, we grab the current date and set it to a variable (CURDATE). In the
second command, we use the variable for the --backup-dir option. This will copy
replaced files to a backup directory named after the date the command was run.
Basically, if today's date was 05-01-2016, the resulting command would be the same
as if we've run the following:

rsync -avb --delete --backup-dir=/backup/incremental/05-01-2016 /src /
target

If we were running this command every day, we would have the contents of /src
copied to /target, with replaced files written to a backup directory with the current
date. This is something we would probably want to set up in a script and execute
daily via cron. This works well because /target could be a mounted NFS export, or
external drive, so our script could be a daily backup script. Here's what it would look
like if we made these commands into a script. Store the following in a text file such as
backup.sh:

#/bin/bash

CURDATE=$(date +%m-%d-%Y)

rsync -avb --delete --backup-dir=/backup/incremental/$CURDATE /src /
target

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[238]

Now, we need to make backup.sh executable:

chmod +x backup.sh

Then, move the file to /usr/local/bin (which is a great place to store scripts):

mv backup.sh /usr/local/bin

Now, you can run this rsync job anytime by calling out the full path to the script:

/usr/local/bin/backup.sh

With this script in place, you can now set up a cron job to make it run daily. Refer to
Chapter 6, Controlling and Monitoring Processes for more information on how to create
cron jobs.

Hopefully, you can see how flexible rsync is and how it can be used to not only copy
files between directories and/or nodes, but also to serve as a backup solution as well
(assuming you have a remote destination to copy files to). The best part is that this is
only the beginning. If you consult the man page for rsync, you'll see that there are a
lot of options you can use to customize it even further. Give it some practice, and you
should get the hang of it in no time.

Transferring files with SCP
A useful alternative to rsync is the Secure Copy (SCP) utility, which comes bundled
with OpenSSH. It allows you to quickly copy files from one node to another. While
rsync also allows you to copy files to other network nodes via SSH, SCP is more
practical for one-off tasks; rsync is geared more toward more complex jobs. If your
goal is to send a single file or a small number of files to another machine, SCP is a
great tool you can use to get the job done. To utilize SCP, we'll use the scp command.
Since you most likely already have OpenSSH installed, you should already have
the scp command available. If you execute which scp, you should receive the
following output:

/usr/bin/scp

If you don't see any output, make sure that the openssh-client package is installed.

Using SCP is very similar in nature to rsync. The command requires a source,
a target, and a filename. To transfer a single file from your local machine to
another, the resulting command would look similar to the following:

scp myfile.txt jdoe@192.168.1.50:/home/jdoe

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[239]

With this example, we're copying the file myfile.txt (which is located in our
current working directory) to a server located at 192.168.1.50. If the target server is
recognized by DNS, we could've used the DNS name instead of the IP address. The
command will connect to the server as user jdoe and place the file into that user's
home directory. Actually, we can shorten that command a bit:

scp myfile.txt jdoe@192.168.1.50:

Notice that I removed the target path, which was /home/jdoe. I'm able to omit the
path on the target, since the home directory is assumed if you don't give the scp
command a target path. Therefore, the myfile.txt file will end up in /home/jdoe
whether or not I included the path. If I wanted to copy the file somewhere else, I
would definitely need to call out the location. Make sure you always include at least
the colon when copying a file, since if you don't include it, you'll end up copying the
file to your current working directory instead of the target.

The scp command also works in reverse as well:

scp jdoe@192.168.1.50:myfile.txt .

With this example, we're assuming that myfile.txt is located in the home directory
for the user jdoe. This command will copy that file to the current working directory
of our local machine, since I designated the local path as a single period (which
corresponds to our current working directory). Using scp in reverse isn't always
practical, since you have to already know the file is where you expect it to be before
transferring it.

With our previous scp examples, we've only been copying a single file. If we want to
transfer or download an entire directory and its contents, we will need to use the -r
option, which allows us to do a recursive copy:

scp -r /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:downloads

With this example, we're copying the local folder /home/jdoe/downloads/
linux_iso to remote machine 192.168.1.50. Since we used the -r option, scp will
transfer the linux_iso folder and all of its contents. On the remote end, we're again
connecting via the user jdoe. Notice that the target path is just simply downloads.
Since scp defaults to the user's home directory, this will copy the linux_iso
directory from the source machine to the target machine under the /home/jdoe/
downloads directory. The following command would've had the exact same result:

scp -r /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:/home/jdoe/
downloads

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[240]

The home directory is not the only assumption the scp command makes, it also
assumes that SSH is listening on port 22 on the remote machine. Since it's possible to
change the SSH port on a server to something else, port 22 may or may not be what's
in use. If you need to designate a different port for scp to use, use the -P option:

scp -P 65222 -r /home/jdoe/downloads/linux_iso
jdoe@192.168.1.50:downloads

With that example, we're connecting to the remote machine via port 65222. If you've
configured SSH to listen on a different port, change the number accordingly.

Although port 22 is always the default for OpenSSH, it's
common for some administrators to change it to something
else. While changing the SSH port doesn't add a great deal of
benefit in regards to security (an intensive portscan will still
find your SSH daemon), it's a relatively easy change to make,
and making it even just a little bit harder to find is of benefit.
We'll discuss this further in Chapter 12, Securing Your Server.

Like most commands in the Linux world, the scp command supports the verbose
mode. If you wanted to see how the scp command progresses as it copies multiple
files, add the -v option:

scp -rv /home/jdoe/downloads/linux_iso jdoe@192.168.1.50:downloads

Well, there you have it. The scp command isn't overly complex or advanced, but
it's really great for situations in which you want to perform a one-time copy of a file
from one node to another. Since it copies files over SSH, you benefit from its security,
and it also integrates well with your existing SSH configuration. An example of this
integration is the fact that scp recognizes your ~/.ssh/config file (if you have one),
so you can shorten the command even further. Go ahead and practice with it a bit,
and in the next section, we'll go over yet another trick that OpenSSH has up
its sleeve.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[241]

Mounting remote filesystems with SSHFS
Earlier in this chapter, we took a look at several ways in which we can set up a Linux
fileserver, using Samba and/or NFS. There's another type of file sharing solution
I haven't mentioned yet, the SSH File System (SSHFS). NFS and Samba are great
solutions for designating file shares that are to be made available to other users,
but these technologies may be more complex than necessary if you want to set up a
temporary file-sharing service to use for a specific period of time. SSHFS allows you
to mount a remote directory on your local machine, and have it treated just like any
other directory. The mounted SSHFS directory would be available for the life of the
SSH connection. When you're finished, you simply disconnect the SSHFS mount.

There are some downsides when it comes to SSHFS, however. First, performance of
file transfers wouldn't be as fast as with an NFS mount, since there's encryption that
needs to be taken into consideration as well. However, unless you're performing
really resource-intensive work, you probably won't notice much of a difference
anyway. Another downside is that you'd want to save your work regularly as you
work on files within an SSHFS mount, because if the SSH connection drops for any
reason, you may lose data. This logic is also true of NFS and Samba shares, but
SSHFS is more of an on-demand solution and not something intended to remain
connected and in place all the time.

To get started with SSHFS, we'll need to install it:

apt-get install sshfs

Now we're ready to roll. For SSHFS to work, we'll need a directory on both your
local Linux machine as well as a remote Linux server. SSHFS can be used to mount
any directory on the remote server you would normally be able to access via SSH.
That's really the only requirement. What follows is an example command to mount
an external directory to a local one via SSHFS. In your tests, make sure to replace
my sample directories with actual directories on your nodes, as well as use a valid
user account:

sshfs myuser@192.168.1.50:/share/myfiles /mnt/myfiles

www.hellodigi.ir

http://technet24.ir

Accessing and Sharing Files

[242]

As you can see, the sshfs command is fairly straightforward. With this example,
we're mounting /share/myfiles on 10.10.99.204 to /mnt/myfiles on our local
machine. Assuming the command didn't give an error (such as access denied, if you
didn't have access to one of the directories on either side), your local directory should
show the contents of the remote directory. Any changes you make to the directory on
either side will immediately propagate to the other. The SSHFS mount will basically
function the same way as if you had mounted an NFS or Samba share locally.

When we're finished with the mount, we should unmount it. There are two ways to
do so. First, we can use the umount command as root (just like we normally would):

umount /mnt/myfiles

Using umount command isn't always practical for SSHFS, though. The user that's
setting up the SSHFS link may not have root permissions, which means that he
or she wouldn't be able to unmount it with the umount command. If you tried the
umount command as a regular user, you would see an error similar to the following:

umount: /mnt/myfiles: Permission denied

It may seem rather strange that a normal user can mount an external directory via
SSHFS, but not unmount it. Thankfully, there's a specific command a normal user
can use, so we won't need to give them root or sudo access:

fusermount -u /mnt/myfiles

That should do it. With the fusermount command, we can unmount the SSHFS
connection we set up, even without root access. The fusermount command is
part of the File System in Userspace (FUSE) suite, which is what SSHFS uses as its
virtual filesystem to facilitate such a connection. The -u option, as you've probably
guessed, is for unmounting the connection normally. There is also the -z option,
which unmounts the SSHFS mount lazily. This is a last resort that you should rarely
need to use.

Connecting to an external resource via SSHFS can be simplified by adding an entry
for it in /etc/fstab. Here's an example entry, using our previous example:

myuser@192.168.1.50:/share/myfiles /mnt/myfiles fuse.sshfs
rw,noauto,users,_netdev 0 0

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 8

[243]

Notice that I used the noauto option in that fstab entry, which means that your
system will not automatically attempt to bring up this SSHFS mount when it boots.
Typically, this is ideal. The nature of SSHFS is to create on-demand connections
to external resources, and we wouldn't be able to input the password for the
connection while the system is in the process of booting anyway. Even if we set up
password-less authentication, the SSH daemon may not be ready by the time the
system attempts to mounted, so it's best to leave the noauto option in place and just
use SSHFS as the on-demand solution it is. With this /etc/fstab entry in place,
any time we would like to mount that resource via SSHFS, we would only need to
execute the following command going forward:

mount /mnt/myfiles

Since we now have an entry for /mnt/myfiles in /etc/fstab, the mount command
knows that this is an SSHFS mount, where to locate it, and which user account to use
for the connection. After you execute the example mount command, you should be
asked for the user's SSH password (if you don't have password-less authentication
configured) and then the resource should be mounted.

SSH sure does have a few unexpected tricks up its sleeve. Not only is it the de facto
standard in the industry for connecting to Linux servers, but it also offers us a neat
way of transferring files quickly and mounting external directories. I find SSHFS
very useful in situations where I'm working on a large number of files on a remote
server, but want to work on them with applications I have installed on my local
workstation. SSHFS allows us to do exactly that.

Summary
In this chapter, we explored multiple ways of accessing remote resources. Just about
every network has a central location for storing files, and we explored two ways of
accomplishing this with NFS and Samba. Both NFS and Samba have their place in
the data center and are very useful ways we can make resources on a server available
to our users who need to access them. We also talked about rsync and scp, two great
utilities for transferring data without needing to set up a permanent share. We closed
off the chapter with a look at SSHFS, which is a very handy utility for mounting
external resources locally, on demand.

Next up is Chapter 9, Managing Databases. Now that we have all kinds of useful
services running on our Ubuntu Server network, it's only fitting that we take a look
at serving databases as well. Specifically, we'll look at MariaDB. See you there!

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[245]

Managing Databases
The Linux platform has long been a very popular choice for hosting databases. Given
the fact that databases power a large majority of popular websites across the Internet
nowadays, this is a very important role for servers to fill. Ubuntu Server is also a
very popular choice for this purpose, as its stability is a major benefit to the hosting
community. This time around, we'll take a look at MariaDB, a popular fork of
MySQL. The goal won't be to provide a full walkthrough of MySQL's syntax (as that
would be a full book in and of itself), but we'll focus on setting up and maintaining
database servers utilizing MariaDB and we'll even go over how to set up a master/
slave relationship between them. If you already have a firm understanding of how
to architect databases, you'll still benefit from this chapter as we'll also discuss what
sets Ubuntu's implementation apart from other distributions (and there are some
fairly sizable differences).

As we work through setting up our very own MariaDB server, we will cover the
following topics:

•	 Preparations for setting up a database server
•	 Installing MariaDB
•	 Understanding how MariaDB differs in Ubuntu 16.04
•	 Taking a look at MariaDB configuration
•	 Managing databases
•	 Setting up a slave DB server

www.hellodigi.ir

http://technet24.ir

Managing Databases

[246]

Preparations for setting up a database
server
Before we get started with setting up our database server, there are a few odds
and ends to get out of the way. As we go through this chapter, we'll set up a basic
database server using MariaDB. I'm sure more than a few of you are probably
familiar with MySQL. MySQL is a tried and true solution which is in use in many
data centers today. There's a good chance that a popular website or two that you
regularly visit utilizes it on the backend. So you may be wondering then, why not go
over that instead of MariaDB?

There are two reasons why this book will focus on MariaDB. First, the majority
of the Linux community is migrating over to it (more on that later), and it's also a
drop-in replacement for MySQL. This means that any databases or scripts you've
already written for MySQL should work just fine with MariaDB. The reason I say
"should" instead of giving you a personal guarantee is because there are always
edge-cases when it comes to technology. By and large, it stands to reason that all the
MySQL syntax you're accustomed to and any scripts you've written or databases
you migrate over should indeed work just fine. The commands you practice with
MariaDB should also function as you would expect on a MySQL server. This is great,
considering that many MySQL installations are still in use in many data centers, and
you'll be able to support those too. For the most part, there are very few reasons to
stick with MySQL when your existing infrastructure can be ported over to MariaDB,
and that's the direction the Linux community is headed toward anyway.

Why the change? If you've been paying attention to news within the Linux
community nowadays, you may have seen articles from time to time regarding
various distributions switching to MariaDB from MySQL. Red Hat is one such
example; it switched to MariaDB in version 7 of Red Hat Enterprise Linux. Other
distributions, such as Arch Linux and Fedora, went the same route. This was partly
due to a lack of trust in Oracle, the company that now owns MySQL. When Oracle
became the owner of MySQL, there were some serious questions raised within the
open source community regarding the future of MySQL as well as its licensing. The
Linux community, in general, doesn't seem to trust Oracle as a company, and in turn
doubts its stewardship of MySQL. I'm not going to get into any speculation about
Oracle, the future of MySQL, or any tin-foil hat conspiracies regarding its future
since it's not relevant to this book (and I'm not a fan of drama). The fact, though,
is that many distributions are moving toward MariaDB, and that seems to be the
future. It's a great technology, and I definitely recommend it over MySQL for
several reasons.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[247]

MariaDB is more than just a fork of MySQL. On its own, it's a very competent
database server. The fact that your existing MySQL implementations should be
compatible with it eases adoption. But more than that, MariaDB makes some very
worthwhile changes and improvements to MySQL that will only benefit you. It's
kind of like the Marvel Comics character, Blade; he has all the strengths of vampires,
but none of their weaknesses. Everything you love about MySQL can be found
in MariaDB, plus some cutting-edge features that are exclusive to it. Some of the
improvements within MariaDB include the fact that we'll receive faster security
patches (since developers don't need to wait for approval from Oracle before
releasing updates), as well as better performance. But even better is the fact that
MariaDB features additional clustering options that are leaps and bounds better
and more efficient than plain-old MySQL.

So hopefully I've sold you on the value of MariaDB. Ultimately, whether or not
you actually use it will depend on the needs of your organization. I've seen some
organizations opt to stick with MySQL, if only for the sole reason that it's what they
know, and new technologies tend to scare management. I can understand that if a
solution has proven itself in your data center, there's really no reason to change if
your database stack is working perfectly fine the way it is. To that end, while I'll be
going over utilizing MariaDB, most of my instructions should work for MySQL
as well.

With regards to your server, a good implementation plan is key (as always). I won't
spend too much time on this aspect, since by now I know you've probably been
through a paragraph or two in this book where I've mentioned the importance of
redundancy (and I'm sure I'll mention redundancy again a few more times before
the last page). At this point, you're probably just setting up a lab environment or
test server on which to practice these concepts before using your new-found skills in
production. But when you do eventually roll out a database server into production,
it's crucial to plan for long-term stability. Database servers should be regularly
backed up, redundant (there I go again), and regularly patched. Later on in this
chapter, I'll walk you through setting up a slave database server, which will take care
of the redundancy part. However, that's not enough on its own, as regular backups
are important. There are many utilities that allow you to do this, such as mysqldump,
and also snapshots of your virtual machine (assuming you're not using a physical
server). Both solutions are valid, depending on your environment. As someone that's
lost an entire work day attempting to resurrect a fallen database server for a client
(of which they had no backups or redundancy) my goal is simply to spare you
that headache.

www.hellodigi.ir

http://technet24.ir

Managing Databases

[248]

As far as how much resources a database server needs, that solely depends on your
environment. MariaDB itself does not take up a huge amount of resources, but as
with MySQL, your usage is dependent on your workload. Either you'll have a few
dozen clients connecting or a few thousand or more. But one recommendation I'll
definitely make is to use LVM for the partition that houses your database files.
This will certainly spare you grief in the long run. As we've discussed in Chapter
3, Managing Storage Volumes, LVM makes it very simple to expand a filesystem,
especially on a virtual machine. If your database server is on a virtual machine, you
can add a disk to the volume group and expand it if your database partition starts to
get full, and your customers will never notice there was ever about to be a problem.
Without LVM, you'll need to shut down the server, add a new volume, rsync
your database server files over to the new location, and then bring up the server.
Depending on the size of your database, this situation can span hours. Do yourself a
favor, use LVM.

With that out of the way, we can begin setting up MariaDB. For learning and testing
purposes, you can use pretty much any server you'd like, physical or virtual. Once
you're ready, let's move on and we'll get started!

Installing MariaDB
Now we've come to the fun part, installing MariaDB. To get the ball rolling, we'll
install the mariadb-server package:

apt-get install mariadb-server

If your organization prefers to stick with MySQL, the package to install is
mysql-server instead:

apt-get install mysql-server

I don't recommend switching from MariaDB to MySQL (or vice
versa) on the same server. I've seen some very strange configuration
issues occur on servers that had one installed and then were
switched to the other (even after wiping the configuration). For
the most part, it's best to pick one and stick with it. As a general
rule, MySQL should only be used if you have legacy databases to
support. For brand-new installations, go with MariaDB.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[249]

Going forward, I'll assume that you've installed MariaDB, though the instructions
here shouldn't differ between them. Normally, you'd probably use the systemctl
command at this point to investigate whether or not the MariaDB daemon has
started and is running. I'll give you a bit of a spoiler: the daemon will indeed be
started and enabled for you. However, the name of this daemon won't be quite what
you expect:

systemctl status mysql

No, that's not a misprint. The MariaDB daemon is called mysql. The old name is kept
intact. So basically, whether you've installed the mariadb-server or mysql-server,
the resulting service name will be the same. For now, let's stop the mysql daemon,
since we have another step left:

systemctl stop mysql

Next, we'll have MariaDB install all of its default database structure:

mysql_install_db

There will be a great deal of text printed in your terminal, mostly about setting
the root password. Don't worry about that now; we'll take care of setting the root
password soon. For now, start the mysql daemon:

systemctl start mysql

At this point, we officially have a fully functional database server. To connect to it
and manage it, we'll use the mysql command. We'll be going over this later, but if
you're curious what the MariaDB shell looks like, enter the mysql command as root
that will take you right in:

mysql

The mysql command works because the mariadb-client package was installed as a
dependency when we installed mariadb-server, which is a utility that allows us to
connect to databases. Entering the mysql command by itself with no options connects
us to the database server on our local machine. This utility also lets us connect to
external database servers to manage them remotely, which we'll discuss later. In the
MariaDB shell, we can enter commands to view and manage our databases, as well
as manage our database users. The MariaDB shell prompt will look like this:

MariaDB [(none)]>

We'll get into MariaDB commands and user management later. For now, you can
exit the shell. To exit, you can type exit and press Enter or press Ctrl + D on
your keyboard.

www.hellodigi.ir

http://technet24.ir

Managing Databases

[250]

Now that we've installed MariaDB, we should secure it. As root, enter the following
command to begin the process:

mysql_secure_installation

The first prompt will ask for your current root password:

Enter current password for root (enter for none):

We haven't set a root password yet, so just press Enter. Next, we'll be asked if we
want to set a root password, which I recommend you do:

Set root password? [Y/n]

Simply press Enter to select the default (which is Y) and you'll be asked for the new
root password. Choose and enter a secure root password and press Enter. You'll be
asked to enter it a second time to confirm it. At the next prompt, you'll be asked if
you want to remove anonymous users:

Remove anonymous users? [Y/n]

As you can see in the descriptive text that accompanies this prompt, MariaDB creates
an anonymous user account, which is intended for testing, but shouldn't really exist
on a production server. If you enter Y or accept the default and press Enter, this user
will be removed:

Disallow root login remotely? [Y/n]

By default, MariaDB allows the root database user to connect remotely. The
individual connecting remotely must know the root password in order to connect.
However, if this is allowed, a miscreant can attempt to brute-force the server from
a remote system. I can't think of a single situation in which allowing this is a good
idea. If you answer Y here, the root MariaDB account will only be usable on the local
machine. Disallowing the root login from remote machines is advised.

Remove test database and access to it? [Y/n]

Another testing feature that MariaDB includes by default is a database named test,
which is accessible by all users. If you answer Y here, this database will be removed.
We'll be creating our own database to practice with in this chapter, so there's no need
for you to keep it around:

Reload privilege tables now? [Y/n]

Finally, you'll be asked if you'd like to reload privilege tables. Basically, anytime
you make changes to users or database access, you should reload privileges. If you
answer Y here, that will be done for you. I'll show you how to do this manually
later, though.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[251]

Now, our MariaDB is a bit more secure than it is by default. We still have more work
to do on this server though, which we'll expand upon as we go along. While you
can now move on to the next section, you might want to consider setting up another
MariaDB server by following these steps on another machine. If you have room for
another virtual machine, it might be a good idea for you to get this out of the way
now, since we'll be setting up a slave database server later.

Taking a look at MariaDB configuration
Now that we have MariaDB installed, let's take a quick look at how its configuration
is stored. While we won't be changing much of the configuration in this chapter
(aside from adding parameters related to setting up a slave), it's a good idea to know
where to find the configuration, since you'll likely be asked by a developer to tune
the database configuration at some point in your career. This may involve changing
the storage engine, buffer sizes, or countless other settings. A full walkthrough
on performance tuning is outside the scope of this book, but it will be helpful to
know how the settings for MariaDB are read, since Ubuntu's implementation is
fairly unique.

The configuration files for MariaDB are stored in the /etc/mysql directory.
Within that directory, you'll see the following files by default:

debian.cnf
debian-start
mariadb.cnf
my.cnf
my.cnf.fallback

You'll also see the following directories:

conf.d
mariadb.conf.d

The configuration file that MariadDB reads on startup is the /etc/mysql/mariadb.
cnf file. This is where you'll begin pursuing when you want to configure the
daemon, but we'll get to that soon. The /etc/mysql/debian-start file is actually
a script that sets default values for MariaDB when it starts, such as setting some
environment variables. It also defines a SIGHUP trap that is executed if the mysql
process receives the SIGHUP signal, which will allow it to check for crashed tables.

www.hellodigi.ir

http://technet24.ir

Managing Databases

[252]

The debian-start script also loads the /etc/mysql/debian.cnf file, which sets
some client settings for the mysql daemon. Here's a list of values from that file:

[client]
host = localhost
user = root
password =
socket = /var/run/mysqld/mysqld.sock
[mysql_upgrade]
host = localhost
user = root
password =
socket = /var/run/mysqld/mysqld.sock
basedir = /usr

The defaults for these values are fine and there's rarely a reason to change them.
Essentially, the file sets the default user, host, and socket location. If you've used
MySQL before on other platforms, you may have seen many of those settings in
the /etc/my.cnf file, which is typically the standard file for the mysql daemon.
With MariaDB on Ubuntu Server, you can see that the default layout of files was
changed considerably.

The /etc/mysql/mariadb.cnf file sets the global defaults for MariaDB. However, in
Ubuntu's implementation, this default file just includes configuration files from the /
etc/mysql/conf.d and the /etc/mysql/mariadb.conf.d directories. Within those
directories, there are additional files ending with the .cnf extension. Many of these
files contain default configuration values that would normally be found in a single
file, but Ubuntu's implementation modularizes these settings into separate files
instead. For our purposes in this book, we'll be editing the /etc/mysql/conf.d/
mysql.cnf file, when it comes time to set up master and slave replication.

The other configuration files aren't relevant for the content of this book, and
their current values are more than sufficient for what we need. When it comes to
performance tuning, you may consider creating a new configuration file ending with
the .cnf extension, with specific tuning values as provided by the documentation of
a software package you want to run that interfaces with a database, or requirements
given to you by a developer.

For additional information on how these configuration files are read, you can refer to
the /etc/mysql/mariadb.cnf file, which includes some helpful contents at the top
of the file that details the order in which these configuration files are read, as well as
their purpose. Here's an excerpt of these comments from that file:

The MariaDB/MySQL tools read configuration files in the following
order:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[253]

1. "/etc/mysql/mariadb.cnf" (this file) to set global defaults,
2. "/etc/mysql/conf.d/*.cnf" to set global options.
3. "/etc/mysql/mariadb.conf.d/*.cnf" to set MariaDB-only options.
4. "~/.my.cnf" to set user-specific options.

As we can see, when MariaDB starts up, it first reads the /etc/mysql/mariadb.
cnf file, followed by.cnf files stored within the /etc/mysql/conf.d directory, then
the .cnf files stored within the /etc/mysql/mariadb.conf.d directory, followed
by any user-specific settings stored within a .my.cnf file that may be present in the
user's home directory.

With Ubuntu's implementation, when the /etc/mysql/mariadb.cnf file is read
during startup, the process will immediately scan the contents of /etc/mysql/
conf.d and /etc/mysql/mariadb.conf.d, because the /etc/mysql/mariadb.cnf
file contains the following lines:

!includedir /etc/mysql/conf.d/
!includedir /etc/mysql/mariadb.conf.d/

As you can see, even though the order the configuration files are checked is set to
check the mariadb.cnf file first followed by the /etc/mysql/conf.d and /etc/
mysql/mariadb.conf.d directories, the mariadb.cnf file simply tells the mysql
service to immediately check those directories.

This may be a bit confusing at first, because the default configuration for MariaDB
in Ubuntu Server essentially consists of files that redirect to other files. But the
main takeaway is that any configuration changes you make that are not exclusive
to MariaDB (basically, configuration compatible with MySQL itself), should be
placed within a configuration file the ends with the .cnf extension, and then stored
within the /etc/mysql/conf.d directory. If the configuration you're wanting to add
is for a feature exclusive to MariaDB (but not compatible with MySQL itself), the
configuration file should be placed in the /etc/mysql/mariadb.conf.d directory
instead. For our purposes, we'll be editing the /etc/mysql/conf.d/mysql.cnf file
when it comes time to setting up our master/slave replication, since the method we'll
be using is not specific to MariaDB.

In this section, we discussed MariaDB configuration and how it differs from its
implementation in other platforms. The way the configuration files are presented
is not the only difference in Ubuntu's implement of MariaDB; there are other
differences as well. In the next section, we'll take a look at a few additional ways in
which Ubuntu's implementation differs.

www.hellodigi.ir

http://technet24.ir

Managing Databases

[254]

Understanding how MariaDB differs in
Ubuntu 16.04
Before we dive into managing our database server, we'll first go over a few ways
in which MariaDB differs on Ubuntu 16.04 when compared to implementations
on other distributions. For the most part, the differences are with regards to how
authentication is handled to the MariaDB shell. The MariaDB shell is used to
manage our database (which we'll get to shortly) and can be accessed with the
mysql command:

mysql

With that command, you'll immediately be given a MariaDB prompt, which will
allow you to execute commands to manage your database configuration. However,
you'll probably notice that the mysql command didn't prompt you for your root
password. Instead, it immediately provided you with a MariaDB prompt. This may
be surprising to those of you that have used MySQL before on other platforms. With
other distributions, the default configuration will prompt you for the password for
the root MariaDB shell, even if you're already logged in as the root Linux user on
your server. On most implementations, you would execute a command such as the
following to connect to the root MariaDB shell:

mysql -u root -p

That command first prompts you for your MariaDB root password, and then it
provides you with a shell with which you can manage your server. That's still the
case, but what's odd about Ubuntu's implementation is that you don't need the
password in order to obtain access to the MariaDB prompt. In fact, when prompted,
you can enter an invalid password on purpose and still be provided access anyway.
The logic here is most likely that if you can access the root Linux user, you already
have system-wide access anyway, so securing the root MariaDB shell from the root
Linux user wouldn't benefit the system much. Still, this behavior is a bit peculiar
if you're coming from another platform, such as Red Hat or even older versions of
Debian or Ubuntu itself.

Another difference in Ubuntu 16.04's implementation of MariaDB is that normal
Linux users are not able to access the MariaDB, even if you enter the correct
password. For example, as a regular user, try the following command:

mysql -u root -p

No matter what you do, that command will not work unless you're logged into the
server as root itself. You'll receive the following error:

ERROR 1698 (28000): Access denied for user 'root'@'localhost'

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[255]

I'm informing you about this to save you from frustration and help those of you who
are familiar with the common behavior of standard MySQL. The takeaway is that,
by default, you can only access the root MariaDB shell when you're logged in as
the root Linux user, and standard users won't be able to access it. This is because
MariaDB is configured to utilize UNIX sockets for authentication instead of using
standard authentication. A walkthrough of UNIX sockets is beyond the scope of this
book, but I'll show you how to return to the normal behavior later on.

For now, the recommended approach is to create another user within MariaDB to act
as your administrative user. Once created, you can allow a database administrator
access to this special MariaDB account, without giving him or her root access to the
entire server. We'll create this administrative user in the next section.

Yet another difference in Ubuntu's MariaDB implementation is that standard
authentication over the network will not work by default. Normally, you can
use the following command to connect to the server from your workstation:

mysql -H <IP-address-of-host> -u <username> -p<password>

By default, that won't work. This is, again, due to UNIX sockets being used instead of
standard authentication. I'll show you how to work around this later in this chapter.

Managing databases
Now that our MariaDB server is up and running (and we've covered some of the
quirks regarding Ubuntu's implementation), we can finally look into managing it.
In this section, I'll demonstrate how to connect to a database server using the mysql
command, which will allow us to create databases, remove (drop) them, and also
manage users and permissions.

At the end of the last section, I mentioned that the preferred method of managing
databases on Ubuntu's implementation of MariaDB is to create an administrative
user to be used in place of the root account, so we can start our discussion on
database management with user management. To create this administrative user,
we'll need to enter the MariaDB shell, which again, is simply a matter of executing
the mysql command as root. Your prompt will change to the following:

MariaDB [(none)]>

www.hellodigi.ir

http://technet24.ir

Managing Databases

[256]

Now, we can create our new administrative user. I'll call mine admin in my
examples, but you can use whatever name you'd like. In a company I used to work
for, we used the user name velociraptor as our administrative user on our servers,
since nothing is more powerful than a velociraptor. Feel free to use a clever name,
but just make sure you remember it. Here's the command to create a new user
in MariaDB (replace the user name and password in the command with your
desired credentials):

CREATE USER 'admin'@'localhost' IDENTIFIED BY 'password';
FLUSH PRIVILEGES;

When it comes to MySQL syntax, the commands are not case-sensitive
(though the data parameters are), but it's common to capitalize
instructions to separate them from data. During the remainder of this
chapter, we'll be executing some commands within the Linux shell,
and others within the MariaDB shell. I'll let you know which shell each
command needs to be executed in as we come to them, but if you are
confused, just keep in mind that MariaDB commands are the only ones
that are capitalized.

With the preceding commands, we're creating the admin user and restricting it to
localhost. This is important because we don't want to open up the admin account
to the world. We're also flushing privileges, which causes MariaDB to reload its
privilege information. The FLUSH PRIVILEGES command should be run every time
you add a user or modify permissions. I may not always mention the need to run this
command, so you might want to make a mental note of it and make it a habit now.

As I mentioned, the previous command created the admin user but is only allowing
it to connect from localhost. This means that an administrator would first need to
log in to the server itself before he or she would be able to log in to MariaDB with
the admin account. As an example of the same command (but allowing remote login
from any other location), the following command is a variation that will do just that:

CREATE USER 'admin'@'%' IDENTIFIED BY 'password';

Can you see the percent symbol (%) in place of localhost? That basically means
everywhere, which indicates we're creating a user that can be logged into from any
source (even external nodes). By restricting our user to localhost with the first
command, we're making our server just a bit more secure. You can also restrict
access to particular networks, which is desired if you really do need to allow a
database administrator access to the server remotely:

CREATE USER 'admin'@'192.168.1.%' IDENTIFIED BY 'password';

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[257]

That's a little better, but not as secure as limiting login to localhost. As you can see,
the % character is basically a wildcard, so you can restrict access to needing to be
from a specific IP or even a particular subnet.

So far, all we did is create a new user, we have yet to give this user any permissions.
We can create a set of permissions (also known as Grants) with the Grant
command. First, let's give our admin user full access to the DB server when
called from localhost.

GRANT ALL PRIVILEGES ON *.* TO 'admin'@'localhost';
FLUSH PRIVILEGES;

Now, we have an administrative user we can use to manage our server's databases.
We can use this account for managing our server instead of the root account. Any
logged-on Linux user will be able to access the database server and manage it,
provided they know the password. To access the MariaDB shell as the admin user
that we created, the following command will do the trick:

mysql -u admin -p

After entering the password, you'll be logged into MariaDB as admin.

In addition, you can actually provide the password to the mysql command without
needing to be prompted for it:

mysql -u admin -p<password>

Notice that there is no space in between the -p option and the actual password
(though there is a space between -u and admin). This is normal and important. It's
one of the quirks of MySQL and its brethren. Anyway, as useful as it is to provide
the username and password in one shot, I don't recommend that you ever use it. This
is because any Linux command you type is saved in the history, so anyone can view
your command history and they'll see the password in plain text.

The admin account is only intended for system administrators who need to manage
databases on the server. The password for this account should not be given to
anyone other than staff employees or administrators that absolutely need it.
Additional users can be added to the MariaDB server, each with differing levels
of access. Keep in mind that our admin account can manage databases but not
users. This is important, as you probably shouldn't allow anyone other than
server administrators to create users. You'll still need to log in as root to manage
user permissions.

www.hellodigi.ir

http://technet24.ir

Managing Databases

[258]

It may also be useful to create a read-only user for MariaDB for employees who need
to be able to read data but not make changes. Back in the MariaDB shell (as root), we
can issue the following command to create a read-only user:

GRANT SELECT ON *.* TO 'readonlyuser'@'localhost' IDENTIFIED BY
'password';

With this command, we've done two things. First, we created a new user and also
set up Grants for that user with a single command. Second, we created a read-only
user that can view databases but not manage them (we restricted the permissions
to SELECT). This is more secure. In practice, it's better to restrict a read-only user
to a specific database. This is typical in a development environment, where you'll
have an application that connects to a database over the network, and needs to read
information from it. We'll go over this scenario soon.

Next, let's create a database. At the MariaDB prompt, execute:

CREATE DATABASE mysampledb;

That was easy. We should now have a database on our server named mysampledb.
To list all databases on our server (and confirm our database was created properly),
we can execute the following command:

SHOW DATABASES;

Showing a list of databases in MariaDB

The output will show some system databases that were created for us, but our new
database should be listed among them. We can also list users just as easily:

SELECT HOST, USER, PASSWORD FROM mysql.user;

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[259]

Showing a list of MariaDB users

In a typical scenario, when installing an application that needs its own database,
we'll create the database and then a user for that database. We'll normally want to
give that user permission to only that database, with as little permission as required
to allow it to function properly. We've already created the mysampledb database,
so if we want to create a user with read-only access to it, we can do so with the
following command:

GRANT SELECT ON mysampledb.* TO 'appuser'@'localhost' IDENTIFIED BY
'password';

With one command, we're not only creating the user appuser, but we're also setting
a password for it, in addition to allowing it to have SELECT permissions on the
mysampledb database. This is equivalent to read-only access. If our user needed full
access, we could use the following instead:

GRANT ALL ON mysampledb.* TO 'appuser'@'localhost' IDENTIFIED BY
'password';

Now, our appuser has full access but only to the mysampledb database. Of course,
we should only provide full access to the database if absolutely necessary. We can
also provide additional permissions, such as DELETE (whether or not the user has
access to delete data from the database), CREATE (which controls whether the user
can add data to the database), INSERT (controls whether or not the user can add new
rows to a database), SELECT (allows the user to read information from the database),
DROP (allows the user to fully remove a database), and ALL (which gives the user
everything). There are other permissions we can grant or deny, check the MariaDB
documentation for more details. The types of permissions you'll need to grant to a
user to satisfy the application you're installing will depend on the documentation for
that software. Always refer to the installation instructions for the application you're
attempting to install to determine which permissions are required for it to run.

www.hellodigi.ir

http://technet24.ir

Managing Databases

[260]

If you'd like to remove user access, you can use the following command to do so
(substituting myuser with the user account you wish to remove and host with the
proper host access you've previously granted the user):

DELETE FROM mysql.user WHERE user='myuser' AND host='localhost';

Now, let's go back to databases. Now that we've created the mysampledb database,
what can we do with it? We'll add tables and rows, of course! A database is useless
without actual data, so we can work through some examples of adding data to our
database to see how this works. First, log in to the MariaDB shell as a user with full
privileges to the mysampledb database. Now, we can have some fun and modify the
contents. Here are some examples you can follow:

USE mysampledb;

The USE command allows us to select a database we want to work with.
The MariaDB prompt will change from MariaDB [(none)]> to MariaDB
[mysampledb]>. This is very useful, as the MariaDB prompt changes to indicate
which database we are currently working with. We basically just told MariaDB that
for all of the commands we're about to run, we would like them used against the
mysampledb database.

Now, we can CREATE a table within our database. It doesn't matter what you call
yours, since we're just practicing. I'll call mine Employees:

CREATE TABLE Employees (Name char(15), Age int(3), Occupation char(15));

With this command, we've created a table named Employees that has three columns
(Name, Age, and Occupation). To add new data to this table, we can use the following
INSERT command:

INSERT INTO Employees VALUES ('Joe Smith', '26', 'Ninja');

The example INSERT command adds a new employee to our Employees table. When
we use INSERT, we insert all the data for each of the columns. Here, we have an
employee named Joe, who is 26 years old and whose occupation is a Ninja. Feel
free to add additional employees, all you would need to do is formulate additional
INSERT statements and provide data for each of the three fields. When you're done,
you can use the following command to show all of the data within this table:

SELECT * FROM Employees;

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[261]

Viewing contents of the Employees table

To remove an entry, the following command will do what we need:

DELETE FROM Employees WHERE Name = 'Joe Smith';

Basically, we're using the DELETE FROM command, giving the name of the table we
wish to delete from (Employees, in this case) and then using WHERE to provide some
search criteria for narrowing down our command.

The DROP command allows us to delete tables or entire databases, and it should be
used with care. I don't actually recommend you delete the database we just created,
since we'll use it for additional examples. But if you really wanted to drop the
Employees table, you could use:

DROP TABLE Employees;

Or to drop the entire database:

DROP DATABASE mysampledb;

There is, of course, much more to MariaDB and its MySQL syntax than the samples
I provided, but this should be enough to get you through the examples in this book.
As much as I would love to give you a full walkthrough of the MySQL syntax, it
would easily push this chapter beyond 50 pages. If you'd like to push your skills
beyond the samples of this chapter, there are great books available on the subject.

Before I close this section though, I think it will be worthwhile for you to see how to
back up and restore your databases. To do this, we have the mysqldump command
at our disposal. Its syntax is very simple, as you'll see. First, exit the MariaDB shell
and return to your standard Linux shell. Since we've already created an admin user
earlier in the chapter, we'll use that user for the purposes of our backup:

mysqldump -u admin -p --databases mysampledb > mysampledb.sql

www.hellodigi.ir

http://technet24.ir

Managing Databases

[262]

With this example, we're using mysqldump to create a copy of the mysampledb
database and storing it in a file named mysampledb.sql. Since MariaDB requires
us to log in, we authenticate to MariaDB using the -u option with the username
admin and the -p option that will prompt us for a password. The --databases
option is necessary because, by default, mysqldump does not include the database
create statement nor the tables. However, the --databases option forces this, which
just makes it easier for you to restore. Assuming that we were able to authenticate
properly, the contents of the mysampledb database will be dumped into the
mysampledb.sql file. This export should happen very quickly, since this database
probably only contains a single table and a few rows. Larger production databases
can take hours to dump.

Restoring a backup is fairly simple. We can utilize the mysql command with the
backup file used as a source of input:

mysql < mysampledb.sql

If we have UNIX sockets disabled and are using standard authentication for
MariaDB, the command to import the database becomes the following:

mysql -u admin -p < mysampledb.sql

So, there you have it. The mysqldump command is definitely very handy in
backing up databases. In the next section, we'll work through setting up a
slave database server.

Setting up a slave DB server
Earlier in this chapter, we discussed installing MariaDB on a server. To set up a
slave, all you really need to begin the process is set up another database server. If
you've already set up two database servers, you're ready to begin. If not, feel free to
spin up another VM and follow the process from earlier in this chapter that covered
installing MariaDB. Go ahead and set up another server if you haven't already done
so. Of your two servers, one should be designated as the master and the other the
slave, so make a note of the IP addresses for each.

To begin, we'll first start working on the master. We'll need to edit the /etc/mysql/
conf.d/mysql.cnf file. Currently, the file contains just the following line:

[mysql]

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[263]

Right underneath that, add a blank line and then the following code:

[mysqld]
log-bin
binlog-do-db=mysampledb
server-id=1

With this configuration, we're first enabling bin-logging, which is required for a
master/slave server to function properly. These binary logs record changes made to
a database, which will then be transferred to a slave.

Another configuration file that we'll need to edit is /etc/mysql/mariadb.
conf.d/50-server.cnf. In this file, we have the following line:

bind-address = 127.0.0.1

With this default setting, the mysql daemon is only listening for connections on
localhost (127.0.0.1), which is a problem since we'll need to connect to it from
another machine (the slave). Change this line to the following:

bind-address = 0.0.0.0

Next, we'll need to access the MariaDB shell on the master, and execute the
following commands:

GRANT REPLICATION SLAVE ON *.* to 'replicate'@'192.168.1.204' identified
by 'slavepassword';

Here, we're creating a replication user named replicate and allowing it to connect
to our primary server from the IP address 192.168.1.204. Be sure to change that
IP to match the IP of your slave, but you can also use a hostname identifier such
as %.mydomain if you have a domain configured, which is equivalent to allowing
any hostname that ends with .mydomain. Also, we're setting the password for this
user to slavepassword, so feel free to customize that as well to fit your password
requirements (be sure to make a note of the password).

Given the fact that the default implementation of MariaDB utilizes Unix socket
authentication instead of standard authentication, this can become a problem when
setting up master and slave replication. So it's best to disable it and return to the
standard approach. To do so, execute the following commands on the master server
from within the MariaDB shell:

USE mysql;
UPDATE `user` SET `plugin` = '' WHERE `User` = 'root';
FLUSH PRIVILEGES;

www.hellodigi.ir

http://technet24.ir

Managing Databases

[264]

We should now restart the mysql daemon so that the changes we've made to the
mysql.cnf file take effect:

systemctl restart mysql

Before we continue, you'll probably notice that now that we've disabled UNIX
socket authentication, you can no longer connect to the MariaDB shell with just the
mysql command by itself. You'll need to provide the MariaDB root password when
connecting to the root account. Again, here's the command to access the MariaDB
shell as root:

mysql -u root -p

From this point forward, when we work with the master server, we'll need to log in
with that method (or you can use the admin account we created earlier).

Anyway, back to setting up our master/slave replication. Next, we'll set up the slave
server. But before we do that, there's a consideration to make now that will possibly
make the process easier on us. In a production environment, it's very possible that
data is still being written to the master server. The process of setting up a slave is
much easier if we don't have to worry about the master database changing while we
set up the slave. The following command, when executed within the MariaDB shell,
will lock the database and prevent additional changes:

FLUSH TABLES WITH READ LOCK;

If you're absolutely sure that no data is going to be written to the master,
you can disregard that step.

Next, we should utilize mysqldump to make both the master and the slave contain the
same data before we start synchronizing them. The process is smoother if we begin
with them already synchronized, rather than trying to mirror the databases later.
Using mysqldump as we did in the previous section, create a dump of the master
server's database and then import that dump into the slave. The easiest way to
transfer the dump file is to use rsync or scp. Then, on the slave, use mysql to
import the file.

Since we configured the server to use standard authentication for MariaDB, the
command to back up the database on the master becomes the following:

mysqldump -u admin -p --databases mysampledb > mysampledb.sql

After transferring the mysampledb.sql file to the slave, you can import the backup
into the slave server:

mysql -u root -p < mysampledb.sql

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[265]

Back on the slave, we'll need to edit the /etc/mysql/conf.d/mysql.cnf and then
place the following code at the end:

[mysqld]
server-id=2

Make sure you restart the mysql process on the slave before continuing:

systemctl restart mysql

From the root MariaDB shell on your slave, enter the following command.
Change the IP address within the command accordingly:

CHANGE MASTER TO MASTER_HOST="192.168.1.184", MASTER_USER='replicate',
MASTER_PASSWORD='slavepassword';

Now that we're finished configuring the synchronization, we can unlock the
master's tables. On the master server, execute the following command within
the MariaDB shell:

UNLOCK TABLES;

Now, we can check the status of the slave to see whether or not it is running.
Within the slave's MariaDB shell, execute the following command:

SHOW SLAVE STATUS\G;

Assuming all went well, we should see the following line within the output:

Slave_IO_State: Waiting for master to send event

If the slave isn't running (Slave_IO_State is blank), execute the following command:

START SLAVE;

From this point forward, any data you add to your database on the master should
be replicated to the slave. To test, add a new record to the Employees table on the
mysampledb database on the master server:

USE mysampledb;

INSERT INTO Employees VALUES ('Optimus Prime', '100', 'Transformer');

On the slave, check the same database and table for the new value to appear. It may
take a second or two:

USE mysampledb;

SELECT * FROM Employees;

www.hellodigi.ir

http://technet24.ir

Managing Databases

[266]

If you see any errors within the Slave_IO_State line when you run SHOW SLAVE
STATUS\G; or your databases aren't synchronizing properly, here are a few things
you can try. First, make sure that the database master is listening for connections on
0.0.0.0 port 3306. To test, run this variation of the netstat command to see which
port the mysql process is listening on:

netstat -tulpn |grep mysql

The output should be similar to the following:

tcp 0 0 0.0.0.0:3306 0.0.0.0:*
LISTEN 946/mysqld

If you see that the service is listening on 127.0.0.1:3306 instead, that means
it's only accepting connections from localhost. Earlier in this section, I mentioned
changing the bind-address in the /etc/mysql/mariadb.conf.d/50-server.cnf
file. Make sure you've already done that and restart mysql. During my tests, I've
actually had one situation where the mysql service became locked after I made this
change, and attempting to restart the process did nothing (I ended up having to
reboot the entire server, which is not typically something you'd have to do).
Once the server came back up, it was listening for connections from the network.

If you receive errors on the slave when you run SHOW SLAVE STATUS\G; with regards
to authentication, make sure you've run FLUSH PRIVILEGES; on the master. Even if
you have, run it again to be sure. Also, double check that you're synchronizing with
the correct username, IP address, and password. For your convenience, here's the
command we've run on the master to grant replication permissions:

GRANT REPLICATION SLAVE ON *.* to 'replicate'@'192.168.1.204' identified
by 'slavepassword';

FLUSH PRIVILEGES

Here's the command that we've run on the slave:

CHANGE MASTER TO MASTER_HOST="192.168.1.184", MASTER_USER='replicate',
MASTER_PASSWORD='slavepassword';

Finally, make sure that your master database and the slave database both contain
the same databases and tables. The master won't be able to update a database on the
slave if it doesn't exist there. Flip back to my example usage on mysqldump if you
need a refresher. You should only need to use mysqldump and import the database
onto the slave once, since after you get the replication going, any changes made to
the database on the master should follow over to the slave. If you have any difficulty
with the mysqldump command, you can manually create the mysampledb and the
Employees table on the slave, which is really all it needs for synchronization to start.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 9

[267]

Synchronization should then begin within a minute, but you can execute STOP
SLAVE; followed by START SLAVE; on the slave server to force it to try to synchronize
again without waiting.

And that should be all there is to it. At this point, you should have fully functional
master and slave servers at your disposal. To get additional practice, try adding
additional databases, tables, users, and insert new rows into your databases.

Summary
Depending on your skillset, you're either an administrator that is learning about
SQL databases for the first time or you're a seasoned veteran who is curious how
to implement a database server with Ubuntu Server. With the recent changes in
Ubuntu Server as provided by its upstream database packages, there are quite
a few differences on this platform when compared to MySQL and MariaDB
implementations even on other platforms (especially in regards to authentication).
In this chapter, we dove into Ubuntu's implementation of this technology, and
worked through setting up our own database server. We also worked through some
examples of the MySQL syntax, such as creating databases, as well as setting up
users and their grants. We also worked through setting up a master and slave server
for replication.

Database administration is a very vast topic, and we've only scratched the surface
here. Being able to manage MySQL and MariaDB databases is a very sought-after
skill for sure. If you haven't worked with these databases before, this chapter will
serve as a good foundation for you to start your research.

In the next chapter, we'll use our database server to act as a foundation for
OwnCloud, which we will set up as part of our look into setting up a web server.
When you've finished practicing these database concepts, head on over to Chapter 10,
Serving Web Content, where we'll journey into Apache.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[269]

Serving Web Content
The flexible nature of Ubuntu Server makes it an amazing platform to host your
organization's web presence. In this chapter, we'll take a look at Apache, which
is the leading web server software on the Internet. Ubuntu's implementation of
Apache is very solid, and includes many useful plug-ins that can be used to extend
it further. We'll go through installing, configuring, and extending this popular
hosting solution, as well as securing it with SSL. In addition, we'll also take a look at
installing ownCloud, which is a great solution for setting up your very own cloud
environment for your organization to collaborate on and share files. As we work
through concepts related to hosting web content on Ubuntu Server, we will cover:

•	 Installing and configuring Apache
•	 Installing additional Apache modules
•	 Securing Apache with SSL
•	 Setting up high availability with keepalived
•	 Installing and configuring ownCloud

Installing and configuring Apache
The best way to become familiar with any technology is to dive right in. We'll
begin this chapter by installing Apache, which is simply a matter of installing
the apache2 package:
apt-get install apache2

By default, Ubuntu will immediately start and enable the apache2 daemon as
soon as its package is installed. You can confirm this yourself with either of the
two following commands, the latter of which you would use on older Ubuntu
server installations:
systemctl status apache2
/etc/init.d/apache2 status

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[270]

In fact, at this point, you already have (for all intents and purposes) a fully functional
web server. If you were to open a web browser and enter the IP address of the server
you just installed Apache on, you should see Apache's sample web page:

Apache's default web page in Ubuntu Server

Of course, there's more to Apache than simply installing it. There are several
configuration files in the /etc/apache2 directory that govern how sites are hosted,
as well as which directories Apache will look in to find web pages to host.

The directory that Apache serves web pages from is known as a Document Root,
with /var/www/html being the default. Inside that directory, you'll see an index.
html file, which is actually the default page you see when you visit an unmodified
Apache server. Essentially, this is a test page that was designed to show you
that the server is working, as well as some tidbits of information regarding the
default configuration.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[271]

You're not limited to hosting just one website on a server, though. Apache supports
the concept of a Virtual host, which allows you to serve multiple websites from a
single server. Each virtual host would consist of an individual configuration file,
which differentiate themselves based on either name or IP address. For example,
you could have an Apache server with a single IP address that hosts two different
websites, such as acmeconsulting.com and acmesales.com. To set this up, you
would create a separate configuration file for acmeconsulting.com and acmesales.
com stored in your Apache configuration directory. Each configuration file would
include a <VirtualHost> stanza, where you would place an identifier such as a
name or IP address that differentiates one from the other. When a request comes
in, Apache will serve either acmeconsulting.com or acmesales.com to the user's
browser, depending on which criteria matched when the request came in. The
configuration files for each site typically end with the .conf filename extension, and
are stored in the /etc/apache2/sites-available directory, which we'll come back
to in just a moment.

The basic workflow for setting up a new site (virtual host) will typically be similar to
the following:

•	 The web developer creates the website and related files
•	 These files are uploaded to the Ubuntu Server, typically in a subdirectory of

/var/www or another directory the administrator has chosen
•	 The server administrator creates a configuration file for the site, and copies it

into the /etc/apache2/sites-available directory
•	 The administrator enables the site and reloads Apache

Enabling virtual hosts is handled a bit differently in Debian and Ubuntu than in
other platforms. In fact, there are two specific commands to handle this purpose:
a2ensite for enabling a site and a2dissite for disabling a site. Assuming a site
with the URL of acmeconsulting.com is to be hosted on our Ubuntu Server, we
would copy its files to /var/www/acmeconsulting, create the /etc/apache2/
sites-available/acmeconsulting.conf configuration file, and enable the site
with the following commands:

a2ensite acmeconsulting.conf

systemctl reload apache2

I'm not using absolute paths in my examples; as long as you've
copied the configuration file to the correct place, the a2ensite
and a2dissite commands will know where to find it.

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[272]

If we wanted to disable the site for some reason, we would execute the a2dissite
command against the site's configuration file:

a2dissite mysite.conf

systemctl reload apache2

On older servers without the systemctl command, use the
following to reload Apache:
service apache2 reload

If you're curious how this works behind the scenes, when the a2ensite command
is run against a configuration file, it basically creates a symbolic link to that file and
stores it in the /etc/apache2/sites-enabled directory. When you run a2dissite
to disable a site, this symbolic link is removed. Apache, by default, will use any
configuration files it finds in the /etc/apache2/sites-enabled directory. After
enabling or disabling a site, you'll need to refresh Apache's configuration, which
is where the reload option comes in. This command won't restart Apache itself (so
users who are using your existing sites won't be disturbed) but it does give Apache
a chance to reload its configuration files. If you replaced reload with restart on the
preceding commands, Apache will perform a full restart. You should only need to
do that if you're having an issue with Apache or enabling a new plug-in, but in most
cases the reload option is preferred on a production system.

The main configuration file for Apache is located at /etc/apache2/apache2.conf.
Feel free to view the contents of this file; the comments contain a good overview of
how Apache's configuration is laid out. The following lines within this file are of
special interest:

Include the virtual host configurations:

IncludeOptional sites-enabled/*.conf

As you can see, this is how Ubuntu has configured Apache to look for enabled sites
within the /etc/apache2/sites-enabled directory. Any file stored there with
the .conf file extension is read by Apache. If you wish, you could actually remove
those lines and Apache would then behave as it does on other platforms, and the
a2ensite and a2dissite commands would no longer have any purpose. However,
it's best to keep the framework of Ubuntu's implementation intact, as separating the
configuration files makes logical sense, and helps simplify the configuration. This
chapter will go along with the Ubuntu way of managing configuration.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[273]

An additional virtual host is not required if you're only hosting a single site. The
contents of /var/www/html are served by the default virtual host if you make no
changes to Apache's configuration. This is where the example site that ships with
Apache comes from. If you only need to host one site, you could remove the default
index.html file stored within this directory and replace it with the files required by
your website. If you wish to test this for yourself, you can make a backup copy of
the default index.html file, and create a new one with some standard HTML. You
should see the default page change to feature the content you just added to the file.

The 000-default.conf file is special, in that it's basically the configuration file that
controls the default Apache sample website. If you look at the contents of the /etc/
apache2/sites-available and the /etc/apache2/sites-enabled directories,
you'll see the 000-default.conf configuration file stored in sites-available,
and symlinked in sites-enabled. This shows you that, by default, this site was
included with Apache, and its configuration file was enabled as soon as Apache was
installed. For all intents and purposes, the 000-default.conf configuration file is all
you need if you only plan on hosting a single website on your server. The contents of
this file are as follows, but I've stripped the comments out of the file in order to save
space on this page:

<VirtualHost *:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

As you can see, this default virtual host is telling Apache to listen on port 80 for
requests and to serve content from /var/www/html as soon as requests come in. The
<VirtualHost> declaration at the beginning is listening to everything (the asterisk
is a wildcard) on port 80, so this is basically handling all web traffic that comes in to
the server from port 80. The ServerAdmin clause specifies the e-mail address that is
displayed in any error messages shown in case there is a problem with the site.

The DocumentRoot setting tells Apache which directory to look for in order to find
files to serve for connections to this virtual host. /var/www/html is the default,
but some administrators choose to customize this. This file also contains lines for
where to send logging information. The access log contains information relating to
HTTP requests that come in, and by default is stored in /var/log/access.log. The
error log is stored at /var/log/error.log, and contains information you can use
whenever someone has trouble visiting your site. The ${APACHE_LOG_DIR} variable
equates to /var/log by default, and this is set in the /etc/apache2/envvars file, in
case for some reason you wish to change this.

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[274]

If you wish to host another site on the same server by creating an additional virtual
host, you can use the same framework as the original file, with some additional
customizations. Here's an example for a hypothetical website, acmeconsulting.com:

<VirtualHost 192.168.1.104:80>
 ServerAdmin webmaster@localhost
 DocumentRoot /var/www/acmeconsulting

 ErrorLog ${APACHE_LOG_DIR}/acmeconsulting-error.log
 CustomLog ${APACHE_LOG_DIR}/acmeconsulting-access.log combined
</VirtualHost>

I've emphasized some important differences within this file. First, with this
virtual host, I'm not listening for all connections coming in on port 80, instead I'm
specifically looking for incoming traffic going to IP address 192.168.1.104 on port
80. This works because this server has two network cards, and therefore two IP
addresses. With virtual hosts, I'm able to serve a different website, depending on
which IP address the request is coming in on.

Next, I set the DocumentRoot to /var/www/acmeconsulting. Each virtual host
should have their own individual DocumentRoot to keep each site separate from
one another. On my servers, I will typically disable or remove the sample virtual
host (the one that has the default DocumentRoot of /var/www/html). Instead, I use
/var/www as a base directory, and each virtual host gets their own directory as a
subdirectory of this base.

Another change I find useful is to give each virtual host its own log files. Normally,
Apache will use /var/log/apache2/error.log and /var/log/apache2/access.
log to store log entries for all sites. If you only have a single site on your server, that
is fine. However, when you're serving multiple sites, I find it useful to give each site
their own independent log files. That way, if you are having trouble with a particular
site, you don't have to scroll through unrelated log entries to find what you're
looking for when you're troubleshooting. In my example, I inserted the website
name within the log file names, so this virtual host is logging errors in the /var/log/
apache2/acmeconsulting-error.log, and the access log is being written to /var/
log/apache2/acmeconsulting-access.log. These log files will be created for you
automatically as soon as you reload Apache.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[275]

With a server that only has a single IP address, you can still set up multiple virtual
hosts. Instead of differentiating virtual hosts by IP, you can instead differentiate
them by name. This is common on Virtual Private Server (VPS) installations of
Ubuntu, where you'll typically have a single IP address assigned to you by your VPS
provider. For name-based virtual hosts, we would use the ServerName option within
our configuration. Refer to the following example to see how this would work. With
this example, I'm adding name-based virtual hosts to their own file. I called mine
000-virtual-hosts.conf and stored it in the /etc/apache2/sites-available
directory. The contents are as follows:

<VirtualHost *:80>
 ServerName acmeconsulting.com
 DocumentRoot /var/www/acmeconsulting
</VirtualHost>

<VirtualHost *:80>
 ServerName acmesales.com
 DocumentRoot /var/www/acmesales
</VirtualHost>

For each virtual host, I'm declaring a ServerName with a matching DocumentRoot.
With the first example, any traffic coming into the server requesting
acmeconsulting.com will be provided a document root of /var/www/
acmeconsulting. The second looks for traffic from acmesales.com and directs it to
/var/www/acmesales. You can list as many virtual hosts here as you'd like to host
on your server. Providing your server has enough resources to handle traffic to each
site, you can host as many as you need.

As we continue through this chapter, we'll perform some additional configuration
for Apache. At this point though, you should have an understanding of the basics
of how Apache is configured in Ubuntu Server. For extra practice, feel free to create
additional virtual hosts and serve different pages for them. The easiest way to test
virtual hosts is with a virtual machine. Software such as VirtualBox allows you to
set up virtual machines with multiple network interfaces. If you set each one to be
a bridged connection, they should get an IP address from your local DHCP server,
and you can then create virtual hosts to serve different websites depending on which
interface the request comes in on.

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[276]

Installing additional Apache modules
Apache features additional modules that can be installed that will extend its
functionality. These modules can provide additional features such as adding support
for Python or PHP. Ubuntu's implementation of Apache includes two specific
commands for enabling and disabling mods, a2enmod and a2dismod, respectively.
Apache modules are generally installed via packages from Ubuntu's repositories.
To see a list of modules available for Apache, run the following command:

aptitude search libapache2-mod

In case you don't have aptitude installed, you can instead run the following
command:

apt-cache search libapache2-mod

Within the results, you'll see various module packages available, such as
libapache2-python (which adds Python support) and libapache2-mod-php7.0
(which adds PHP 7 support), among many others. Installing an Apache module
is done the same way as any other package, with the apt-get or aptitude
commands. In the case of PHP support, we can install the required package
with the following command:

apt-get install libapache2-mod-php7.0

Installing a module package alone is not enough for a module to be usable within
Apache, though. Modules must be enabled in order for Apache to be able to utilize
them. Again, we can use the a2enmod and a2dismod commands for enabling or
disabling a module. If you wish to simply view a list of modules that Apache has
available, the following command examples will help:

You can view a list of modules that are built-in to Apache with the following
command:

apache2 -l

The modules shown in the output will be those that are built-in to Apache, so you
won't need to enable them. If the module your website requires is listed in the
output, you're all set.

To view a list of all modules that are installed and ready to be enabled, you can run
the a2enmod command.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[277]

The a2enmod command showing a list of available Apache modules

The end of the output of the a2enmod command will ask you whether or not you'd
like to enable any of the modules:

Which module(s) do you want to enable (wildcards ok)?

If you wanted to, you could type the names of any additional modules you'd like
to enable and then press Enter. Alternatively, you can press Enter without typing
anything to simply return to the prompt.

If you give the a2enmod command a module name as an option, it will enable
it for you. For enabling PHP 7 (which we'll need later) you can run the
following command:

a2enmod php7.0

Chances are though, if you've installed a package for an additional module, it was
most likely was enabled for you during installation. With Debian and Ubuntu, it's
very common for daemons and modules to be enabled as soon as their packages are
installed, and Apache is no exception. In the case of the libapache2-mod-php7.0
package I used as an example, the module should've been enabled for you once the
package was installed:

a2enmod php7.0

Module php7.0 already enabled

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[278]

If the module wasn't already enabled, we would see the following output:

Enabling module php7.0.

To activate the new configuration, you need to run:

service apache2 restart

As instructed, we'll need to restart Apache in order for the enabling of a module to
take effect. The same also holds true when we disable a module as well. Disabling
modules works pretty much the same way, you'll use the a2dismod command along
with the name of the module you'd like to disable:

a2dismod php7.0

Module php7.0 disabled.

To activate the new configuration, you need to run:

service apache2 restart

The modules you install and enable on your Apache server will depend on the needs
of your website. For example, if you're going to need support for Python, you'll want
to install the libapache2-mod-python package. If you're installing a third-party
package, such as WordPress or Drupal, you'll want to refer to the documentation
for those packages in order to obtain a list of which modules are required for the
solution to install and run properly. Once you have such a list, you'll know which
packages you'll need to install and which modules to enable.

Securing Apache with SSL
Nowadays, it's a great idea to ensure your organization's website is encrypted and
available over HTTPS. Encrypting your web traffic is not that hard to do, and will
help protect your organization against common exploits. Utilizing SSL doesn't
protect you from all exploits being used in the wild, but it does offer a layer of
protection you'll want to benefit from. In this section, we'll look at how to use
SSL with our Apache installation. We'll work through enabling SSL, generating
certificates, and configuring Apache to use those certificates with both a single site
configuration, as well as with virtual hosts.

By default, Ubuntu's Apache configuration listens for traffic on port 80, but not port
443 (HTTPS). You can check this yourself by running the following command:

netstat -tulpn |grep apache

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[279]

The results will show the ports that Apache is listening on, which is only port
80 by default:

tcp6 0 0 :::80 :::* LISTEN 2791/apache2

If the server were listening on port 443 as well, we would've seen the following
output instead:

tcp6 0 0 :::80 :::* LISTEN 3257/apache2

tcp6 0 0 :::443 :::* LISTEN 3257/apache2

To enable support for HTTPS traffic, we need to first enable the ssl module:

a2enmod ssl

Next, we need to restart Apache:

systemctl restart apache2

In addition to the sample website we discussed earlier, Ubuntu's default Apache
implementation also includes another site configuration file, /etc/apache2/sites-
available/default-ssl.conf. Unlike the sample site, this one is not enabled by
default. This configuration file is similar to the sample site configuration but it's
listening for connections on port 443 and contains additional configuration items
related to SSL. Here's the content of that file, with the comments stripped out in
order to save space:

<IfModule mod_ssl.c>
 <VirtualHost _default_:443>
 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/html

 ErrorLog ${APACHE_LOG_DIR}/error.log
 CustomLog ${APACHE_LOG_DIR}/access.log combined

 SSLEngine on

 SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem
 SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

 <FilesMatch "\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[280]

 </Directory>
 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 # MSIE 7 and newer should be able to use keepalive
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

 </VirtualHost>
</IfModule>

We've already gone over the ServerAdmin, DocumentRoot, ErrorLog, and
CustomLog options earlier in this chapter, but there are additional options within
this file that we haven't seen yet. On the first line, we can see that this virtual host
is listening on port 443. We also see _default_ listed here instead of an IP address.
The _default_ option only applies to unspecified traffic, which in this case means
any traffic coming in to port 443 that hasn't been identified in any other virtual host.
In addition, the SSLEngine on option enables SSL traffic. Right after that, we have
options for our SSL certificate file and certificate, which we'll get to a bit later.

We also have a <Directory> clause, which allows us to apply specific options to
a directory. In this case, the /usr/lib/cgi-bin directory is being applied to the
SSLOptions +StdEnvVars setting, which enables default environment variables
for use with SSL. This option is also applied to files that have an extension of .cgi,
.shtml, .phtml, or .php through the <FilesMatch> option. The BrowserMatch
option allows you to set options for specific browsers, though it's out of scope for
this chapter. For now, just keep in mind that if you want to apply settings to specific
browsers, you can.

By default, the default-ssl.conf file is not enabled. In order to benefit from its
configuration options, we'll need to enable it, which we can do with the a2ensite
command as we would with any other virtual host:

a2ensite default-ssl.conf

Even though we just enabled SSL, our site isn't secure just yet. We'll need SSL
certificates installed in order to secure our web server. We can do this in one of two
ways, with self-signed certificates, or certificates signed by a certificate authority for
a fee. Both are implemented in very similar ways, and I'll discuss both methods. For
the purposes of testing, self-signed certificates are fine. In production, self-signed
certificates would be sufficient in theory, but most browsers won't trust them by
default, and will give you an error when you go to their page. Users of a site with
self-signed certificates would need to bypass an error page before continuing to the
site, and seeing this error may cause them to avoid your site altogether. You can
install the certificates into each user's web browser, but that can be a headache. In
production, it's best to use certificates signed by a vendor.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[281]

As we go through this process, I'll first walk you through setting up SSL with a
self-signed certificate so you can see how the process works. We'll create the
certificate, and then install it into Apache. You won't necessarily need to create a
website to go through this process, since you could just secure the sample website
that comes with Apache if you wanted something to use as a proof of concept. After
we complete the process, we'll take a look at installing certificates that were signed
by a certificate authority.

To get the ball rolling, we'll need a directory to house our certificates. I'll use /etc/
apache2/certs in my examples, though you can use whatever directory you'd
like, as long as you remember to update Apache's configuration with your desired
location and filenames:

mkdir /etc/apache2/certs

For a self-signed certificate and key, we can generate the pair with the following
command. Feel free to change the name of the key and certificate files to match the
name of your website:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/
apache2/certs/mysite.key -out /etc/apache2/certs/mysite.crt

You'll be prompted to enter some information for generating the certificate. Answer
each prompt as they come along. Here's a list of the questions you'll be asked, along
with my responses for each. Change the answers to fit your server, environment,
organization name, and location:

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Michigan
Locality Name (eg, city) []:Detroit
Organization Name (eg, company) [Internet Widgits Pty Ltd]:My Company
Organizational Unit Name (eg, section) []:IT
Common Name (e.g. server FQDN or YOUR name) []:myserver.mydomain.com
Email Address []:webmaster@mycompany.com

Now, you should see that two files have been created in the /etc/apache2/certs
directory, mysite.crt and mysite.key, which represent the certificate and private
key respectively. Now that these files have been generated, the next thing for us to
do is to configure Apache to use them. Look for the following two lines in the /etc/
apache2/sites-available/default-ssl.conf file:

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem

SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[282]

Comment these lines out by placing a # symbol in front of both:

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem

SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key

Next, add the following two lines underneath the lines you just commented out.
Be sure to replace the target directories and certificate file names with yours, if you
followed your own naming convention:

SSLCertificateFile /etc/apache2/certs/mysite.crt

SSLCertificateKeyFile /etc/apache2/certs/mysite.key

To make Apache benefit from the new configuration, reload the apache2 daemon:

systemctl reload apache2

With the new configuration in place, we're not quite done but close. We still have
a small bit of configuration left to add. But before we get to that, let's return to the
topic of installing SSL certificates that were signed by a certificate authority. The
process for installing signed SSL certificates is pretty much the same, but the main
difference is how the certificate files are requested and obtained. Once you have
them, you will copy them to your file server and configure Apache the same way
as we just did. To start the process of obtaining a signed SSL certificate, you'll need
to create a Certificate Signing Request (CSR). A CSR is basically a request for a
certificate, in file form, that you'll supply to your certificate authority to start the
process of requesting a signed certificate. A CSR can be easily generated with the
following command:

openssl req -new -newkey rsa:2048 -nodes -keyout server.key -out server.
csr

With the CSR file that was generated, you can request a signed certificate. The CSR
file should now be in your current working directory. The entire process differs
from one provider to another, but in most cases it's fairly straightforward. You'll
send them the CSR, pay their fee, fill out a form or two on their website, prove that
you are the owner of the website in question, and then the vendor will send you the
files you need. It may sound complicated, but certificate authorities usually walk
you through the entire process and make it clear what they need from you in order
to proceed. Once you complete the process, the certificate authority will send you
your certificate files, which you'll then install on your server. Once you configure the
SSLCertificateFile and SSLCertificateKeyFile options in the /etc/apache2/
sites-available/default-ssl.conf to point to the new certificate files and reload
Apache, you should be good to go.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[283]

There's one more additional step we should perform for setting this up properly. At
this point, our certificate files should be properly installed, but we'll need to inform
Apache of when to apply them. If you recall, the default-ssl.conf file provided by
the apache2 package is answering requests for any traffic not otherwise identified by
a virtual host (the <VirtualHost _default_:443> option). We will need to ensure
our web server is handling traffic for our existing websites when SSL is requested.
We can add a ServerName option to that file, to ensure our site supports SSL.

Add the following option to the /etc/apache2/sites-available/default-ssl
file, right underneath <VirtualHost _default_:443>:

ServerName mydomain.com:443

Now, when traffic comes in to your server on port 443 requesting a domain that
matches the domain you typed for the ServerName option, it should result in a
secure browsing session for the client. You should see the green padlock icon in the
address bar (this depends on your browser), which indicates your session is secured.
If you're using self-signed certificates, you'll probably see an error you'll have to
skip through first, and you may not get the green padlock icon. This doesn't
mean the encryption isn't working, it just means your browser is skeptical of the
certificate since it wasn't signed by a known certificate authority. Your session will
still be encrypted.

If you are planning on hosting multiple websites over HTTPS, you may want to
consider using a separate virtual host file for each. An easy way to accomplish this is
to use the /etc/apache2/sites-available/default-ssl.conf file as a template,
and change the DocumentRoot to the directory that hosts the files for that site. In
addition, be sure to update the SSLCertificateFile and SSLCertificateKeyFile
options to point to the certificate files for the site, and set the ServerName to the
domain that corresponds to your site. Here's an example virtual host file for a
hypothetical site that uses SSL. I've highlighted lines that I've changed from the
normal default-ssl.conf file:

<IfModule mod_ssl.c>
 <VirtualHost *:443>
 ServerName acmeconsulting.com:443

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/acmeconsulting

 ErrorLog ${APACHE_LOG_DIR}/acmeconsulting-error.log
 CustomLog ${APACHE_LOG_DIR}/acmeconsulting-access.log
combined

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[284]

 SSLEngine on

 SSLCertificateFile /etc/apache2/certs/acmeconsulting/
acme.crt
 SSLCertificateKeyFile /etc/apache2/certs/acmeconsulting/acme.
key

 <FilesMatch "\.(cgi|shtml|phtml|php)$">
 SSLOptions +StdEnvVars
 </FilesMatch>
 <Directory /usr/lib/cgi-bin>
 SSLOptions +StdEnvVars
 </Directory>
 BrowserMatch "MSIE [2-6]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0
 # MSIE 7 and newer should be able to use keepalive
 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

 </VirtualHost>
</IfModule>

Basically, what I've is was create a new virtual host configuration file (using
the existing default-ssl.conf file as a template). I called this new file acme-
consulting.conf and I stored it in the /etc/apache2/sites-available directory.
I changed the VirtualHost line to listen for anything coming in on port 443. The line
ServerName acmeconsulting.com:443 was added, to make this file responsible
for traffic coming in looking for acmeconsulting.com on port 443. I also set the
DocumentRoot to /var/www/acmeconsulting. In addition, I customized the error
and access logs so that it will be easier to find log messages relating to this new site,
since its log entries will go to their own specific files.

In my experience, I find that a modular approach such as what I've done with the
sample virtual host file for HTTPS works best when setting up a web server that's
intended to host multiple websites. With each site, I'll typically give them their
own Document Root, certificate files, and log files. Even if you're only planning on
hosting a single site on your server, using this modular approach is still a good idea,
since you may want to host additional sites later on.

So, there you have it. You should now understand how to set up secure virtual hosts
in Apache. However, security doesn't equal redundancy. In the next section, we'll
look at one method in which we can make our site highly available.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[285]

Setting up high availability with
keepalived
Using keepalived is a great way to add high availability to an application or even
a hosted website. keepalived allows you to configure a floating IP (also known as a
Virtual IP or VIP) for a pool of servers, with this special IP being applied to a single
server at a time. Each installation of keepalived in the same group will be able to
detect when another server isn't available, and claim ownership of the floating IP
whenever the master server isn't responding. This allows you to run a service on
multiple servers, with a server taking over in the event another becomes unavailable.

keepalived is by no means specific to Apache. You can use it
with many different applications and services. keepalived also
allows you to create a load balanced environment as well. But for
our purposes, it's useful to talk about here because we can use it to
make our website highly available.

Let's talk a little bit about how keepalived can work with Apache in theory.
Once keepalived is installed on two or more servers, it can be configured such
that a master server will have ownership of the floating IP, and other servers
will continually check the availability of the master, claiming the floating IP for
themselves whenever the current master becomes unreachable. For this to work, each
server would need to contain the same Apache configuration and site files. I'll leave
it up to you in order to set up multiple Apache servers. If you've followed along so
far, you should have at least one already. If it's a virtual machine, feel free to create
a clone of it. If not, all you should have to do is set up another server following the
instructions earlier in this chapter. If you're able to view a website on both servers,
you're good to go.

To get started, we'll need to declare a floating IP. This can be any IP address that's
not currently in use on your network. For this to work, you'll need to set aside an IP
address for the purposes of keepalived. If you don't already have one, pick an IP
address that's not being used by any device on your network. If you're at all unsure,
you can use an IP scanner on your network to find an available IP address. There are
several scanners which can accomplish this, such as nmap on Linux, or the angry IP
scanner for Windows (I have no idea what made that IP scanner so angry, but it does
work well).

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[286]

Be careful when scanning networks for free IP addresses,
as scanning a network may show up in intrusion detection
systems as a threat. If you're scanning any network other
than one you own, always make sure you have permission
from both the network administrator as well as management
before you start scanning. Also, if you're scanning a company
network, keep in mind that any hardware load balancers in
use may not respond to pings, so you may want to also look
at an IP layout from your network administrator as well and
compare the results.

To save you the trouble of a Google search, the following nmap syntax will scan a
subnet and report back regarding which IP addresses are in use. You'll need the nmap
package installed first. Just replace the network address with yours:

nmap -sP 192.168.1.0/24

Next, we'll need to install keepalived. Simply run the following command on both
of your servers:

apt-get install keepalived

If you check the status of the keepalived daemon, you'll see that it attempted
to start as soon as it was installed, and then immediately failed. If you check the
status of keepalived with the systemctl command, you'll see an error similar
to the following:

Condition: start condition failed

Since we haven't actually configured keepalived, it's fine for it to have failed.
After all, we haven't given it anything to check, nor have we assigned our floating
IP. By default, there is no sample configuration file created once you've installed
the package, we'll have to create that on our own. Configuration for keepalived is
stored in /etc/keepalived, which at this point should just be an empty directory
on your system. If for some reason this directory doesn't exist, create it:

mkdir /etc/keepalived

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[287]

Let's open a text editor on our primary server and edit the /etc/keepalived/
keepalived.conf file, which should be empty. Insert the following code into the file.
There are some changes you'll need to make in order for this configuration to work
in your environment. As we continue, I'll explain what the code is doing and what
you'll need to change. Keep your text editor open after you paste the code, and keep
reading for some tips on how to ensure that this config file will work for you:

global_defs {
 notification_email {
 myemail@mycompany.com
 }
 notification_email_from keepalived@mycompany.com
 smtp_server 192.168.1.150
 smtp_connect_timeout 30
 router_id mycompany_web_prod
}
vrrp_instance VI_1 {
 smtp_alert
 interface enp0s3
 virtual_router_id 51
 priority 100

 advert_int 5
 virtual_ipaddress {
 192.168.1.200
 }
}

There's quite a bit going on in this file, so I'll explain the configuration section by
section, so you can better understand what's happening.

global_defs {
 notification_email {
 myemail@mycompany.com
 }
 notification_email_from keepalived@mycompany.com
 smtp_server 192.168.1.150
 smtp_connect_timeout 30
 router_id mycompany_web_prod
}

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[288]

In the global_defs section, we're specifically configuring an e-mail host to use in
order to send out alert messages. When there's an issue and keepalived switches
to a new master server, it can send you an e-mail to let you know that there was
a problem. You'll want to change each of these values to match that of your mail
server. If you don't have a mail server, keepalived will still function properly. You
can remove this section if you don't have a mail server, or comment it out. However,
it's highly recommended that you set a mail server for keepalived to use.

vrrp_instance VI_1 {
 smtp_alert
 interface enp0s3
 virtual_router_id 51
 priority 100

 advert_int 5

Here, we're assigning some configuration options regarding how our virtual IP
assignment will function. The first thing you'll want to change here is the interface.
In my sample config, I have enp0s3 as the interface name. This will need to match
the interface on your server where you would like keepalived to be bound to. If in
doubt, execute ip a at your shell prompt to get a list of interfaces.

The virtual_router_id is a very special number that can be anything from 0-255.
This number is used to differentiate multiple instances of keepalived running on
the same subnet. Each member of each keepalived cluster should have the same
virtual_router_id, but if you're running multiple pairs or groups of servers on
the same subnet, each group should have their own virtual_router_id. I used
51 in my example, but you can use whatever number you'd like. You'll just have to
make sure both web servers have the same virtual_router_id. I'll go over some
tips setting up the other server shortly, so don't worry if you haven't configured
keepalived on your second server yet.

Another option within this block that's important is the priority. This number must
absolutely be different on each server. The keepalived instance with the highest
priority is always considered the master. In my example, I set this number to 100.
Using 100 for the priority is fine, so long as no other server is using that number.
Other servers should have a lower priority. For example, you can set the second web
server's priority to 80. If you set up a third or fourth one, you could set their priority
to 60 and 40, respectively. Those are just arbitrary numbers I picked off the top of my
head. As long as each server has a different priority, and the server you'd like to be
the master has the highest priority, you're in good shape.

 virtual_ipaddress {
 192.168.1.200
}

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[289]

In the final block, we're setting the virtual IP address. I chose 192.168.1.200 as a
hypothetical example; you should choose an IP address outside of your DHCP range
that's not being used by any device.

Now that you've configured keepalived, let's test it out and see if it's working.
On your master server, start keepalived:

systemctl start keepalived

After you start the daemon, take a look at its status to see how it's doing:

systemctl status -l keepalived

If there are no errors, the status of the daemon should be active (running). If for
some reason the status is something else, take a look at the log entries shown after
you execute the status command, as keepalived is fairly descriptive regarding any
errors it finds in your config file. If all went well, you should see the IP address you
chose for the floating IP listed within your interfaces. Execute ip a at your prompt
to see them. Do you see the floating IP? If not, keep in mind it can take a handful of
seconds for it to show up. Wait 30 seconds or so and check your interfaces list again.

If all went well on the first server, we should set up keepalived on the second web
server. Install the keepalived package on the other server if you haven't already
done so, and then copy the keepalived.conf file from your working server to
your new one. Here are some things to keep in mind regarding the second server's
keepalived.conf file:

•	 Be sure to change the priority on the slave server to a lower number than
what you used on the master server

•	 The virtual_ipaddress should be the same on both
•	 The virtual_router_id should be the same on both
•	 Start or restart keepalived on your slave server, and verify there were no

errors when the service started up

Now, let's have some fun and see keepalived in action. What's follows is an
extremely simple HTML file:

<html>
 <title>keepalived test</title>
 <body>
 <p>This is server #1!</p>
 </body>
</html>

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[290]

Copy this same HTML file to both servers and serve it via Apache. We've gone over
setting up Apache in this chapter. The easiest and quickest way to implement this
is to replace Apache's sample HTML file with the preceding one. Make sure you
change the text This is server #1! to This is server #2 on the second server.
You should be able to use your browser and visit the IP address for each of your two
web servers and see this page on both. The only difference between them should be
the text inside the page.

Now, in your browser, change the URL you're viewing to that of your floating
IP. You should see the same page as you did when you visited the IP address
for server #1.

Let's now simulate a failover. On the master server, stop the keepalived service:

systemctl stop keepalived

In our config, we set the advert_int option to 5, so the second server should take
over within 5 seconds of you stopping keepalived on the master. When you refresh
the page, you should see the web page for server #2 instead of server #1. If you
execute ip a on the shell to view a list of interfaces on your slave server, you should
also see that the slave is now holding your floating IP address. Neat, isn't it? To see
your master reclaim this IP, start the keepalived daemon on your master server and
wait a few seconds.

Congratulations, you set up a cluster for your Apache implementation. If the master
server encounters an issue and drops off the network, your slave server will take
over. As soon as you fix your master server, it will immediately take over hosting
your web page. Although we made our site slightly different on each server, the
idea is showing how hosting a website can survive a single server failure. You can
certainly host more than just Apache with keepalived. Almost any service you
need to be highly available that doesn't have its own clustering options is a good
candidate for keepalived. For additional experimentation, try adding a third server.

Installing and configuring ownCloud
I figured we'd end this chapter with a fun activity: setting up our very own
ownCloud server. ownCloud is a very useful web application that's handy for
any organization. Even if you're not working on a company network, ownCloud
is a great asset for even a single user. You can use it to synchronize files between
machines, store and sync contacts, keep track of tasks you're working on, fetch e-mail
from a mail server, and more. To complete this activity, you'll need a server to work
with. You can use your existing web server, if you prefer.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[291]

You'll also need an installation of MySQL or MariaDB, as ownCloud will need
its own database. We went over installing and managing MariaDB databases in
Chapter 9, Managing Databases. I'll give you all the commands you'll need to set up the
database in this section, but refer back to Chapter 9, Managing Databases if any of these
commands confuse you.

To get started, we'll need to add a repository for ownCloud on our server. Create a
file named owncloud.list and store it in /etc/apt/sources.list.d/. Make the
contents the following:

deb http://download.owncloud.org/download/repositories/stable/
xUbuntu_16.04/ /

We'll also need to add the GPG key for this repository. The following command will
download the key to your current working directory:

wget -nv https://download.owncloud.org/download/repositories/stable/
xUbuntu_16.04/Release.key -O Release.key

Next, we install the key:

apt-key add < owncloud.key

Now that we have the ownCloud repository installed on our server, we can install
ownCloud with the following commands:

apt-get update

apt-get install owncloud-files

Once you install the owncloud-files package, you'll see that ownCloud's files
have been copied to /var/www/owncloud. This location will work so long as your
Document Root is /var/www, instead of Ubuntu's default of /var/www/html. If /
var/www is not your Document Root, go ahead and make the necessary corrections.
Don't bother navigating to ownCloud on your server just yet, it won't work until we
finish a bit more configuration.

Next, we'll need to make a change to Apache. First, we'll need to ensure that the
libapache2-mod-php7.0 package is installed since ownCloud requires PHP, but
we'll need some additional packages as well. You can install ownCloud's prerequisite
packages with the following command:

apt-get install libapache2-mod-php7.0 php7.0-curl php7.0-gd php7.0-intl
php7.0-mysql php7.0-xml php7.0-zip

Next, restart Apache so it can take advantage of the new PHP plug-in:

systemctl restart apache2

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[292]

At this point, we'll need a MySQL or MariaDB database for ownCloud to use. This
database can exist on another server, or you can share it on the same server you
installed ownCloud on. If you haven't already set up MariaDB, a walk-through was
covered during Chapter 9, Managing Databases. At this point, it's assumed that you
already have MariaDB installed and running.

Log in to your MariaDB instance as your root user, or an admin user with full
privileges. You can create the ownCloud database with the following command:

CREATE DATABASE owncloud;

Next, we'll need to add a new user to MariaDB for ownCloud, and give that
user full access to the owncloud database. We can take care of both with the
following command:

GRANT ALL ON owncloud.* to 'owncloud'@'localhost' IDENTIFIED BY 'super_
secret_password';

Make sure to change super_secret_password to a very strong (preferably
randomly generated) password. Make sure you save this password in a safe place.

Before continuing, make sure that the /var/www/owncloud directory is available
via Apache. The easiest way to do this, if you're not worried about other virtual
hosts, is to change the default document root from /var/www/html to /var/www. If
you do serve another virtual host from this server, you can create a new virtual host
specifically for ownCloud, and set its document root to /var/www/owncloud. You
can use another Apache config file as a base for creating a new virtual host if you
choose to go that direction, rather than writing one from scratch.

Now we have all we need in order to configure ownCloud. You should now be
able to visit your ownCloud instance in a web browser. Just enter a URL similar to
the following, replacing the sample IP address with the one for your server. The
following URL assumes you changed your default document root to /var/www:

http://192.168.1.100/owncloud

If you're using a subdomain and gave ownCloud its own virtual host, that URL
would then be something like this:

http://owncloud.yourdomain.com

You should see a page asking you to configure ownCloud:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[293]

The introductory page for ownCloud

If you do not see this page, make sure that the /var/www/owncloud
directory is accessible via Apache. Also, make sure you have an
appropriate virtual host for ownCloud referencing this directory as its
document root.

This page will ask you for several pieces of information. First, you'll be asked for
Username and Password. This is not asking you for a pre-existing account, but
actually to set up a brand new administrator account. This shouldn't be an account
you'll use on a day-to-day basis, but instead an admin account you'll use only when
you want to add users and maintain your system. Please note that it won't ask you to
confirm the password, so you'll want to make certain you're entering the password
you think you are. It's perhaps safer to type the password in a text editor, and then
copy and paste the password into the Password box to make sure you don't lock
yourself out.

The Data folder will default to /var/www/owncloud/data. This default is normally
fine, but if you have configured your server to have a separate data partition, you can
configure that here. If you plan on storing a large amount of data on your ownCloud
server, setting up a separate partition for it may be a good idea. If you do, you can
set that here. Otherwise, leave the default.

www.hellodigi.ir

http://technet24.ir

Serving Web Content

[294]

In the next section, you'll be asked to fill in information for the ownCloud database
we created earlier:

Configuring the database for ownCloud

The Database user and Database password will use the values we created when we
set up the MariaDB database for ownCloud earlier. In my examples, I used owncloud
for the username as well as the Database name. The password will be whatever it
is you used for the password when we set up the database user account and grant.
Finally, the database server defaults to localhost, which is correct as long as you
set up the database on the same machine as the ownCloud server. If not, enter the
server's IP address here.

That's it! Assuming all went well, ownCloud will set itself up in the background
and you'll get the main screen. Since you only created an admin account so far, I
recommend you create an account for yourself, as well as any friends or colleagues
you'd like to check out your ownCloud server. To do so, click on the top-right corner
of the ownCloud page, where it shows the user name you're logged in with. When
you click on this, you'll see an option for Users. Within the users screen, you'll be
able to add additional users to access ownCloud. Simply fill out the Username and
Password fields at the top of the screen, and click on Create.

As an administrative user, you can enable or disable various apps that are used
by your users. Out of the box, ownCloud only has the Files and Gallery plug-
ins enabled, but there are many more plug-ins that you can use to extend its
functionality. In the top-left corner of the main screen of ownCloud is the main
menu, which says Files when you first visit the page. If you click on it, you'll get an
Apps button you can click on. Clicking on this link will bring you to a screen where
you can add additional apps to ownCloud. At first, ownCloud will list apps that you
already have installed. If you click on Not enabled on the left, you'll see a listing of
additional apps you can enable and benefit from.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 10

[295]

Feel free to enable additional apps to extend ownCloud's capabilities. Some of my
must-haves include Calendar and Contacts (available in the Productivity section),
News (available in the Multimedia section), and ownNote (available in the
Tool section).

Now, you have your very own ownCloud server. I find ownCloud to be a very
useful platform, something I've come to depend on for my calendar, contacts, and
more. Some Linux desktop environments (such as GNOME) allow you to add your
ownCloud account right to your desktop, which will allow calendar and contact
syncing with your desktop or laptop. One thing that doesn't seem to work extremely
well in ownCloud is the file syncing solution, which is still relatively unstable.
Therefore, you might not want to synchronize your important files with ownCloud
just yet. Development on ownCloud is progressing quite quickly, so it's only a matter
of time before the syncing service stabilizes. By the time this book is printed, these
issues may already be addressed. All other services work like a charm, however.
I'm sure you'll agree that ownCloud is a very useful asset to have available.

Summary
In this action-packed chapter, we looked at serving web pages with Apache.
We started out by installing and configuring Apache, and then added additional
modules. We also covered the concept of virtual hosts, which allows us to serve
multiple websites on a single server, even if we only have a single network interface.
Then, we walked through securing our Apache server with SSL. With Apache, we
can use self-signed certificates, or we can purchase SSL certificates from a vendor for
a fee. We looked at both possibilities. keepalived is a handy daemon that we can
use to make a service highly available. It allows us to declare a floating IP, which we
can use to make an application such as Apache highly available. Should something
go wrong, the floating IP will move to another server and as long as we direct traffic
toward the floating IP, our service will still be available should the master server run
into an issue. Finally, we closed out the chapter with a guide to installing ownCloud,
which is an application I'm sure you'll find incredibly useful.

In the next chapter of our journey, we'll look into virtualization. Using the incredible
tools that Ubuntu Server has at its disposal, we'll set up our very own virtualization
server using KVM. You won't want to miss it.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[297]

Virtualizing Hosts and
Applications

There has been a great deal of advancements in the IT space in the last several
decades, and a few technologies have come along that have truly revolutionized
the technology industry. I'm sure few would argue that the Internet itself is by far
the most revolutionary technology to come around, but another technology that
has created a paradigm shift in IT is virtualization. It changed the way we maintain
our data centers, allowing us to segregate workloads into many smaller machines
being run from a single server or hypervisor. Since Ubuntu features the latest
advancements of the Linux kernel, virtualization is actually built right into it. After
installing just a few packages, we can create virtual machines on our Ubuntu Server
without the need for a pricey license agreement or support contract. In this chapter,
I'll walk you through setting up your own Ubuntu-based virtualization solution.
Along the way, I'll walk you through the following topics:

•	 Setting up a virtual machine server
•	 Creating virtual machines
•	 Bridging the virtual machine network
•	 Creating, running, and managing Docker containers

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[298]

Setting up a virtual machine server
I'm sure many of you have already used a virtualization solution before. In fact, I
bet a great deal of readers are following along with this book while using a virtual
machine running within a solution such as VirtualBox, Parallels, VMware, or one of
the others. In this section, we'll see how to use an Ubuntu Server in place of those
solutions. While there's certainly nothing wrong with solutions such as VirtualBox,
Ubuntu has virtualization built right in, in the form of Kernel-based Virtual
Machine (KVM). KVM offers a very fast interface to the Linux kernel to run your
virtual machines with near-native speeds, depending on your use case.

I bet you're eager to get started, but there are a few quick things to consider before
we dive in. First, of all the activities I've walked you through in this book so far,
setting up our own virtualization solution will be the most expensive from a
hardware perspective. The more virtual machines you plan on running, the more
resources your server will need to have available (especially RAM). Thankfully, most
computers nowadays ship with 4 GB of RAM at minimum, with 8 GB or more being
fairly common. With most modern computers, you should be able to run virtual
machines without too much of an impact. Depending on what kind of machine
you're using, CPU and RAM may present a bottleneck, especially when it comes to
legacy hardware.

For the purposes of this chapter, it's recommended that you have a PC or server
available with a processor that's capable of supporting virtual machine extensions.
The performance of virtual machines may suffer without this support, if you can
even get VMs to run at all without these extensions. A good majority of CPUs on
computers nowadays offer this, though some may not. To be sure, you can run the
following command on the machine you intend to host KVM virtual machines on in
order to find out whether your CPU supports virtualization extensions. A result of 1
or more means that your CPU does support virtualization extensions. A result of 0
means it does not:

egrep -c '(vmx|svm)' /proc/cpuinfo

Even if your CPU does support virtualization extensions, it's usually a feature that's
disabled by default with most end-user PCs sold today. To enable these extensions,
you'll need to enter the BIOS setup screen for your computer and enable the option.
Depending on your CPU and chip-set, this option may be called VT-x or AMD-V.
Some chip-sets may simply call this feature virtualization support or something
along those lines. Unfortunately, I won't be able to walk you through how to
enable the virtualization extensions for your hardware, since the instructions
will differ from one machine to another. If in doubt, refer to the documentation
for your hardware.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[299]

There are two ways in which you can use and interface with KVM. You can choose to
set up virtualization on your desktop or laptop computer, replacing a solution such
as VirtualBox. Alternatively, you can set up a server on your network, and manage
the VMs running on it remotely. It's really up to you, as neither solution will impact
how you follow along with this chapter. Later on, I'll show you how to connect
to a local KVM instance or a remote one. It's really simple to do, so feel free to set
up KVM on whichever machine you prefer. If you have a spare server available, it
would likely make a great KVM host. Not all of us have spare servers lying around
though, so use what you have.

One final note: I'm sure many of you are using VirtualBox, as it seems to be a very
popular solution for those testing out Linux distributions (and rightfully so, it's
great!). However, you can't run both VirtualBox and KVM virtual machines on the
same machine simultaneously. This probably goes without saying, but I wanted
to mention it just in case you didn't already know. You can certainly have both
solutions installed on the same machine, you just can't have a VirtualBox VM up and
running, and then expect to start up a KVM virtual machine at the same time. The
virtualization extensions of your CPU can only work with one solution at a time.

Another consideration to bear in mind is where on the filesystem you want to store
your virtual machines. These can take up a lot of disk space. In my examples, I'm
going to use the /vm_store directory. On your end, you can have a dedicated disk
mounted to /vm_store, or you can simply create the /vm_store directory on your
root filesystem if you only have a single partition. Just be cognizant of your free
space, as virtual machines can become quite large. Go ahead and make this directory
if you haven't already done so:

mkdir /vm_store

We'll also need to create a group named kvm:

groupadd kvm

Now, make the root user and the kvm group the owner of the /vm_store directory:

chown root:kvm /vm_store

Let's set the permissions of /vm_store such that anyone in the kvm group will be able
to modify its contents:

chmod g+w /vm_store

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[300]

The primary user account you use on the server should be a member of the kvm
group. That way, you'll be able to manage virtual machines without switching to
root first. Make sure you log out and log in again after executing the next command
so the changes take effect:

usermod -aG kvm <user>

Even though KVM is built into the Linux kernel, we'll still need to install some
packages in order to get everything going. These packages will require a decent
number of dependencies, so it may take a few minutes for everything to install:

apt-get install bridge-utils libvirt-bin qemu-kvm qemu-system

You'll now have an additional service running on your server, libvirt-bin. Once
you've finished installing KVM's packages, this service will be started and enabled
for you. Feel free to take a look at it to see for yourself:

systemctl status libvirt-bin

On your laptop or desktop (or the machine you'll be managing KVM from),
you'll need a few additional packages:

apt-get install ssh-askpass virt-manager

We have all the tools installed that we will need, so all that we need to do is
configure the KVM server for our use. There are a few configuration files we'll need
to edit. The first is /etc/libvirt/libvirtd.conf. There are a number of changes
you'll need to make to this file, which I'll outline below. First, you should make a
backup copy of this file in case you make a mistake:

cp /etc/libvirt/libvirtd.conf /etc/libvirt/libvirtd.conf.orig

Next, look for the following line:

unix_sock_group = "libvirtd"

Change that line to the following:

unix_sock_group = "kvm"

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[301]

Now, find this line:

unix_sock_ro_perms = "0777"

Change it to this:

unix_sock_ro_perms = "0770"

The next file we'll need to edit is /etc/libvirt/storage/default.xml. This file is
what defines your default storage group for your virtual machines. This file doesn't
exist yet. To properly create it, we'll need to establish a connection from your laptop
or desktop to your KVM server. To do that, we'll use virt-manager, which is a
graphical utility we can use to manage our virtual machines. This is also a good
chance for you to see how this works.

First, open virt-manager on your administration machine. It should be located in
the Applications menu of your desktop environment, usually under the System
Tools section under Virtual Machine Manager. If you have trouble finding it,
simply run virt-manager at your shell prompt.

The virt-manager application

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[302]

The virt-manager utility is especially useful as it allows us to manage both remote
and local KVM servers. From one utility, you can create connections to any of your
KVM servers, including an external server or localhost if you are running KVM on
your laptop or desktop. To create a new connection, click on File and select Add
Connection. A new screen will appear, where we can fill out the details for the
KVM server we wish to connect to:

Adding a new connection to virt-manager

If you're connecting to an external KVM server, check the box that reads Connect to
remote host. The method is SSH, so we can leave that as is. For the Username, type
the username you use on your remote machine. You'll need to have already added
your user account on that server to the kvm group for this to work. Next, type the IP
address for the server you wish to connect to under the Hostname field. If you're
connecting to a local instance of KVM, leave the Connect to remote host checkbox
unchecked and ignore the other fields. Click on Connect to make a connection to
your server or local KVM instance.

You might see a pop-up dialog box with the text Are you sure you wish to continue
connecting (yes/no)? If you do, type yes and press Enter. Either way, you should be
prompted for your password to your KVM server; type that in and press Enter. You
should now have a connection listed within your virt-manager application:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[303]

virt-manager with an active remote connection listed

We'll get back to managing our virtual machines with virt-manager a bit later.
For now, you can close this application. Now that you've opened virt-manager
and made a connection to your server (either local or remote), the /etc/libvirt/
storage directory (which didn't exist before) has now been created for you. Inside
that directory, you'll see a file called default.xml. This is the file I was referring to
earlier that defines your default storage group. Let's edit it. Find the following line
within the file:

<path>/var/lib/libvirt/images</path>

Change it to the following:

<path>/vm_store</path>

Now, restart libvirt-bin so that the changes will take affect:

systemctl restart libvirt-bin

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[304]

We're almost at a point where we'll be able to test our KVM server. But there's
another storage group we'll want to create. We'll need a storage group for ISO
images, for use when installing operating systems on our virtual machines. When
we create a virtual machine, we can attach an ISO image from our ISO storage group
to our VM, which will allow it to install the operating system. To create this storage
group, let's open virt-manager again. Right-click on the listing for your server
connection and then click on Details. You'll see a new window that will show
details regarding your KVM server. Click on the Storage tab:

The storage tab of the virt-manager application

At first, you'll only see the default connection we edited earlier. This screen should
show its Location as /vm_store. If it doesn't, click on the red stop sign icon near
the bottom left to stop the pool and click on the play button right next to it to start
it up again. This should refresh the default storage pool so that it shows the correct
location. Now we can add our ISO storage pool. Click on the green plus symbol to
create the new pool:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[305]

The first screen while setting up a new storage pool

In the Name field, type ISO. You can actually name it anything you want, but ISO
makes sense, considering it will be storing ISO images. Leave the Type setting as
dir: Filesystem Directory:

The second screen while setting up a new storage pool

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[306]

For the Target Path field, /vm_store/iso works well. This directory will be created
for you, if it doesn't already exist. Click on Finish to complete the process.

Congratulations! You now have a fully-configured KVM server for creating and
managing virtual machines. Our server has a place to store virtual machines as
well as ISO images. You should also be able to connect to this instance using virt-
manager, as we've done in this section. Next, I'll walk you through the process of
setting up your first VM.

Creating virtual machines
Now the time has come to put your new virtual machine server to the test. In order
for us to give this new server a test run, you'll need an ISO of an operating system
to install. You can download just about any Linux distribution ISO image, and copy
it to your /vm_store/iso directory to make it available for use. You can even copy
a Microsoft Windows ISO image there and install that; I won't judge you. After you
copy the file over to the /vm_store/iso directory, we're ready to begin.

Before continuing, I highly recommend that you set up public
key authentication for SSH between your workstation and virtual
machine server. If you're using a local connection, you won't need
to do this. But when you're connecting to a remote KVM instance,
without setting up public key authentication between your
workstation and server, you will likely be asked for your SSH
password repeatedly. It can be very annoying. If you haven't used
public key authentication for SSH yet, please refer back to Chapter
4, Connecting to Networks for an overview.

Back in virt-manager, right-click your sever connection and click on New to start
the process of creating a new virtual machine.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[307]

The first screen of the process of setting up a new virtual machine

The default selection will be on Local install media (ISO image or CDROM); leave
this selection and click on Forward.

Creating a new VM and setting VM options

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[308]

On the next screen, click on Browse to open up another window where you can
select an ISO image you've downloaded.

Choosing an ISO image during VM creation

If you click on your ISO storage pool, you should see a list of ISO images you've
downloaded. In my sample server, I added an install image for Debian, because it's
small and quick to download. You can use whatever operating system you prefer.
Click on Choose volume to confirm your selection.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[309]

Adjusting RAM and CPU count for the new VM

Next, you'll be asked to allocate RAM and CPU resources to the virtual machine.
For most Linux distributions with no graphical user interface, 512 MB is plenty
(unless your workload demands more). The resources you select here will depend
on what you have available on your host. Click on Forward when you've finished
allocating resources.

Creating a new virtual hard drive during VM creation

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[310]

Next, you'll allocate free disk space for your virtual machine's virtual hard disk.
This space won't be used up all at once; by default KVM utilizes thin provisioning
that basically just fills up the virtual disk as your VM needs space. You can select
Allocate entire disk now if you'd like to claim all the space all at once, but that isn't
necessary. Click on Forward when done.

Naming the new virtual machine

Finally, you'll name your virtual machine. This won't be the host name of the virtual
machine; it's just the name you'll see when you see the VM listed in virt-manager.
When you click on Finish, the VM will start and it will automatically boot into
the install ISO you've attached to the VM near the beginning of the process.
The installation process for that operating system will then begin.

When you click on the VM window, it will steal your
keyboard and mouse and dedicate it to the window. Press Ctrl
and Alt at the same time to release this control and regain full
control of your keyboard and mouse.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[311]

Unfortunately, I can't walk you through the installation process of your VM's
operating system, since there are hundreds of possible candidates you may be
installing. If you're installing another instance of Ubuntu Server, you can refer back
to Chapter 1, Deploying Ubuntu Server, where we walked through the process. The
process will be the same within the VM. From here, you should be able to create as
many VMs as you need and have resources for.

Bridging the virtual machine network
Your KVM virtual machines will use their own network, unless you configure
bridged networking. This means your virtual machines will get an IP address in their
own network, instead of yours. By default, each machine will be a member of the
192.168.122.0/24 network, with an IP address within the range of 192.168.122.2
to 192.168.122.254. If you're utilizing KVM VMs on your personal laptop or
desktop, this behavior might be adequate. You'll be able to SSH into your virtual
machines by their IP address, and you'll be able to communicate with the host from
within a virtual machine with the IP address 192.169.122.1. If this satisfies your
use case, there's no further configuration you'll need to do.

Bridged networking allows your VMs to receive an IP address from the DHCP server
on your network instead of its internal one, which will allow you to communicate
with your VMs from any other machine on your network. This use case is preferable
if you're setting up a central virtual machine server to power infrastructure for
your small office or organization. With a bridged network on your VM server, each
VM will be treated as any other network device. All you'll need is a wired network
interface, as wireless cards typically don't work with bridged networking.

To set up bridged networking, we'll need to create a new interface on our server.
Open up the /etc/network/interfaces file in your text editor as root. We already
talked about this file in Chapter 4, Connecting to Networks, so I won't go into too much
detail about it here. Basically, this file includes configuration for each of our network
interfaces, and this is where we'll add our new bridged interface.

Make sure you make a backup of the original interfaces file, and then replace its
contents with the following. Be sure to replace enp0s3 (the interface name) with your
actual wired interface name if it's different. There are three occurrences of it in the
file. Take your time while configuring this file. If you make a single mistake, you
will likely not have network access to the machine once it restarts.

auto lo

iface lo inet loopback

auto enp0s3

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[312]

iface enp0s3 inet manual

auto br0

iface br0 inet dhcp

 bridge_ports enp0s3

 bridge_stp off

 bridge_fd 0

 bridge_maxwait 0

After you make the change, you can restart networking, or simply reboot the server.
If you have a monitor and keyboard hooked up to the server, restarting networking
is the easiest way to activate the new configuration:

systemctl restart networking

If you're connected to the server via SSH, restarting networking will likely result in
the server becoming inaccessible because the SSH connection will likely drop as soon
as the network stops. This will disrupt the connection and prevent networking from
starting back up. If you know how to use screen or tmux, you can run the restart
command from within either; otherwise, it may just be simpler for you to reboot
the server.

After networking restarts or the server reboots, check whether you can still access
network resources, such as pinging websites and accessing other network nodes
from it. If you can, you're all set. If you're having any trouble, make sure you edited
the /etc/network/interfaces file properly.

Now, you should see an additional network interface listed when you run ip a.
The interface will be called br0. The br0 interface should have an IP address from
your DHCP server, in place of your enp0s3 interface (or whatever it may be named
on your system). From this point onwards, you'll be able to use br0 for your virtual
machine's networking, instead of the internal network. The internal KVM network
will still be available, but you can select br0 to be used instead when you create new
virtual machines.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[313]

If you have a virtual machine you've already created that you'd like to switch to
utilize your bridged networking, you can use the following steps to convert it. First,
open virt-manager and double-click on your virtual machine. A new window with
a graphical console of your VM will open. The second button along the top will open
the Virtual Hardware Details tab, which will allow you to configure many different
settings for the VM, such as the CPU count, RAM amount, boot device order, and
more. Among the options on the left-hand side of the screen, there will be one that
reads NIC and shows part of the virtual machine's network card's MAC address.
If you click on this, you can configure the virtual machine to use your new bridge.
Under the Network Source drop-down menu, select the option Specify shared
device name. This will allow you to type an interface name in the Bridge name text
box; type br0 into that text box. Make sure that the Device model is set to virtio.
Finally, click on Apply. You may have to restart the virtual machine for the changes
to take affect:

Configuring a virtual machine to use bridge br0

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[314]

While creating a brand new virtual machine, there's an additional step you'll need to
do in order to configure the VM to use bridged networking. On the last step of the
process, where you set a name for the VM, you'll also see Advanced options listed
near the bottom of the window. Expand this, and you'll be able to set your network
name. Change the dropdown in this section to Specify shared device name, and set
the bridge Name to br0. Now, you can click on Finish to finalize the VM as before,
and it should use your bridge whenever it starts up:

Configuring bridge br0 on a newly created VM

From this point onwards, you should have not only a fully-configured KVM
server or instance, but also a solution that can be treated as a full citizen of your
network. Your VMs will be able to receive an IP address from a DHCP server, and
communicate with other network nodes directly. If you have a very beefy KVM
server, you may even be able to consolidate other network appliances into VMs to
save space, which is basically the entire purpose of virtualization. Now, we'll move
on to another form of virtualization, containerization.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[315]

Creating, running, and managing Docker
containers
Docker is a technology that seemed to come from nowhere and took the IT world by
storm just a few years ago. The concept of containerization is not new, but Docker
took this concept and made it very popular. The idea behind a container is that
you can segregate an application you'd like to run from the rest of your system,
keeping it sandboxed from the host operating system, while still being able to use
the host's CPU and memory resources. Unlike a virtual machine, a container won't
have a virtual CPU and memory of its own, as it shares resources with the host. This
means that you will likely be able to run more containers on a server than virtual
machines, since the resource utilization would be lower. In addition, you can store a
container on a server, and allow others within your organization to download a copy
of it and run it locally. This is very useful for developers who are developing a new
solution, and would like others to test or run it. Since the Docker container contains
everything the application needs to run, it's very unlikely that a systematic difference
between one machine and another will cause the application to behave differently.

The Docker server, also known as a Hub, can be used remotely or locally. Normally,
you'll pull down a container from the central Docker hub, which will make various
containers available that are usually based on a Linux distribution or operating
system. When you download it locally, you'll be able to install packages within the
container or make changes to its files, as if it were a virtual machine. When you
finish setting up your application within the container, you can upload it back to
the Docker hub for others to benefit from, or your own local Hub for your local staff
members to use. In some cases, some developers even opt to make their software
available to others in the form of containers, rather than distribution-specific
packages. Perhaps they find it easier to develop a container that can be used on
every distribution than build separate packages for individual distributions.

Docker is only supported on 64-bit versions of Ubuntu. The required
package is available in 32-bit Ubuntu, but it's not guaranteed to function
properly. If you don't recall which version of Ubuntu Server you installed,
run the following command:
uname -m

You should receive the following output:
x86_64

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[316]

Let's go ahead and get started. To set up your server to run or manage Docker
containers, simply install the docker.io package:

apt-get install docker.io

Yes, that's all there is to it. Installing Docker was definitely the easiest thing we've
done during this entire chapter. Ubuntu includes Docker in its default repositories,
so it's only a matter of installing this one package. You'll now have a new service
running on your machine, simply titled docker. You can inspect it with the
systemctl command, as with any other:

systemctl status docker

Now that Docker is installed and running, let's take it for a test drive. After installing
Docker, we have the docker command, which has various sub-commands to
perform different functions. Let's try out docker search:

docker search ubuntu

With this command, we are searching the Docker Hub for available containers based
on Ubuntu. You could search for containers based on other distributions, such as
Fedora or CentOS, if you wanted. The command will return a list of Docker images
available that meet your search criteria.

Notice that I had you run the search command as root. This
is required, unless you make your own user account a member
of the docker group. I recommend you do that, and then log
out and log in again. That way, you won't need to use root
anymore. From this point on, I won't suggest using root for the
remaining Docker examples. It's up to you whether you want to
set up your user account with the docker group, or continue to
run docker commands as root.

To pull down a docker image for our use, we can use the docker pull command,
along with one of the image names we saw in the output of our search command:

docker pull ubuntu

With the preceding command, we're pulling down the latest Ubuntu container image
available on the Docker hub. The image will now be stored locally, and we'll be able
to create new containers from it. To create a new container from our downloaded
image, use this command:

docker run -it ubuntu:latest /bin/bash

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[317]

Once you run that command, you'll notice that your shell prompt immediately
changes. You're now within a shell prompt from your container. From here, you
can run commands you would normally run within a real Ubuntu machine, such as
installing new packages, changing configuration files, and more. Go ahead and play
around with the container, and then we'll continue with a bit more theory on how
this is actually working.

There are some potentially confusing aspects of Docker we should get out of the
way first before we continue with additional examples. The most likely thing to
confuse newcomers to Docker is how containers are created and destroyed. When
you execute the docker run command against an image you've downloaded, you're
actually creating a container. Each time you use the docker run command, you're
not resuming the last container, but creating a new one. To see this in action, run a
container with the docker run command I provided earlier, then type exit. Run it
again, then type exit. You'll notice that the prompt is different each time you run the
command. After the root@ portion of the bash prompt within the container, there
is a part of a container ID. It'll be different each time you execute the docker run
command, since you're creating a new container with a new ID each time.

To see the number of containers on your server, execute the docker info command.
The first line of the output will tell you how many containers you have on your
system, which should be the number of times you've run the docker run command.
To see a list of all of these containers, execute the docker ps -a command:

docker ps -a

The output will give you the CONTAINER ID of each container, the IMAGE it was
created from, the COMMAND being run, when the container was CREATED and its
STATUS, as well as any PORTS you may have forwarded. The output will also display
randomly generated names for each container, which are usually quite wacky.
As I was going through the process of creating containers while writing this section,
the code names for my containers were tender_cori, serene_mcnulty, and
high_goldwasser. This is just one of the many quirks of Docker, and some of
these can be quite hilarious.

The important output of the docker ps -a command is the container ID, the
command, and the status. The ID allows you to reference a specific container.
The command lets you know what command was being run. In our example, we
executed /bin/bash when we started our containers. Using the ID, we can resume a
container. Simply execute the docker start command with the container ID right
after it. Your command will end up looking similar to this:

docker start 353c6fe0be4d

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[318]

The output will simply return the ID of the container, and then drop you back to
your shell prompt—not the shell prompt of your container, but that of your server.
You might be wondering at this point, how do I get back to the shell prompt for the
container? We can use docker attach for that:

docker attach 353c6fe0be4d

You should now be within a shell prompt inside your container. If you remember
from earlier, when you type exit to disconnect from your container, the container
stops. If you'd like to exit the container without stopping it, press Ctrl + P and then
press Ctrl + Q on your keyboard. You'll return to your main shell prompt, but the
container will still be running. You can see this for yourself by checking the status of
your containers with the docker ps -a command.

However, while these keyboard shortcuts work to get you out of the container, it's
important to understand what a container is and what it isn't. A container is not a
service running in the background, at least not inherently. A container is a collection
of namespaces, such as a namespace for its filesystem or users. When you disconnect
without a process running within the container, there's no reason for it to run, since
its namespace is empty. Thus, it stops. If you'd like to run a container in a way that
is similar to a service (it keeps running in the background), you would want to run
the container in detached mode. Basically, this is a way of telling your container to
run this process and don't stop running it until I tell you to. Here's an example of
creating a container and running it in detached mode:

docker run -dit ubuntu /bin/bash

Normally, we use the -it options to create a container. This is what we used a few
pages back. The -i option triggers interactive mode, while the -t option gives us a
psuedo-TTY. At the end of the command, we tell the container to run the Bash shell.
The -d option runs the container in the background.

It may seem relatively useless to have another Bash shell running in the background
that isn't actually performing a task. But these are just simple examples to help
you get the hang of Docker. A more common use case may be to run a specific
application. In fact, you can even run a website from a Docker container by installing
and configuring Apache within the container, including a virtual host. The question
then becomes, how do you access the container's instance of Apache within a web
browser? The answer is port redirection, which Docker also supports. Let's give this
a try.

First, let's create a new container in detached mode. Let's also redirect port 80 within
the container to port 8080 on the host:

docker run -dit -p 8080:80 ubuntu /bin/bash

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[319]

The command will output a container ID. This ID will be much longer than you're
accustomed to seeing. This is because when we run docker ps -a, it only shows
shortened container IDs. You don't need to use the entire container ID when you
attach, you can simply use part of it as long as it's long enough to be different from
other IDs:
docker attach dfb3e

Here, I've attached to a container with an ID that begins with dfb3e. I'm now
attached to a Bash shell within the container.

Let's install Apache. We've done this before, but to keep it simple, just install the
apache2 package within your container. We don't need to worry about configuring
the default sample web page or making it look nice. We just want to verify that
it works. Apache should now be installed within the container. In my tests, the
apache2 daemon wasn't automatically started as it would've been on a real server
instance. Since the latest container available on the Docker Hub for Ubuntu isn't
yet upgraded to 16.04 at the time of writing (it's currently 14.04), the systemctl
command won't work. We'll need to use the legacy start command for Apache:
/etc/init.d/apache2 start

We can similarly check the status to make sure it's running:
/etc/init.d/apache2 status

Apache should be running within the container. Now, press Ctrl + P and Ctrl + Q
to exit the container, but allow it to keep running in the background. You should
be able to visit the sample Apache web page for the container by navigating to
localhost:8080 in your web browser. You should see the default It works!
page of Apache. Congratulations, you're officially running an application within
a container.

Before we continue, think for a moment of all the use cases you can use Docker
for. It may seem like a very simple concept (and it is), but it allows you to do some
very powerful things. I'll give you a personal example. At a previous job, I worked
with some Embedded Linux software engineers who had their preferred Linux
distribution to run on their workstation computers. Some preferred Ubuntu, others
preferred Debian, and a few even ran Gentoo. For developers, this poses a problem.
The build tools are different in each distribution, because they all ship different
versions of all development packages. The application they developed was only
known to compile in Debian, and newer versions of the GCC compiler posed a
problem for the application. My solution was to provide each developer with a
Docker container based on Debian, with all the build tools baked in that they needed
to perform their job. At this point, it no longer mattered which distribution they
ran on their workstations. The container was the same no matter what they were
running. I'm sure there are some clever use cases you can come up with.

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[320]

Anyway, back to our Apache container. It's now running happily in the background,
responding to HTTP requests over port 8080 on the host. But, what should we do
with it at this point? We can create our own image from it. Before we do so, we
should configure Apache to automatically start when the container is started. We'll
do this a bit differently inside the container than we would on an actual Ubuntu
Server. Attach to the container and open the /etc/bash.bashrc file in a text editor
within the container. Add the following to the very end of the file:

/etc/init.d/apache2 start

Save the file and exit your editor. Exit the container with the Ctrl + P and Ctrl + Q
key combinations. We can now create a new image of the container with the docker
commit command:

docker commit <Container ID> ubuntu:apache-server

That command will return us the ID of our new image. To view all the Docker
images available on our machine, we can run the docker images command to have
Docker return a list. You should see the original Ubuntu image we downloaded,
along with the one we just created. We'll first see a column for the repository the
image came from; in our case it is, Ubuntu. Next, we see tag. Our original Ubuntu
image (the one we used docker pull to download) has a tag of latest. We didn't
specify that when we first downloaded it, it just defaulted to latest. In addition, we
see an image ID for both, as well as the size.

To create a new container from our new image, we just need to use docker run,
but specify the tag and name of our new image. Note that we may already have a
container listening on port 8080, so this command may fail if that container hasn't
been stopped:

docker run -dit -p 8080:80 ubuntu:apache-server /bin/bash

Speaking of stopping a container, I should probably show you how to do that as
well. As you could probably guess, the command is docker stop followed by
a container ID. This will send the SIGTERM signal to the container, followed by
SIGKILL if it doesn't stop on its own after a delay:

docker stop <Container ID>

To remove a container, issue the docker rm command followed by a container
ID. Normally, this will not remove a running container, but it will if you add the
-f option. You can remove more than one docker container at a time by adding
additional container IDs to the command, with a space separating each. Keep in
mind that you'll lose any unsaved changes within your container if you haven't
committed the container to an image yet:

docker rm <Container ID>

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[321]

The docker rm command will not remove images. If you want to remove a docker
image, use the docker rmi command followed by an image ID. You can run the
docker image command to view images stored on your server, so you can easily
fetch the ID of the image you want to remove. You can also use the repository and
tag name, such as ubuntu:apache-server, instead of the image ID. If the image is in
use, you can remove it with the -f option:

docker rmi <Image ID>

Before we close our look into Docker, there's another related concept you'll definitely
want to check out: Dockerfiles. A Dockerfile is a neat way of automating the
building of Docker images by creating a text file with a set of instructions for their
creation. The easiest way to set up a Dockerfile is to create a directory, preferably
with a descriptive name for the image you'd like to create (you can name it whatever
you wish, though), and inside it create a file named Dockerfile. Copy this text into
your Dockerfile and I'll explain how it works:

FROM ubuntu
MAINTAINER Jay <jay@somewhere.net>

Update the container's packages
RUN apt-get update; apt-get dist-upgrade

Install apache2 and vim
RUN apt-get install -y apache2 vim

Make Apache automatically start-up`
RUN echo "/etc/init.d/apache2 start" >> /etc/bash.bashrc
Let's go through this Dockerfile line by line to get a better
understanding of what it's doing.

We need an image to base our new image on, so we're using Ubuntu as a base.
This will cause Docker to download the ubuntu:latest image from the Docker
Hub, if we don't already have it.

MAINTAINER Jay <myemail@somewhere.net>

Here, we're setting the maintainer of the image. Basically, we're declaring its author.

Update the container's packages

Lines beginning with a hash symbol (#) are ignored, so we are able to create
comments within the Dockerfile. This is recommended to give others a good
idea of what your Dockerfile is doing.

RUN apt-get update; apt-get dist-upgrade -y

www.hellodigi.ir

http://technet24.ir

Virtualizing Hosts and Applications

[322]

With the RUN command, we're telling Docker to run a specific command while the
image is being created. In this case, we're updating the image's repository index and
performing a full package update to ensure the resulting image is as fresh as can
be. The -y option is provided to suppress any requests for confirmation while the
command runs.

RUN apt-get install -y apache2 vim-nox

Next, we're installing both apache2 and vim-nox. The vim-nox package isn't
required, but I personally like to make sure all of my servers and containers have
it installed. I mainly included it here to show you that you can install multiple
packages in one line.

RUN echo "/etc/init.d/apache2 start" >> /etc/bash.bashrc

Earlier, we copied the startup command for the apache2 daemon into the /etc/
bash.bashrc file. We're including that here so we won't have to do this ourselves
when containers are created from the image.

To build the image, we can use the docker build command, which can be executed
from within the directory that contains the Dockerfile. Here's an example of using
the docker build command to create an image tagged packt:apache-server:

docker build -t packt:apache-server

Once you run that command, you'll see Docker create the image for you, running
each of the commands you asked it to. The image will be set up just the way you like.
Basically, we just automated the entire creation of the Apache container we used
as an example in this section. Once complete, we can create a container from our
new image:

docker run -dit -p 8080:80 packt:apache-server /bin/bash

Almost immediately after running the container, the sample Apache site will be
available on localhost:8080 on the host. With a Dockerfile, you'll be able to
automate the creation of your Docker images. There's much more you can do with
Dockerfiles; feel free to peruse Docker's official documentation to learn more.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 11

[323]

Summary
In this chapter, we took a look at virtualization, as well as containerization. We
walked through the installation of KVM and the configuration required to get our
virtualization server up and running. We also took a look at Docker, which is a great
way of virtualizing individual applications rather than entire servers. We installed
Docker on our server, and we walked through managing containers by pulling down
an image from the Docker Hub, customizing our own images, and creating Docker
files to automate the deployment of Docker images. We also covered many of the
popular Docker commands to manage our containers.

In Chapter 12, Securing Your Server, we'll take a look at securing our server from
outside threats. We'll look into securing SSH, setting up a firewall, disk encryption,
and more. Stay tuned!

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[325]

Securing Your Server
It seems like every week there are new reports regarding companies getting their
servers compromised. In some cases, entire databases end up freely available on the
Internet, which may even include sensitive user information that can aid miscreants
in stealing identities. Linux is by far a very secure platform, but it's only as secure as
the administrator who sets it up. Security patches are made available every day, but
someone has to install them. OpenSSH is a very handy utility, but it's also the first
point of entry for an attacker who finds an insecure installation. Backups are a
must-have but are also the bane of a company that doesn't secure them and then the
data falls into the wrong hands. In some cases, even your own employees can cause
intentional or unintentional damage. In this chapter, we'll look at some of the ways
in which you can secure your server from threats. Along the way, we'll cover the
following topics:

•	 Lowering your attack surface
•	 Securing OpenSSH
•	 Installing and configuring Fail2ban
•	 MariaDB best practices
•	 Setting up a firewall
•	 Encrypting and decrypting disks with LUKS
•	 Locking down sudo

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[326]

Lowering your attack surface
After setting up a new server, an administrator should always perform a security
check to ensure that it's as secure as it can possibly be. No administrator can think
of everything and even the best among us can make a mistake, but it's always
important that we do our best to ensure we secure a server as much as we can. There
are many ways you can secure a server, but the first thing you should do is lower
your attack surface. This means that you should close as many holes as you can,
and limit the number of things that outsiders can potentially be able to access. In a
nutshell, if it's not required to be available from the outside, lock it down. If it's not
necessary at all, remove it.

To start inspecting your attack surface, the first thing you should do is see which
ports are listening for network connections. When an attacker wants to break into
your server, it's almost certain that a port scan is the first thing they will perform.
They'll inventory which ports on your server are listening for connections, determine
what kind of application is listening on those ports, and then try a list of known
vulnerabilities to try and gain access. To inspect which ports are listening on your
server, you can do a simple port query with the netstat command:

netstat -tulpn

Running a port query with netstat

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[327]

You don't actually need to run the netstat command as root as I have, but if you
do, the output will show more information than without, namely the names of the
programs that are listening for connections (which makes it easier to associate ports,
if you don't have them all memorized). From the output, you'll see a list of ports that
are listening for connections. If the port is listening on 0.0.0.0, then it's listening for
connections from any network. This is bad. The server I took the screenshot from has
several of these open ports. If the port is listening on 127.0.0.1, then it's not actually
accepting outside connections. Take a minute to inspect one of your servers with the
netstat command, and note which services are listening for outside connections.

Armed with the knowledge of what ports your server is listening on, you can make
a decision on what to do with each one. Some of those ports may be required,
as the entire purpose of a server is to serve something, which usually means
communicating over the network. All of these legitimate ports should be protected
in some way, which usually means configuring the service with some sort of security
settings (which will depend on the particular service), or enabling a firewall, which
we'll get to a bit later. If any of the ports are not needed, you should close them
down. You can either stop their daemon and disable it, or remove the package
outright. I usually go for the latter, since it would just be a matter of reinstalling the
package if I changed my mind.

This leads me to the very first step in lowering your attack surface, uninstalling
unneeded packages. In my case, the server I took the screenshot from has several
RPC services listening for connections. These services have to do with NFS,
something that this server will never be serving or using in any way. Therefore,
there's no harm in removing support for NFS from this server. It doesn't depend
on it at all:

apt-get remove rpcbind

Now that I've taken care of RPC, I'll look at other services this server is running that
are listening for connections. OpenSSH is a big one. It's usually going to be the first
target any attacker uses to try and gain entry into your server. What's worse, this is
usually a very important daemon for an administrator to have listening. After all,
how can you administer the server, if you can't connect to it? But, if you're able to
connect to it, then conceivably so can someone else! What should we do? In this case,
we'll want to lock the server down as much as possible. In fact, I'll be going over how
to secure SSH in the next section. Of course, nothing we do will ever make a server
bulletproof, but using the most secure settings we can is a great first step. Later on in
this chapter, I'll also go over Fail2ban, which can also help add an additional layer
of security to OpenSSH.

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[328]

As I've mentioned, I'm a big fan of removing packages that aren't needed. The more
packages you have installed, the larger your attack surface is. It's important to
remove anything you don't absolutely need. Even if a package isn't listed as an open
port, it could be the target of some sort of vulnerability that may be affected by some
other port or means. Therefore, I'll say it again: remove any packages you don't
need. An easy way to get a list of all the packages you have installed is with the
following command:

dpkg --get-selections > installed_packages.txt

This command will result in the creation of a text file that will contain a list of all the
packages that you have installed on your server. Take a look at it. Does anything
stand out that you know for sure you don't need? You most likely won't know the
purpose for every single package, and there could be a thousand or more. A lot of
the packages that will be contained in the text file are distribution-required packages
you can't remove if you want your server to boot up the next time you go to restart
it. If you don't know whether or not a package can be removed, do some research
on Google. If you still don't know, maybe you should leave that package alone and
move on to inspect others. By going through this exercise on your servers, you'll
never really remember the purpose of every single package and library. Eventually,
you'll come up with a list of typical packages most of your servers don't need, which
you can make sure are removed each time you set up a new server.

Another thing to keep in mind is using strong passwords. This probably goes
without saying, since I'm sure most of you that are reading this already understand
the importance of strong passwords. However, I've seen hacks recently in the news
caused by an administrator who set a weak password for their external facing
database or web console, so you never know. The most important rule of all is that
if you absolutely must have a service listening for outside connections, it absolutely
must have a strong, randomly generated password. Granted, some daemons don't
have a password associated with them (Apache is one example, it doesn't require
authentication for someone to view a web page on port 80). However, if a daemon
does have authentication, it should have a very strong password. OpenSSH is an
example of this. If you must allow external access to OpenSSH, that user account
should have a strong randomly generated password. Otherwise, it will likely be
taken over within a couple of weeks by a multitude of bots that routinely go
around scanning for these types of things.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[329]

Software within the Linux community is routinely updated with security patches.
Developers publish these security updates for a reason. Sometimes updates will be
released to provide us with new features. However, nine times out of ten, the update
is going to be for the purpose of strengthening security. Maybe the update will close
a security hole that would otherwise leave your server vulnerable. This is especially
the case with Ubuntu Server 16.04, which is an Long-term Support (LTS) release.
While LTS releases for Ubuntu do indeed receive updates that are released solely to
add new features from time to time, feature updates are usually avoided since they
also have the potential of lowering stability. Therefore, the majority of updates in an
LTS release are published for the purposes of closing vulnerabilities. Install them.
Typically, the best way to install updates is by running the following commands:

apt-get update

apt-get upgrade

apt-get dist-upgrade

As we discussed in Chapter 5, Managing Software Packages, apt-get update will
synchronize your Apt index with Ubuntu's repositories. The apt-get upgrade
command will install any updated packages for your distribution, as long as they
don't require the installation of dependencies that aren't already present or require
the removal of another package. This is a safe first-step when installing updates. The
apt-get dist-upgrade command will install all updates even if they do require
other changes, so by running apt-get upgrade before apt-get dist-upgrade,
you're getting the safe upgrades out of the way first. Then, you can run the dist-
upgrade command to get whatever you're missing. The latter command will install
updated kernel packages, which you'll also need. However, you'll need to schedule a
reboot in order to benefit from a new kernel.

But how to install updates on a routine basis? The answer depends on your
environment. Usually, most environments will utilize a configuration management
utility, such as Ansible, Chef, or Puppet. In that case, you'd simply create an
instruction in your config management solution to routinely install updates.
Otherwise, you can safely place the apt-get upgrade command in a cron job
to ensure all the low-impact updates are routinely installed, and you can make a
decision on how to handle the remaining updates with the dist-upgrade command.
Perhaps it may work out best to create clones of your production servers (for
example, virtual machine copies), where you can install updates and see how they
affect your server. If your organization isn't able to handle downtime, it's best to
test updates before rolling them out. Creating a test lab for this purpose is ideal.
If the updates pass the test phase, then they can be rolled out to production with
reasonable confidence.

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[330]

Finally, it's important to employ the Principle of Least Privilege for all your user
accounts. You've probably gotten the impression from several points I've made
throughout the book that I distrust users. While I always want to think the best
of everyone, sometimes the biggest threats can come from within (disgruntled
employees, accidental deletions of critical files, and so on). Therefore, it's important
to lock down services and users and allow them access to only perform the functions
a user's job absolutely requires of them. This may involve but is certainly not
limited to:

• Adding a user to the fewest possible number of groups
• Defaulting all network shares to read-only (users can't delete what they don't

have permission to delete)
• Routinely auditing all your servers for user accounts that have not been

logged into for a time
• Setting account expirations for user accounts, and requiring users to re-apply

to maintain account status (this prevents hanging user accounts)
• Allowing user accounts to access as few system directories as possible

(preferably none, if you can help it)
• Restricting sudo to specific commands (more on that later on in this chapter)

Above all, make sure you document each of the changes you make to your servers
in the name of security. After you develop a good list, you can turn that list into a
Security Checklist to serve as a baseline for securing your servers. Then, you can
set reminders to routinely scan your servers for unused user accounts, unnecessary
group memberships, and any newly opened ports.

Securing OpenSSH
While OpenSSH is generally more secure nowadays than it was in the past, it's still
potentially a gaping hole in your server that miscreants will try to use in order to
compromise your network. OpenSSH is very useful though; as administrators, we
like OpenSSH because it gives us a convenient way of accessing multiple machines
we manage all from one central computer. Securing OpenSSH isn't hard at all. In this
section, I'll go over all the common ways in which you can secure OpenSSH on your
servers. Specifically, I'll show you various tweaks you can make to the OpenSSH
daemon's config file, which is /etc/ssh/sshd_config (covered in Chapter 4,
Connecting to Networks). With each of the tweaks in this section, make sure you first
search the file in order to see if the setting is there, and change it accordingly. If the
setting is not present in the file, add it. After you make your changes, it's important
to restart the OpenSSH daemon:

systemctl restart ssh

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[331]

In the next section, I'll go over Fail2ban. Fail2ban is a really neat daemon to
have running, and it adds an additional layer of security to multiple services, with
OpenSSH being one. You should make sure to check out that section in this chapter
after finishing this one. Okay, enough babble, let's get on with the tweaking!

First and foremost, you should change the port that OpenSSH listens on. By default,
this daemon listens for connections on port 22. This is exactly what attackers expect.
Change it to some other port, preferably a high number that's above 10000 and not
in use by any other service. Changing the port adds a bit of ambiguity to your server.
Simply look for the port number in the /etc/ssh/sshd_config file and change it
from its default of 22:

Port 65332

I don't want to lure you into a false sense of security, though. Changing the SSH
port won't make the service completely hidden. If an attacker is performing an
in-depth port scan on your server, they'll still find it. So why change it, then? Well,
first of all, it's an easy change to make. The only downsides I can think of are that
you'll have to remember to specify the port number when using SSH, and you'll
have to communicate the change to anyone that uses the server. To specify the port,
we use the -p option with the ssh command:

ssh -p 65332 myhost

If you're using scp, you'll need to use an uppercase P instead:

scp -P myfile myserver:/path/to/dir

Even though changing the port number won't make your server bulletproof, we
shouldn't underestimate the value. In a hypothetical example where an attacker is
scanning servers on the Internet for an open port 22, they'll skip your server and
move on to the next. Only determined attackers that specifically want to break into
your server will scan other ports looking for it. This also keeps your log file clean;
you'll see intrusion attempts only from miscreants doing aggressive port scans,
rather than random bots looking for open ports. If your server is Internet-facing, this
will result in far fewer entries in the logs! OpenSSH logs connection attempts in the
authorization log, located at /var/log/auth.log. Feel free to check out that log file
to see what typical logging looks like. You'll need to access it as root or with sudo.

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[332]

Another change that's worth mentioning is which protocol OpenSSH listens for.
Most versions of OpenSSH available in repositories today default to Protocol 2.
This is what you want. Protocol 2 is much more secure than Protocol 1. You should
never allow Protocol 1 in production under any circumstances. Chances are you're
probably already using the default of Protocol 2 on your server, unless you changed
it for some reason. I mention it here, just in case you have older servers still in
production that are defaulting to the older protocol.

Next, I'll give you two tweaks for the price of one. There are two settings that
deal with which users and groups are allowed to log in via SSH, AllowUsers, and
AllowGroups, respectively. By default, every user you create is allowed to log in to
your server via SSH. With regards to root, that's actually not allowed by default
(more on that later). But each user you create is allowed in. Only users that must
have access should be allowed in. There are two ways to accomplish this.

One option is to use AllowUsers. With the AllowUsers option, you can specifically
set which users can log in to your server. With AllowUsers present (which is not
found in the config file by default), your server will not allow anyone to use SSH
that you don't specifically call out with that option. You can separate each user with
a space:

AllowUsers larry moe curly

Personally, I find AllowGroups easier to manage. It works pretty much the same
as AllowUsers, but with groups. If present, it will restrict OpenSSH connections
to users who are a member of this group. To use it, you'll first create the group in
question, if it doesn't already exist:

groupadd sshusers

Then, you'll make one or more users a member of that group:

usermod -aG sshusers myuser

Once you have added the group and made a user or two a member of that group,
add the following to your /etc/ssh/sshd_config file, replacing the sample groups
with yours. It's fine to use only one group. Just make sure you add yourself to the
group before you log out, otherwise you'll lock yourself out!

AllowGroups admins sshusers gremlins

I recommend you use only one or the other. I think that it's much easier to use
AllowGroups, since you'll never need to touch the sshd_config file again, you'll
simply add or remove user accounts to and from the group to control access. Just so
you're aware, AllowUsers overrides AllowGroups.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[333]

I probably should've listed this first, but another important option is
PermitRootLogin, which controls whether or not the root user account is able to
make SSH connections. This should always be set to no. By default, this is usually
set to prohibit-password, which means key authentication is allowed for root
and passwords for root aren't accepted. I don't see any reason for this either. In my
opinion, turn this off. Having root being able to log in to your server over a network
connection is never a good idea. This is always the first user account attackers will
try to use.

PermitRootLogin no

My next suggestion is by no means easy to set up, but worth it. By default, OpenSSH
allows for users to authenticate via passwords. This is one of the first things I disable
on all my servers. Allowing users to enter passwords to establish a connection
means that attackers will also be able to brute-force your server. If passwords
aren't allowed, then they can't do that. What's tricky is that before you can disable
password authentication for SSH, you'll first need to configure and test an alternate
means of authenticating, which will usually be public key authentication. This is
something we've gone over in Chapter 4, Connecting to Networks. Basically, you can
generate an SSH key pair on your local workstation, and then add that key to the
authorized_keys file on the server, which will allow you in without a password.
Again, refer to Chapter 4, Connecting to Networks if you haven't played around with
this yet.

If you disable password authentication for OpenSSH, then public key authentication
will be the only way in. If someone tries to connect to your server and they don't
have the appropriate key, the server will deny their access immediately. If password
authentication is enabled and you have a key relationship, then the server will ask
the user for their password if their key isn't installed. In my view, after you set up
access via public key cryptography, you should disable password authentication.
Just make sure you test it first.

PasswordAuthentication no

Although this isn't a tip for your /etc/ssh/sshd_config file and it is probably
an obvious point, any OpenSSH server that allows access to SSH from the Internet
should have a very strong, randomly generated password. I know I've mentioned
using strong passwords several times now, but I cannot understate the importance of
strong passwords. Personally, I prefer that you never allow access to SSH from the
Internet to any of your servers. But don't get me wrong; I understand that sometimes
that's just not feasible and you may have one or two servers that absolutely need
external SSH access. But if you do allow OpenSSH from the outside, use secure
passwords! Linux is quite possibly one of the most secure platforms in existence,
but nothing can save you if your password is simply iluvcats.

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[334]

There you are, those are my most recommended tweaks for securing OpenSSH.
There's certainly more where that came from, but those are the settings you'll
benefit from the most. In the next section, we'll add an additional layer, in the form
of Fail2ban. With Fail2ban protecting OpenSSH and coupled with the tweaks I
mentioned in this section, attackers will have a tough time trying to break into your
server. For your convenience, here are all the OpenSSH configuration options I've
covered in this section:

Port 65332
Protocol 2
AllowUsers larry moe curly
AllowGroups admins sshusers gremlins
PermitRootLogin no
PasswordAuthentication no

Installing and configuring Fail2ban
Fail2ban, how I love thee! Fail2ban is one of those tools that once I learned how
valuable it is, I wondered how I ever lived so long without it. In the past, I used
a utility known as DenyHosts to secure OpenSSH. DenyHosts protected SSH (no
more, no less). It watched the server's log files, looking for authentication attempts.
If it saw too many failures from a single IP address, it would create a firewall rule to
block that IP. The problem was that it only protected OpenSSH. Another problem
is that DenyHosts just kind of went away quietly. For some reason, it stopped
being maintained and some distributions removed it outright. Fail2ban does what
DenyHosts used to do (protect SSH) and more, as it also is able to protect other
services as well.

Installing and configuring Fail2ban is relatively straightforward. First, install
its package:

apt-get install fail2ban

After installation, the fail2ban daemon will start up and be configured to
automatically start at boot-time. Configuring fail2ban is simply a matter of creating
a configuration file. But, this is one of the more interesting aspects of Fail2ban, you
shouldn't use its default config file. The default file is /etc/fail2ban/jail.conf.
The problem with this file is that it can be overwritten when you install security
updates, if those security updates ever include Fail2ban itself. To remedy this,
Fail2ban also reads the /etc/fail2ban/jail.local file, if it exists. It will never
replace that file, and the presence of a jail.local file will supersede the jail.conf
file. The simplest way to get started is to make a copy of jail.conf and save it as
jail.local:

cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[335]

I'll go over some of the very important settings you should configure, so open
up the /etc/fail2ban/jail.local file you just copied in a text editor. The first
configuration item to change is located on line 50:

ignoreip = 127.0.0.1/8

On this line, you should add additional networks that you don't want to be blocked
by Fail2ban. Fail2ban is relentless; it will block any service that meets its block
criteria, and it won't think twice about it. This includes blocking you. To rectify this,
add your company's network here, as well as some other IP address you never want
to be blocked. Make sure to leave the localhost IP intact:

Ignoreip = 127.0.0.1/8 192.168.1.0/24 192.168.1.245/24

In that example, I added the 192.168.1.0/24 network, as well as a single IP address
of 192.168.1.245/24. Add your networks to this line to ensure you don't lock
yourself out.

Next, line 59 includes the bantime option. This option pertains to how many seconds
a host is banned when Fail2ban blocks it. This option defaults to 600:

bantime = 600

Change this number to whatever you find reasonable, or just leave it as its default,
which will also be fine. If a host gets banned, it will be banned for this specific
number of seconds, until it will eventually be allowed again.

Continuing, we have the maxretry setting:

maxretry = 5

This is specifically the number of failures that need to occur before Fail2ban takes
action. If a service it's watching reaches five failures, game over! The IP will be
blocked for the number of seconds included in the bantime option. You can change
this if you want to, if you don't find 5 failures to be reasonable. The highest I would
set it to is 7, for those users on your network that insist they're typing the correct
password and they type the same thing over and over. Hopefully, they'll realize their
error before their seventh attempt and won't need to call the helpdesk.

Skipping ahead all the way down to line 207 or thereabouts, we have the Jails
section. From here, the config file will list several Jails you can configure, which
is basically another word for something Fail2ban cares to pay attention to. The first
is [sshd], which configures its protection of the OpenSSH daemon. Look for this
option underneath [sshd]:

port = ssh

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[336]

The port being equal to ssh basically means that it's defaulting to port 22. If you've
changed your SSH port, change this to reflect whatever that port is. There are two
such occurrences, one under [sshd] and another underneath [sshd-ddos]:

port = 65332

Before we get too much further, I want to underscore the fact that we should test that
Fail2ban is working after each configuration change we make. To do this, restart
Fail2ban and then check its status:

systemctl restart fail2ban
systemctl status -l fail2ban

The status should always be active (running). If it's anything else, that means
that Fail2ban doesn't like something in your configuration. Usually, that means
that Fail2ban's status will reflect that it exited. So, as we go, make sure to restart
Fail2ban after each change and make sure it's not complaining about something.
The status command will show lines from the log file for your convenience.

Another useful command to run after restarting Fail2ban is the following:

fail2ban-client status

The output from that command will show all the jails that you have enabled. If you
enable a new Jail in the config file, you should see it listed within the output of
that command.

So, how do you enable a Jail? By default, all Jails are disabled, except for the one for
OpenSSH. To enable a Jail, place the following within its config block in the /etc/
fail2ban/jail.local file:

enabled = true

Earlier versions of Ubuntu included the line enabled =
false for each Jail in the sample jail.conf file. In that
case, you'd only need to change the line to enabled = true to
enable a jail.

For example, if you want to enable the apache-auth Jail, find its section, and place
enabled = true right underneath its stanza. For example, apache-auth will look
like the following after you add the enabled line:

[apache-auth]
enabled = true
port = http,https
logpath = %(apache_error_log)s

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[337]

In that example, the enabled = true portion wasn't present in the default file. I
added it. Now that I've enabled a new jail, we should restart fail2ban:

systemctl restart fail2ban

Next, check its status to make sure it didn't explode on startup:

systemctl status -l fail2ban

Assuming all went well, we should see the new Jail listed in the output of the
following command:

fail2ban-client status

On my test server, the output became the following once I enabled apache-auth:

Status

|- Number of jail: 2

`- Jail list: apache-auth, sshd

If you enable a Jail for a service you don't have installed, Fail2ban may fail to
start up. In my example, I actually did have apache2 installed on that server before
I enabled its Jail. If I hadn't, Fail2ban would likely exit, complaining that it wasn't
able to find log files for Apache. This is the reason why I recommend that you test
Fail2ban after enabling any Jail. If Fail2ban decides it doesn't like something, or
something it's looking for isn't present, it may stop. Then, it won't be protecting you
at all, which is not good.

The basic order of operations for Fail2ban is to peruse the Jail config file, looking
for any Jails you may benefit from. If you have a daemon running on your server,
there's a chance that there's a Jail for that. If there is, enable it and see if Fail2ban
breaks. If not, you're in good shape. If it does fail to restart properly, inspect the
status output and see what it's complaining about.

One thing you may want to do is add the enabled = true line to [sshd] and
[sshd-ddos]. Sure, the [sshd] Jail is already enabled by default, but since it
wasn't specifically called out in the config file, I don't trust it. So you might as well
add an enabled line to be safe. There are several Jails you may benefit from. If you
are using SSL with Apache, enable [apache-modsecurity]. Also, enable [apache-
shellshock] while you're at it. If you're running your own mail server and have
Roundcube running, enable [roundcube-auth] and [postfix]. There are a lot of
default Jails at your disposal!

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[338]

Like all security applications, Fail2ban isn't going to automatically make your
server impervious to all attacks, but it is a helpful additional layer you can add
to your security regimen. When it comes to the Jails for OpenSSH, Fail2ban is
worth its weight in gold, and that's really the least you should enable. Go ahead and
give Fail2ban a go on your servers—just make sure you also white-list your own
networks, in case you accidentally type your own SSH password incorrectly too
many times. Fail2ban doesn't discriminate; it'll block anyone. Once you get it fully
configured, I think you'll agree that Fail2ban is a worthy ally for your servers.

MariaDB best practices
MariaDB, as well as MySQL, is certainly a very useful resource to have at your
disposal. However, it can also be used against you if configured improperly.
Thankfully, it's not too hard to secure, but there are several points of consideration
to make regarding your database server when developing your security design.

The first point is probably obvious to most of you, but I'll mention it just in case.
Your database server should not be reachable from the Internet. I do understand that
there are some edge cases when developing a network, and certain applications may
require access to a MySQL database over the Internet. However, if your database
server is accessible over the Internet, miscreants will try their best to attack it and
gain entry. If there's any vulnerability in your version of MariaDB or MySQL, they'll
most likely be able to hack into it.

In most organizations, a great way to implement a database server is to make it
accessible by only internal servers. This means that while your web server would
obviously be accessible from the Internet, its backend database should exist on a
different server on your internal network and accept communications only from the
web server. If your database server is a VPS, it should especially be configured to
only accept communications from your web server, as VPS machines are accessible
via the Internet by default. Therefore, it's still possible for your database server to
be breached if your web server is also breached, but it would be less likely to be
compromised if it resides on a separate and restricted server.

Some VPS providers, such as Digital Ocean, feature local
networking, which you can leverage for your database server
instead of allowing it to be accessible over the Internet. If your VPS
provider features local networking, you should definitely utilize it.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[339]

With regards to limiting which servers are able to access a database server, there are
a few tweaks we can use to accomplish this. First, we can leverage the /etc/hosts.
allow and /etc/hosts.deny files. With the /etc/hosts.deny file, we can stop
traffic from certain networks or from specific services. With /etc/hosts.allow, we
do the same but we allow the traffic. This works because IP addresses included in /
etc/hosts.allow override /etc/hosts.deny. So basically, if you deny everything
in /etc/hosts.deny and allow a resource or two in /etc/hosts.allow, you're
saying, "deny everything, except resources I explicitly allow from the /etc/hosts.
deny file".

To make this change, we'll want to edit the /etc/hosts.allow file first. By default,
this file has no configuration other than some helpful comments. Within the file, we
can include a list of resources we'd like to be able to access our server, no matter
what. Make sure that you include your web server here, and also make sure that you
immediately add the IP address you'll be using to SSH into the machine, otherwise
you'll lock yourself out once we edit the /etc/hosts.deny file. Here are some
example hosts.allow entries, with a description of what each example rule does:

ALL: 192.168.1.50

This rule allows a machine with an IP address of 192.168.1.50 to access the server:

ALL: 192.168.1.0/255.255.255.0

This rule allows any machine within the 192.168.1.0/24 network to access
the server:

ALL: 192.168.1.

In this rule, we have an incomplete IP address. This acts as a wildcard, which means
that any IP address beginning with 192.168.1 is allowed:

ALL: ALL

This rule allows everything. You definitely don't want to do this!

ssh: 192.168.1.

We can also allow specific daemons, as well. Here, I'm allowing OpenSSH traffic
originating from any IP address beginning with 192.168.1.

On your end, if you wish to utilize this security approach, add the resources on your
database server you'll be comfortable accepting communications from. Make sure
you at least add the IP address of another server with access to OpenSSH, so you'll
have a way to manage the machine. You can also add all your internal IP addresses
with a rule similar to the previous examples. Once you have this set up, we can edit
the /etc/hosts.deny file.

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[340]

The /etc/hosts.deny file utilizes the same syntax as /etc/hosts.allow. To finish
this little exercise, we can block any traffic not included in the /etc/hosts.allow
file with the following rule:

ALL: ALL

The /etc/hosts.allow and /etc/hosts.deny files don't represent a complete layer
of security, but is a great first step in securing a database server, especially one that
might contain sensitive user or financial information. It's by no means specific to
MySQL either, but I mention it here because databases very often contain data that if
leaked, could potentially wreak havoc on your organization and even put someone
out of business. A database server should only ever by accessible by the application
that needs to utilize it.

Another point of consideration is user security. We walked through creating
database users in Chapter 9, Managing Databases. In that chapter, we walked through
the MySQL command for creating a user as well as a grant, performing both in one
single command. This is the example I used:

GRANT SELECT ON mysampledb.* TO 'appuser'@'localhost' IDENTIFIED BY
'password';

What's important here is that we're allowing access to the mysampledb database by
a user named appuser. If you look closer at the command, we're also specifying that
this connection is allowed only if it's coming in from localhost. If we tried to access
this database remotely, it wouldn't be allowed. This is a great default. But you'll
also, at some point, need to access the database from a different server. Perhaps
your web server and database server are separate machines, which is common in
the Enterprise. You could do this:

GRANT SELECT ON mysampledb.* TO 'appuser'@'%' IDENTIFIED BY 'password';

However, in my opinion, this is a very bad practice. The % character in a MySQL
GRANT command is a wildcard, similar to * with other commands. Here, we're
basically telling our MariaDB or MySQL instance to accept connections from this
user, from any network. There is almost never a good reason to do this. I've heard
some administrators use the argument that they don't allow external traffic from
their company firewall, so allowing MySQL traffic from any machine shouldn't be
a problem. However, that logic breaks down when you consider that if an attacker
does gain access to any machine in your network, they can immediately target
your database server. If an internal employee gets angry at management and wants
to destroy the database, they'll be able to access it from their workstation. If an
employee's workstation becomes affected by malware that targets database servers,
it may find your database server and try to brute-force it. I could go on and on with
examples of why allowing access to your database server from any machine is a bad
idea. Just don't do it!

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[341]

If we want to give access to a specific IP address, we can do so with the
following instead:
GRANT SELECT ON mysampledb.* TO 'appuser'@'192.168.1.50' IDENTIFIED BY
'password';

With that example, only a server or workstation with an IP address of 192.168.1.50
is allowed to use the appuser account to obtain access to the database. That's much
better. You can, of course, allow an entire subnet as well:
GRANT SELECT ON mysampledb.* TO 'appuser'@'192.168.1.% IDENTIFIED BY
'password';

Here, any IP address beginning with 192.168.1 is allowed. Honestly, I really don't
like allowing an entire subnet. But depending on your network design, you may
have a dozen or so machines that need access. Hopefully, the subnet you allow is not
the same subnet your users' workstations use!

Finally, another point of consideration is security patches for your database server
software. I know I talk about updates quite a bit, but as I've mentioned, these
updates exist for a reason. Developers don't release patches for Enterprise software
simply because they're bored, these updates often patch real problems that real
people are taking advantage of right now as you read this. Install updates regularly.
I understand that updates on server applications can scare some people, as an update
always comes with the risk that it may disrupt business. But as an administrator, it's
up to you to create a roll-out plan for security patches, and ensure they're installed
in a timely fashion. Sure, it's tough and often has to be done after-hours. But the last
thing I want to do is read about yet another company on the news with the contents
of their database server leaked and posted on Pastebin. A good security design
includes regular patching.

Setting up a firewall
Firewalls are a very important aspect to include in your network and security design.
Firewalls are extremely easy to implement, but sometimes hard to implement well.
The problem with firewalls is that they can sometimes offer a false sense of security
to those who aren't familiar with the best ways to manage them. Sure, they're good
to have, but simply having a firewall isn't enough by itself. The false sense of security
comes when someone thinks that they're protected just because of the fact a firewall
is installed and enabled, but they're also often opening traffic from any network
to internal ports. Take into consideration the firewall that was introduced with
Windows XP and enabled by default with Windows XP Service Pack 2. Yes, it was a
good step but users simply clicked the "allow" button whenever something wanted
access, which defeats the entire purpose of having a firewall. Windows implements
this better nowadays, but the false sense of security it created remains to this day.
Firewalls are not a "set it and forget it" solution!

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[342]

Firewalls work by allowing or disallowing access to a network port from other
networks. Most good firewalls block outside traffic by default. When a user or
administrator enables a service, they open a port for it. Then, that service is allowed
in. This is great in theory, but where it breaks down is that administrators will often
allow access from everywhere when they open a port. If an administrator does
this, they may as well not even have a firewall at all. Think about it this way. If you
need access to a server via OpenSSH, you may open up port 22 (or whatever port
OpenSSH is listening on) to allow it through the firewall. But if you simply allow
the port, it's open for everyone else as well. Think of most open ports as a door. If
someone keeps trying to break through it, they'll eventually succeed.

When configured properly, a firewall will enable access to a port only from specific
places. For example, rather than allowing port 22 for OpenSSH to your entire
network, why not just allow traffic to port 22 from specific IP addresses or subnets?
Now we're getting somewhere! In my opinion, allowing all traffic through a port is
usually a bad idea, though some services actually do need this (such as web traffic to
your web server). If you can help it, only allow traffic from specific networks when
you open a port. This is where the use case for a firewall really shines.

In Ubuntu Server, the Uncomplicated Firewall (UFW) is a really useful tool for
configuring your firewall. As the name suggests, it makes firewall management a
breeze. To get started, install the ufw package:

apt-get install ufw

By default, the UFW firewall is disabled. This is a good thing, because we wouldn't
want to enable a firewall until after we've configured it. The ufw package features its
own command for checking its status:

ufw status

Unless you've already configured your firewall, the status will come back as inactive.

With the ufw package installed, the first thing we'll want to do is enable traffic via
SSH, so we won't get locked out when we do enable the firewall:

ufw allow from 192.168.1.156 to any port 22

You can probably see from that example how easy UFW's syntax is. With that
example, we're allowing IP address 192.168.1.156 access to port 22 via TCP as well
as UDP. In your case, you would change the IP address accordingly, as well as the
port number if you're not using the OpenSSH default port. any in this case refers to
any protocol (TCP or UDP).

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[343]

You can also allow traffic by subnet as well:

ufw allow from 192.168.1.0/24 to any port 22

Although I don't recommend this, you can allow all traffic from a specific IP to access
anything on your server. Use this with care, if you have to use it at all:

ufw allow from 192.168.1.50

Now that we've configured our firewall to allow access via OpenSSH, you should
also allow any other ports or IP addresses that are required for your server to operate
efficiently. If your server is a web server for example, you'll want to allow traffic
from ports 80 and 443. This is one of those few exceptions where you'll want to
allow traffic from any network, assuming your web server serves an external page on
the Internet:

ufw allow 80
ufw allow 443

There are various other use patterns for the ufw command; refer to the man page
for more. In a nutshell, these examples should enable you to allow traffic through
specific ports, as well as via specific networks and IP addresses. Once you've finished
configuring the firewall, we can enable it:

ufw enable
Firewall is active and enabled on system startup

Just as the output suggests, our firewall is active and will start up automatically
whenever we reboot the server.

The UFW package is basically an easy to use front-end to the iptables firewall,
and it acts as the default firewall for Ubuntu. The commands we executed so far in
this section trigger the iptables command, which is a command administrators
can use to set up a firewall manually. A full walkthrough of iptables is beyond the
scope of this chapter, and it's essentially unnecessary since Ubuntu features UFW
as its preferred firewall administration tool and it's the tool you should use while
administrating a firewall on your Ubuntu server. If you're curious, you can see what
your current set of iptables firewall rules look like with the following command:

iptables -L

With a well-planned firewall implementation, you can better secure your Ubuntu
Server installation from outside threats. Preferably, each port you open should only
be accessible from specific machines, with the exception being servers that are meant
to serve data or resources to external networks. Like all security solutions, a firewall
won't make your server invincible, but it does represent an additional layer attackers
would have to bypass in order to do harm.

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[344]

Encrypting and decrypting disks with
LUKS
An important aspect of security that many don't even think about is encryption. As
I'm sure you know, backups are essential for business continuity. If a server breaks
down, or a resource stops functioning, backups will be your saving grace. But what
happens if your backup medium gets stolen or somehow falls into the wrong hands?
If your backup is not encrypted, then anyone will be able to view its contents. Some
data is just not sensitive, so encryption isn't always required. But anything that
contains personally identifiable information, company secrets, or anything else that
would cause any kind of hardship if leaked, should be encrypted. In this section, I'll
walk you through setting up Linux Unified Key Setup (LUKS) encryption on an
external backup drive.

Before we get into that though, I want to quickly mention the importance of full disk
encryption for your distribution as well. Although this section is going to go over
how to encrypt external disks, it's also possible to encrypt the volume for your entire
Linux installation as well. In the case of Ubuntu, full disk encryption is an option
during installation, for both the server and workstation flavors. This is especially
important when it comes to mobile devices, such as laptops, which are stolen quite
frequently. If a laptop is planned to store confidential data that you cannot afford
to leak out, you should choose the option during installation to encrypt your entire
Ubuntu installation. If you don't, anyone that knows how to boot a Live OS disc and
mount a hard drive will be able to view your data. I've seen unencrypted company
laptops get stolen before, and it's not a wonderful experience.

Anyway, back to the topic of encrypting external volumes. For the purpose of
encrypting disks, we'll need to install the cryptsetup package:

apt-get install cryptsetup

The cryptsetup utility allows us to encrypt and unencrypt disks. To continue,
you'll need an external disk you can safely format, as encrypting the disk will
remove any data stored on it. This can be an external hard disk, or a flash drive. Both
can be treated the exact same way. In addition, you can also use this same process to
encrypt a secondary internal hard disk attached to your virtual machine or server.

If you're using an external disk, use the fdisk -l command as root or the lsblk
command to view a list of hard disks attached to your computer or server before you
insert it. After you insert your external disk or flash drive, run the command again to
determine the device designation for your removable media. In my examples, I used
/dev/sdb, but you should use whatever designation your device was given. This is
important, because you don't want to wipe out your root partition or an existing
data partition!

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[345]

First, we'll need to use cryptsetup to format our disk:

cryptsetup luksFormat /dev/sdb

You'll receive the following warning:

WARNING!

========

This will overwrite data on /dev/sdb irrevocably.

Are you sure? (Type uppercase yes):

Type YES and press Enter to continue. Next, you'll be asked for the passphrase. This
passphrase will be required in order to unlock the drive. Make sure you use a good,
randomly generated password and that you store it somewhere safe. If you lose it,
you will not be able to unlock the drive. You'll be asked to confirm the passphrase.

Once the command completes, we can format our encrypted disk. At this point,
it has no file-system. We'll need to create one. First, open the disk with the
following command:

cryptsetup luksOpen /dev/sdb backup_drive

The name backup_drive can be anything you want; it's basically just an arbitrary
name you can refer to the disk as. At this point, the disk will be attached to /dev/
mapper/disk_name where disk_name is whatever you called your disk in the
previous command (in my case, backup_drive). Next, we can format the disk.
The following command will create an Ext4 filesystem on the encrypted disk:

mkfs.ext4 -L "backup_drive" /dev/mapper/backup_drive

The -L option allows us to add a label to the drive, so feel free to change that label to
whatever you prefer to name the drive.

With the formatting out of the way, we can now mount the disk:

mount /dev/mapper/backup_drive /media/backup_drive

The mount command will mount the encrypted disk located at /dev/mapper/
backup_drive and attach it to a mount point, such as /media/backup_drive in my
example. The target mount directory must already exist. With the disk mounted, you
can now save data onto the device as you would any other volume. When finished,
you can unmount the device with the following commands:

umount /media/backup_drive

cryptsetup luksClose /dev/mapper/backup_drive

www.hellodigi.ir

http://technet24.ir

Securing Your Server

[346]

First, we unmounted the volume just like we normally would. Then, we
tell cryptsetup to close the volume. To mount it again, we would issue the
following commands:

cryptsetup luksOpen /dev/sdb backup_drive
mount /dev/mapper/backup_drive /media/backup_drive

If we wish to change the passphrase, we can use the following command. Keep in
mind that you should absolutely be careful typing in the new passphrase, so you
don't lock yourself out of the drive. The disk must not be mounted or open in order
for this to work:

cryptsetup luksChangeKey /dev/sdb -S 0

The command will ask you for the current passphrase, and then the new one twice.

That's basically all there is to it. With the crypsetup utility, you can set up your own
LUKS encrypted volumes for storing your most sensitive information. If the disk
ever falls into the wrong hands, it won't be as bad of a situation as it would have
been had the disk been unencrypted. Breaking a LUKS-encrypted volume would
take considerable effort that wouldn't be feasible.

Locking down sudo
We've been using the sudo command throughout the book so far. In fact, we took
a deeper look at it during Chapter 2, Managing Users. Therefore, I won't go into too
much detail regarding sudo here, but some things bear repeating as sudo has a direct
impact on security.

First and foremost, access to sudo should be locked down as much as possible.
A user with full sudo access is a threat, plain and simple. All it would take is for
someone with full sudo access to make a single mistake with the rm command to
cause you to lose data or render your entire server useless. After all, a user with full
sudo access can do anything root can do (which is everything).

By default, the user you've created during installation will be made a member of
the sudo group. Members of this group have full access to the sudo command.
Therefore, you shouldn't make any users a member of this group unless you
absolutely have to. In Chapter 2, Managing Users, I talked about how to control access
to sudo with the visudo command; refer to that chapter for a refresher if you need
it. In a nutshell, you can lock down access to sudo to specific commands, rather than
allowing your users to do everything. For example, if a user needs access to shut
down or reboot a server, you can give them access to perform those tasks (and only
those tasks) with the following setting:

charlie ALL=(ALL:ALL) /usr/sbin/reboot,/usr/sbin/shutdown

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 12

[347]

This line is configured via the visudo command, which we
covered in Chapter 2, Managing Users.

For the most part, if a user needs access to sudo, just give them access to specific
commands that are required as part of their job. If a user needs access to work with
removable media, give them sudo access for the mount and umount commands.
If they need to be able to install new software, give them access to the apt suite
of commands, and so on. The fewer permissions you give a user, the better. This
goes all the way back to the principle of least privilege that we went over near the
beginning of this chapter.

Although most of the information in this section is not new to anyone that has
already read Chapter 2, Managing Users, sudo access is one of those things a lot of
people don't think about when it comes to security. The sudo command with full
access is equivalent to giving someone full access to the entire server. Therefore,
it's an important thing to keep in mind when it comes to hardening the security of
your network.

Summary
In this chapter, we looked at the ways in which we can harden the security of
our server. A single chapter or book can never give you an all-inclusive list of all
the security settings you can possibly configure, but the examples we worked
through in this chapter are a great starting point. Along the way, we looked at the
concepts of lowering your attack surface, as well as the principle of least privilege.
We also looked into securing OpenSSH, which is a common service that many
attackers will attempt to use in their favor. We also looked into Fail2ban, which
is a handy daemon that can block other nodes when there are a certain number
of authentication failures. We also discussed configuring our firewall, using the
Uncomplicated Firewall (UFW) utility. Since data theft is also unfortunately
common, we covered encrypting our backup disks.

In Chapter 13, Troubleshooting Ubuntu Servers, we'll take a look at troubleshooting our
server when things go wrong.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[349]

Troubleshooting
Ubuntu Servers

So far, have we covered many topics, ranging from installing software to setting up
services to provide value to our network. But what about when things go wrong?
While it's impossible for us to account for every possible problem that may come up,
there are some common places to look for clues during a time in which something
goes wrong and a process isn't behaving quite as you expect it to. In this chapter,
we'll take a look at some common starting points and techniques when it comes to
troubleshooting issues with our servers.

In this chapter, we will cover:

•	 Evaluating the problem space
•	 Conducting a root-cause analysis
•	 Viewing system logs
•	 Tracing network issues
•	 Troubleshooting resource issues
•	 Diagnosing defective RAM

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[350]

Evaluating the problem space
After you identify the symptoms of the issue, the first goal in troubleshooting is to
identify the problem space. Essentially, this means determining (as best you can)
where the problem is most likely to reside, and how many systems and services
are affected. Sometimes the problem space is obvious. For example, if none of your
computers are receiving an IP address from your Ubuntu-based DHCP server, then
you'll know straight away to start investigating the logs on that particular server in
regards to its ability (or inability), to do the job designated for it. In other cases, the
problem space may not be obvious. Perhaps you have an application that exhibits
problems every now and then, but isn't something you can reliably reproduce. In
that case, it may take some digging before you know just how large the scope of the
problem might be. Sometimes, the culprit is the last thing you expect.

Each component on your network works together with other components, or at least,
that's how it should be. A network of Linux servers, just as with any other network,
is a collection of services (daemons) that compliment and often depend upon one
another. For example, DHCP assigns IP addresses to all of your hosts, but it also
assigns their default DNS servers as well. If your DNS server has encountered an
issue, then your DHCP server would essentially be assigning a non-working DNS
server to your clients. Identifying the problem space means that after you identify
the symptoms, you'll also work toward reaching an understanding of how each
component within your network contributes to, or is affected by, the problem. This
will also help you identify the scope.

With regards to the scope, we identify how far the problem reaches, as well as how
many users or systems are affected by the issue. Perhaps just one user is affected, or
an entire subnet. This will help you determine the priority of the issue, and decide
whether or not this is something essential that you need to fix now, or something
that can wait until later. Often, prioritizing is half the battle, since each of your users
will be under the impression that their issues are more important.

When identifying the problem space, as well as the scope, you'll want to answer the
following questions as best as you can:

• What are the symptoms of the issue?
• When did this problem first occur?
• Were there any changes made around the network around that same time?
• Has this problem happened before? If so, what was done to fix it the

last time?
• Which servers or nodes are impacted by this issue?
• How many users are impacted?

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[351]

If the problem is limited to a single machine, then a few really good places to start
poking around is checking who is logged into the server and which commands
have recently been entered. Quite often, I've found the culprit just by checking the
bash history for logged on users (or users that have recently logged in). With each
user account, there should be a .bash_history file in their home directory. Within
this file is a list of commands that were recently entered. Check this file and see
if anyone modified anything recently. I can't tell you how many times this alone
has led directly to the answer. And what's even better, sometimes the bash history
has led right to the solution. If a problem has occurred before and someone has
already fixed it at some point in the past, chances are their efforts were recorded in
the bash history, so you can see what the previous person did to solve the problem
just by looking at it. To view the bash history, you can either view the contents of
the .bash_history file in a user's home directory, or you can simply execute the
history command as that user.

Additionally, if you check who is currently logged into the server, you may be able
to pinpoint if someone is working on an issue already, or perhaps something they're
doing caused the issue in the first place. If you enter the w command, you can see
who is logged in to the server currently. In addition, you'll also see the IP address of
the user that's logged in when you run this command. Therefore, if you don't know
who corresponds to a user account listed when you run the w command, you can
check the IP address in your DHCP server to find out who the IP address belongs
to, so you can ask that person directly. In a perfect world, other administrators will
send out a departmental email when they work on something to make sure everyone
is aware. Unfortunately, many don't do this. By checking the logged in users as
well as their bash history, you're well on your way to determining where the
problem originated.

After identifying the problem space and the scope, you can begin narrowing down
the issue to help find a cause. Sometimes, the culprit will be obvious. If a website
stopped working and you noticed that the Apache configuration on your web server
was changed recently, you can attack the problem by investigating the change and
who made it. If the problem is a network issue, such as users not being able to visit
websites, the potential problem space is much larger. Your Internet gateway may be
malfunctioning, your DNS or DHCP server may be down, your Internet provider
could be having issues, or perhaps your accounting department simply forgot to
pay the Internet bill. As long as you are able to determine a potential list of targets to
focus your troubleshooting on, you're well on your way to finding the issue. As we
go through this chapter, I'll talk about some common issues that can come up and
how to deal with them.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[352]

Conducting a root-cause analysis
Once you solve a problem on your server or network, you'll immediately revel in the
awesomeness of your troubleshooting skills. It's a wonderful feeling to have fixed
an issue, becoming the hero within your technology department. But you're not
done yet. The next step is looking toward preventing this problem from happening
again. While we'll dive deeper into preventing future disasters in our next chapter,
it's important to look at how the problem started as well as steps you can take in
order to help stop the problem from occurring again. This is known as a root-cause
analysis. A root-cause analysis may be a report you file with your manager or within
your knowledge-base system, or it could just be a memo you document for yourself.
Either way, it's an important learning opportunity.

A good root-cause analysis has several sides to the equation. First, it will
demonstrate the events that led to the problem occurring in the first place. Then,
it will contain a list of steps that you've completed to correct the problem. If the
problem is something that could potentially recur, you would want to include
information about how to prevent it from happening again in the future.

The problem with a root-cause analysis is that it's rare that you can be 100 percent
accurate. Sometimes, the root-cause may be obvious. For example, suppose a
user named Bob deleted an entire directory that contained files important to your
company. If you login into the server and check the logs, you can see that Bob not
only logged into the server, his bash history literally shows him running the rm -rf
/work/important-files command. At this point, case is closed. You figured out
how the problem happened, who did it, and you can restore the files from your most
recent backup. But a root-cause is usually not that cut and dry.

One example I've personally encountered was a pair of virtual machine servers that
were "fencing". At a company I once worked for, our Citrix-based virtual machine
servers (which were part of a cluster), both went down at the same time, taking
every Linux VM down with them. When I attached a monitor to them, I could see
them both rebooting, over and over. After I got the servers to settle down, I started
to investigate deeper. I read in the documentation for Citrix XenServer that you
should never install a cluster of anything less than three machines, that it can create
a situation exactly as I experienced. We only had two servers in that cluster, so I
concluded that the servers were set up improperly and the company would need a
third server if they wanted to cluster them.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[353]

The problem though, is that example root-cause analysis wasn't 100 percent
perfect. Were the servers having issues because they needed a third server? The
documentation did mention that three servers were a minimum, but there's no way
to know for sure that was the reason the problem started. However, not only was
I not watching the servers when it happened, I also wasn't the individual who set
them up, whom had already left the company. There was no way I could reach a 100
percent conclusion, but my root-cause analysis was sound in the sense that it was
the most likely explanation (that we weren't using best practices). Someone could
counter my root-cause analysis with the question "but the servers were running
fine that way for several years." True, but nothing is absolute when dealing with
technology. Sometimes, you never really know. The only thing you can do is
make sure everything is set up properly according to the guidelines set forth by
the manufacturer.

A good root-cause analysis is as sound in logic as you can be, though not necessarily
bulletproof. Correlating system events to symptoms is often a good first-step, but
is not necessarily perfect. After investigating the symptoms, solving the issue, and
documenting what you've done to rectify it, sometimes the root-cause analysis
writes itself. Other times, you'll need to read documentation and ensure that the
configuration of the server or daemon that failed was implemented along with
best practices. In a worst-case scenario, you won't really know how the problem
happened or how to prevent it, but it should still be documented in case other
details come to light later. And without documentation, you'll never gain anything
from the situation.

A root-cause analysis should include details such as the following:

•	 A description of the issue
•	 Which application or piece of hardware encountered a fault
•	 The date and time the issue was first noticed
•	 What you found while investigating the issue
•	 What you've done to resolve the issue
•	 What events, configurations, or faults caused the issue to happen

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[354]

A root-cause analysis should be used as a learning experience. Depending on what
the issue was, it may serve as an example of what not to do, or what to do better. In
the case of my virtual machine server fiasco, the moral of the story was to follow best
practices from Citrix and use three servers for the cluster instead of two. Other times,
the end-result may be another technician not following proper directives or making
a mistake, which is unfortunate. In the future, if the issue were to happen again,
you'll be able to look back and remember exactly what happened last time and what
you did to fix it. This is valuable, if only for the reason we're all human and prone
to forgetting important details after a time. In an organization, a root-cause analysis
is valuable to show stakeholders that you're able to not only address a problem, but
reasonably able to prevent it from happening again.

Viewing system logs
After you identify the problem space, you can attack the potential origin of the
problem. Often, this will involve reviewing log files on your server. Linux has great
logging, and many of the applications you may be running are writing log files as
events happen. If there's an issue, you may be able to find information about it in an
application's log file.

Inside the /var/log directory, you'll see a handful of logs you can view, which
differs from server to server depending on which applications are installed. In quite
a few cases, an installed application will create its own log file somewhere within
/var/log, either in a log file or a log file within a subdirectory of /var/log. For
example, once you install Apache, it will create log files in the /var/log/apache2
directory, which may give you a hint as to what may be going on if the problem is
related to your web server. MySQL and MariaDB create their log files in the /var/
log/mysql directory. These are known as application logs, which are basically log
files created by an application and not the distribution. There are also system logs,
such as the authorization or system logs. System logs are the log files created by the
distribution, and allow you to view system events.

Viewing a log file can be done in several ways. One way is to use the cat command
along with the path and file name of a log file. For example, the Apache access log
can be viewed with the following command:

cat /var/log/apache2/access.log

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[355]

One problem with the cat command is that it will print out the entire file, no
matter how big it is. It will scroll by your terminal and if the file is large, you won't
be able to see all of it. In addition, if your server is already taxed when it comes to
performance, using cat can actually tie up the server for a bit in a case where the
log file is massive. This will cause you to lose control of your shell until the file stops
printing. You can press Ctrl + C to stop printing the log file, but the server may end
up being too busy to respond to Ctrl + C and show the entire file anyway.

Another method is to use the tail command. By default, the tail command shows
you the last ten lines of a file:

tail /var/log/apache2/access.log

If you wish to see more than the last ten lines, you can use the -n option to specify a
different amount. To view the last 100 lines, we would use the following:

tail -n 100 /var/log/apache2/access.log

Perhaps one of the most useful features of the tail command is the -f option, which
allows you to follow a log file. Basically, this means that as entries are written to the
log file, it will scroll by in front of you. It's close to watching the log file in real time:

tail -f /var/log/apache2/access.log

Once you start using the follow option, you'll wonder how you ever lived without
it. If you're having a specific problem that you are able to reproduce, you can watch
the log file for that application and see the log entries as they appear while you're
reproducing the issue. In the case of a DHCP server not providing IP addresses to
clients, you can view the output of the /var/log/syslog file (the isc-dhcp-server
daemon doesn't have its own log file), and you can see any errors that come up as
your clients try to re-establish their DHCP lease, allowing you to see the problem as
it is happens.

Another useful command for viewing logs is less. The less command allows you
to scroll through a log file with the page up and page down keys on your keyboard,
which makes it more useful for viewing log files than the cat command. You can
press Q to exit the file.

less /var/log/apache2/access.log

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[356]

So now that you know a few ways in which you can view these files, which files
should you inspect? Unfortunately, there's no one rule, as each application handles
their logging differently. Some daemons have their own log file stored somewhere
in /var/log. Therefore, a good place to check is in that directory, to see if there is a
log file with the name of the daemon. Some daemons don't even have their own log
file, and will use /var/log/syslog instead. You may try viewing the contents of the
file, while using grep to find messages related to the daemon you're troubleshooting.
In regards to the isc-dhcp-server daemon, the following would narrow down the
syslog to messages from that specific daemon:

cat /var/log/syslog |grep dhcpd

While troubleshooting security issues, the log file you'll definitely want to look
at is the authorization log, located at /var/log/auth.log. You'll need to use the
root account or sudo to view this file. The authorization log includes information
regarding authentication attempts to the server, including logins from the server
itself, as well as over OpenSSH. This is useful for several reasons, among them the
fact that if something really bad happens on your server, you can find out who
logged in to the server around that same time. In addition, if you or one of your
users is having trouble accessing the server via OpenSSH, you may want to look
at the authorization log for clues, as additional information for OpenSSH failures
will be logged there. Often, the ssh command may complain about permissions
of key files not being correct, which would give you an answer as to why public
key authentication stopped working, as OpenSSH expects specific permissions for
its files. For example, the private key file (typically /home/<user>/.ssh/id_rsa)
should not be readable or writable by anyone other than its owning user. You'd see
errors within the /var/log/auth.log mentioning such if that were the case.

Another use case for checking the /var/log/auth.log is for security, as a high
number of login attempts may indicate an intrusion attempt. (Hopefully, you have
Fail2ban installed, which we went over in the last chapter). An unusually high
number of failed password attempts may indicate someone trying brute-force
logging in to the server. That would definitely be a cause for concern, and you'd
want to block their IP address immediately.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[357]

The system log, located in /var/log/syslog, contains logging information for
quite a few different things. It's essentially the Swiss army knife of Ubuntu's logs. If
a daemon doesn't have its own log file, chances are its logs are being written to this
file. In addition, information regarding cron jobs will be written here, which makes
it a candidate to check when a cron job isn't being executed properly. The dhclient
daemon, which is responsible for grabbing an IP address from a DHCP server, is also
important. You'll be able to see from dhclient events within the system log when
an IP address is renewed, and you can also see messages relating to failures if it's not
able to obtain an IP address. Also, the systemd init daemon itself logs here, which
allows you to see messages related to server startup as well as applications it's trying
to run.

Another useful log is the /var/log/dpkg.log file, which records log entries relating
to installing and upgrading packages. If a server starts misbehaving after you roll
out updates across your network, you can view this log to see which packages
were recently updated. This log will not only give you a list of updated or installed
packages, but also a time-stamp from when the installation occurred. If a user
installed an unauthorized application, you can correlate this log to the authentication
log, to determine who logged in around that time, and then you can check that user's
bash history to confirm.

Often, log files will get rotated after some time by a utility known as logrotate.
Inside the /var/log directory, you'll see several log files with a .gz extension, which
means that the original log file was compressed and renamed, and a new log file
created in its place. For example, you'll see the syslog file for the system log in the /
var/log directory, but you'll also see files named with a number and a .gz extension
as well, such as syslog.2.gz. These are compressed logs. Normally, you'd view
these logs by uncompressing them and then opening them via any of the methods
mentioned in this section. An easier way to do so is with the zcat command, which
allows you to view compressed files immediately:

zcat /var/log/syslog.2.gz

There's also zless, which serves a similar purpose as the
less command.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[358]

Another useful command for checking logging information is dmesg. Unlike other
log files, the dmesg is literally its own command. You can execute it from anywhere
in the filesystem, and you don't even need root privileges to do so. The dmesg
command allows you to view log entries from the Linux kernel's ring buffer, which
can be very useful when troubleshooting hardware issues (such as seeing which
disks were recognized by the kernel). When troubleshooting hardware, the system
log is also helpful, but using the dmesg command may be a good place to check
as well.

As I mentioned earlier, on an Ubuntu system there are two types of log files, system
logs and application logs. System logs, such as the auth.log and the dpkg.log,
detail important system events and aren't specific to any one particular application.
Application logs become installed when you install their parent package, such as
Apache or MariaDB. Application logs create log entries into their own log file. Some
daemons you install will not create their own application log, such as keepalived
and isc-dhcp-server. Since there's no general rule when it comes to which
applications log is where, the first step in finding a log file is to see if the application
you want log entries from creates its own log file. If not, it's likely using a system log.

When faced with a problem, it's important to practice viewing log files at the same
time you try and reproduce the problem. Using follow mode with tail (tail -f)
works very well for this, as you can watch the log file generate new entries as you
try and reproduce the issue. This technique works very well in almost any situation
where you're dealing with a misbehaving daemon. This technique can also help
narrow down hardware issues. For example, I once dealt with an Ubuntu system
where when I plugged in a flash drive, nothing happened. When I followed the log
as I inserted and removed the flash drive, I saw the system log update and recognize
each insertion and removal. So, clearly the Linux kernel itself saw the hardware and
was prepared to use it. This helped me narrow down the problem to being that the
desktop environment I was using wasn't updating to show the inserted flash drive,
but my hardware and USB ports were operating perfectly fine. With one command,
I was able to determine that the issue was a software problem and not related
to hardware.

As you can see, Ubuntu contains very helpful log files which will aid you in
troubleshooting your servers. Often, when you're faced with a problem, viewing
relevant log entries and then conducting a Google search regarding them will result
in a useful answer, or at least bring you to a bug report to let you know the problem
isn't just limited to you or your configuration. Hopefully, your search results will
lead you right to the answer, or at least to a work-around. From there, you can
continue to work through the problem until it is solved.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[359]

Tracing network issues
It's amazing how important TCP/IP networking is to the world today. Of all the
protocols in use in modern computing, it's by far the most widespread. But it's
also one of the most annoying situations to figure out when it's not working well.
Thankfully, Ubuntu features really handy utilities you can use in order to pinpoint
what's going on.

First, let's look at connectivity. After all, if you can't connect to a network, your
server is essentially completely useless. In most cases, Ubuntu recognizes just
about all network cards without fail, and it will automatically connect your server
or workstation to your network if it is within reach of a DHCP server. While
troubleshooting, get the obvious stuff out of the way first. The following may seem
like a no-brainer, but you'd be surprised how often one can miss something obvious.
I'm going to assume you've already checked to make sure network cables are
plugged in tight on both ends. Another aspect regarding cabling is that sometimes
network cables themselves develop faults and need to be replaced. You should be
able to use a cable tester and get a clean signal through the cable.

Routing issues can sometimes be tricky to troubleshoot, but by testing each
destination point one by one, you can generally see where the problem lies. Typical
symptoms of a routing issue may include being unable to access a device within
another subnet, or perhaps not being able to get out to the Internet, despite being
able to reach internal devices. To investigate a potential routing issue, first check
your routing table. You can do so with the route -n command. This command will
print your current routing table information:

Viewing the current routing table on an Ubuntu Server

In this example, you can see that the default gateway for all traffic is 10.2.150.1.
This is the first entry on the table, which tells us that all traffic to the destination
0.0.0.0 (which is everything) leaves via 10.2.150.1. You should be able to ping
this default gateway. We also see an additional subnet here, 10.2.150.0. You should
be able to ping nodes within this subnet as well.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[360]

To start troubleshooting a routing issue, you would use the information shown
after printing your routing table to conduct several ping tests. First, try to ping
your default gateway. If you cannot, then you've found the issue. If you can, try
running the traceroute command. This command isn't available by default, but
all you'll have to do is install the traceroute package. After it's installed, you can
run traceroute against a host, such as an external URL, to find out where the
connection drops. The traceroute command should show every hop between
you and your target. Each "hop" is basically another default gateway. You traverse
through one gateway after another until you ultimately reach your destination. With
the traceroute command, you can see where the chain stops. In all likelihood, you'll
find that perhaps the problem isn't even on your network, but perhaps your Internet
service provider is where the connection drops.

DNS issues don't happen very often, but by using a few tricks, you should be able to
resolve them. Symptoms of DNS failures will usually result in a host being unable to
access internal or external resources by name. Whether the problem is with internal
or external hosts (or both) should help you determine whether it's your DNS server
that's the problem, or perhaps the DNS server at your ISP.

The first step in pinpointing the source of DNS woes is to ping a known IP address
on your network, preferably the default gateway. If you can ping it, but you can't
ping the gateway by name, then you probably have a DNS issue. Also, make sure
you try and ping external resources as well, such as a website. This will help you
narrow down the scope of the issue.

But which DNS server is your host using? To find out, check the /etc/resolv.conf
file to determine which name servers were assigned to your machine. Are they what
you expect? If not, you can temporarily fix this problem by removing the incorrect
name server entries from this file, and replace them with the correct IP addresses.
The reason I suggest this as a temporary fix and not a permanent one is because the
next thing you'll need to do is investigate how the invalid IP addresses got there in
the first place. Normally, these are assigned by your DHCP server. As long as your
DHCP server is sending out the appropriate name server list, you shouldn't run into
this problem. If you're using a static IP address, then perhaps there was a typo in the
/etc/resolv.conf file.

A useful method of pinpointing DNS issues in regards to being unable to resolve
external sites is to temporarily switch your DNS provider on your local machine.
Normally, your machine is going to use your external DNS provider, such as the
one that comes from your ISP. Your external DNS server is something we've gone
through setting up in Chapter 7, Managing Your Ubuntu Server Network, specifically
the forwarders section of the configuration for the bind9 daemon. The forwarders
used by the bind9 daemon is where it sends traffic if it isn't able to resolve your
request based on its internal list of hosts.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[361]

You could consider bypassing this by changing your local workstation's DNS name
servers to Google's, which are 8.8.8.8 and 8.8.4.4. If you're able to reach the
external resource after switching your name servers, you can be reasonably confident
that your forwarders are the culprit. I've actually seen situations in which a web-site
has changed its IP address, but the ISP's DNS servers didn't get updated quickly
enough, causing some clients to be unable to reach a site they need to perform their
job. Switching everyone to alternate name servers (by adjusting the forwarders
option, as we did in Chapter 7, Managing Your Ubuntu Server Network) was the
easiest way they could work around the issue.

Some additional tools to consider while checking your server's ability to resolve DNS
entries are dig and nslookup. You should be able to use both commands to test your
server's DNS settings. Both commands are used with a host name or domain name
as an option. The dig command will present you with information regarding the
address (A) record of the DNS zone file responsible for the IP address or domain. The
host command should return the IP address of the host you're trying to reach. The
dig command is also useful for troubleshooting caching. The first time you use the
dig command, you'll see a response time (in milliseconds). The next subsequent time
you run it, the response time should be much shorter.

Running the dig and hostname commands against a host in an internal network

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[362]

Hardware support is also critical when it comes to networking. If the Linux kernel
doesn't support your network hardware, then you'll likely run into a situation where
the distribution doesn't recognize or do anything when you insert a network cable, or
in the case of wireless networking, doesn't show any nearby networks despite there
being one or more. Unlike the Windows platform, hardware support is generally
baked right into the kernel when it comes to Linux. While there are exceptions to
this, the Linux kernel shipped with a distribution typically supports hardware the
same age as itself or older. In the case of Ubuntu 16.04 LTS (which was released in
April of 2016), it's able to support hardware released as of the beginning of 2016 and
older. Future releases of Ubuntu Server will publish hardware entitlement updates,
which will allow Ubuntu Server 16.04 to support newer hardware and chip-sets once
it comes out. Therefore, it's always important to use the latest installation media
when rolling out a new server. Typically, Ubuntu will release several point releases
during the life of a supported distribution, such as 16.04.1, 16.04.2, and so on. As long
as you're using the latest one, you'll have the latest hardware support that Ubuntu
has made available at the time.

In other cases, hardware support may depend on external kernel modules. While
it's true that the majority of Ubuntu's hardware support is baked right into the
kernel, there are exceptions. The first thing you should try when faced with network
hardware that's not recognized is to look up the hardware using a search engine,
typically the search terms <hardware name> Ubuntu will do the trick. But, what
do you search for? To find out the hardware string for your network device, try the
lspci command:

lspci | grep -i net

The lspci command lists hardware connected to your server's PCI bus. Here, we're
using the command with a case insensitive grep search for the word net:

lspci |grep -i net

This should return back a list of networking components available in your server.
On my machine, for example, I get the following output:

01:00.1 Ethernet controller: Realtek Semiconductor Co., Ltd.
RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller (rev 12)

02:00.0 Network controller: Intel Corporation Wireless 8260 (rev 3a)

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[363]

As you can see, I have a wired and wireless network card on this machine. If one
of them wasn't working, I could search online for information by searching for the
hardware string and the keyword Ubuntu which should give me results pertaining
to my exact hardware. If a package is required to be installed, the search results
will likely give me some clues as to which package I need. Without having network
access though, the worst-case scenario is that I may have to download the package
from another computer, and transfer it to the server via a flash drive. That's certainly
not a fun thing to need to do, but it does work if the latest Ubuntu installation media
doesn't yet offer full support for your hardware.

Another potential problem point is DHCP. When it works well, DHCP is a
wonderfully magical thing. When it stops working, it can be frustrating. But
generally, DHCP issues often end up being a lack of available IP addresses, the
DHCP daemon (isc-dhcp-server) not running, an invalid configuration, or hosts
that have clocks that are out of sync.

If you have a server that is unable to obtain an IP address via DHCP and your
network utilizes a Linux-based DHCP server, check the system log (/var/log/
syslog) for events related to dhcpd. Unfortunately, there's no command you can
run that I've ever been able to find that will print how many IP address leases your
DHCP server has remaining, but if you run out, chances are you'll see log entries
related to an exhausted pool in the system log. In addition, the system log will also
show you attempts from your nodes to obtain an IP address as they attempt to do so.
Feel free to use tail -f against the system log, to watch for any events relating to
DHCP leases.

In some cases, a lack of DHCP leases being available can come down to having a
very generous lease time enabled. Some administrators will give their clients up to
a week for the lease time, which is generally unnecessary. A lease time of one day is
fine for most networks, but ultimately the lease time you decide on is up to you. In
Chapter 7, Managing Your Ubuntu Server Network, we looked at configuring our DHCP
server, so feel free to refer to that chapter if you need a refresher on how to configure
the isc-dhcp-server daemon.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[364]

Although it's probably not the first thing you'll think of while facing DHCP issues,
hosts having out of sync clocks can actually contribute to the problem. DHCP
requests are timestamped on both the client and the server, so if the clock is off by
a large degree on one, the time-stamps will be off as well, causing the DHCP server
to become confused. Surprisingly, I've seen this come up fairly often. I recommend
standardizing NTP across your network as early on as you can. DHCP isn't the only
service that suffers when clocks are out of sync, file synchronization utilities also
require accurate time. If you ensure NTP is installed on all of your clients and it's up
to date and working, you should be in good shape. Although it's outside the scope of
this book, using configuration management utilities such as Ansible, Chef, or Puppet
to ensure NTP is not only configured but is running properly on all the machines in
your network will only benefit you.

Of course, there are many things that can go wrong when it comes to networking,
but the information here should cover the majority of issues. In summary,
troubleshooting network issues generally revolves around ping tests. Trying
to ping your default gateway, tracing failed endpoints with traceroute, and
troubleshooting DNS and DHCP will take care of a majority of issues. Then again,
faulty hardware such as failed network cards and bad cabling will no doubt present
themselves as well.

Troubleshooting resource issues
I don't know about others, but it seems that a majority of my time troubleshooting
servers usually comes down to pinpointing resource issues. By resources, I'm
referring to CPU, memory, disk, input/output, and so on. Generally, issues come
down to a user storing too many large files, a process going haywire that consumes
a large amount of CPU, or a server running out of memory. In this section, we'll go
through some of the common things you're likely to run into while administering
Ubuntu servers.

First, let's revisit topics related to storage. In Chapter 3, Managing Storage Volumes,
we have gone over concepts related to this already, and many of those concepts also
apply to troubleshooting as well. Therefore, I won't spend too much time on those
concepts here, but it's worth a refresher in regards to troubleshooting storage issues.
First, whenever you have users that are complaining about being unable to write
new files to the server, the following two commands are the first you should run.
You are probably already well aware of these, but they're worth repeating:

df -h

df -i

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[365]

The first df command variation gives you information regarding how much space
is used on a drive, in a "human readable" format (the -h option), which will print
the information in terms of megabytes and gigabytes. The -i option gives you
information regarding used and available inodes. The reason you should also run
this, is because on a Linux system, it can report storage as full even if there's plenty
of free space in terms of gigabytes. But if there are no remaining inodes, it's the same
as being full, but the first command wouldn't show the usage as 100 percent when
no inodes are free. Usually, the number of inodes a storage medium has available
is extremely generous, and the limit is hard to hit. However, if a service is creating
new log files over and over every second, or a mail daemon grows out of control
and generates a huge backlog of undelivered mail, you'd be surprised how quickly
inodes can empty out.

Of course, once you figure out that you have an issue with full storage, the next
logical question becomes, what is eating up all my free space? The df commands will
give you a list of storage volumes and their sizes, which will tell you at least which
disk or partition to focus your attention on. My favorite command for pinpointing
storage hogs, as I've mentioned in Chapter 3, Managing Storage Volumes, is the ncdu
command. While not installed by default, ncdu is a wonderful utility for checking
to see where your storage is being consumed the most. If run by itself, ncdu will can
your server's entire filesystem. Instead, I recommend running it with the -x option,
which will limit it to a specific folder as a starting point. For example, if the /home
partition is full on your server, you might want to run the following to find out
which directory is using the most space:

ncdu -x /home

The -x option will cause ncdu to not cross filesystems. This means if you have
another disk mounted within the folder you're scanning, it won't touch it. With
-x, ncdu is only concerned with the target you give it.

If you aren't able to utilize ncdu, there's also the du command that takes some
extra work. The du -h command, for example, will give you the current usage of
your current working directory, with human-readable numbers. It doesn't traverse
directory trees by default like ncdu does, so you'd need to run it on each subdirectory
until you manually find the directory that's holding the most files.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[366]

Another issue with storage mediums that can arise is issues with filesystem integrity.
Most of the time, these issues only seem to come up when there's an issue with
power, such as a server powering off unexpectedly. Depending on the server and
the formatting you've used when setting up your storage volumes (and several
other factors), power issues are handled differently from one installation to another.
In most cases, a filesystem check (fsck) will happen automatically during the next
boot. If it doesn't, and you're having odd issues with storage that can't be explained
otherwise, a manual filesystem check is recommended. Scheduling a filesystem check
is actually very easy:

touch /forcefsck

The previous command will create an empty file, forcefsck, at the root of the
filesystem. When the server reboots and it sees this file, it will trigger a filesystem
check on that volume and then remove the file. If you'd like to check a filesystem
other than the root volume, you can create the forcefsck file elsewhere. For
example, if your server has a separate /home partition, you could create the
file there instead to check that volume:

touch /home/forcefsck

The filesystem check will usually complete fairly quickly, unless there's an issue it
needs to fix. Depending on the nature of the problem, the issue could be repaired
quickly or perhaps it will take a while. I've seen some really bad integrity issues that
have taken over four hours to fix, but I've seen others fixed in a matter of seconds.
Sometimes it will finish so quickly that it will scroll by so fast during boot that you
may miss seeing it.

With regards to issues with memory, the free -m command will give you an overview
of how much memory and swap is available on your server. It won't tell you what
exactly is using up all your memory, but you'll use it to see if you're in jeopardy of
running out. The free column from the output of the free command will show you
how much memory is remaining, and allow you to make a decision on when to
take action:

Output from the free command

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[367]

In Chapter 6, Controlling and Monitoring Processes, we took a look at the htop
command, which helps us answer the question of "what" is using up our resources.
Using htop (once installed), you can sort the list of processes by CPU or memory
usage by pressing F6, and then selecting a new sort field, such as PERCENT_CPU or
PERCENT_MEM. This will give you an idea of what is consuming resources on your
server, allowing you to make a decision on what to do about it. The action you take
will differ from one process to another, and your solution may range from adding
more memory to the server, or tuning the application to have a lower memory
ceiling. But what do you do when the results from htop don't correlate to the usage
you're seeing? For example, what if your load average is high, but no process seems
to be consuming a large portion of CPU?

One command I haven't discussed so far in this book is iotop. While not installed by
default, the iotop utility is definitely a must-have, so I recommend you install the
iotop package. The iotop utility itself needs to be run as root or with sudo:

iotop

The iotop command will allow you to see how much data is being written to or read
from your disks. Input/output definitely contributes to a system's load, and not all
resource monitoring utilities will show this usage. If you see a high load average but
nothing in your resource monitor shows anything to account for it, check the IO. The
iotop utility is a great way to do that, as if data is bottlenecked while being written
to disk, that can account for a serious overhead in IO that will slow other processes
down. If nothing else, it will give you an idea of which process is misbehaving, in
case you need to kill it:

iotop running on an Ubuntu Server, showing a reasonably untaxed server

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[368]

The iotop window will refresh on its own, sorting processes by the column that
is highlighted. To change the highlight, you'll only need to press the left and right
arrows on your keyboard. You can sort processes by columns such as IO, SWAPIN,
DISK WRITE, DISK READ, and others. When you're finished with the application,
press Q to quit.

The utilities we looked at in this section are very useful when identifying issues
with bottlenecked resources. What you do to correct the situation after you find the
culprit will depend on the daemon. Perhaps there's an invalid configuration, or the
daemon has encountered a fault and needs to be restarted. Often, checking the logs
may lead you to an answer as to why a daemon misbehaves. In the case of a full
storage, almost nothing beats ncdu, which will almost always lead you directly to the
problem. Tools such as htop and iotop allow you to view additional information
regarding resource usage as well, and htop even allows you to kill a misbehaving
process right from within the application, by pressing F9.

Diagnosing defective RAM
All server and computing components can and will fail eventually, but there are
a few pieces of hardware that seem to fail more often than others. Fans, power
supplies, and hard disks definitely make the list of common things administrators
will end up replacing, but defective memory is also a situation I'm sure you'll run
into eventually.

Although memory sticks becoming defective is something that could happen, I talk it
is left to last in this chapter because it's one of those situations where I can't give you
a definite list of symptoms to look out for that will point to memory being the source
of an issue you may be experiencing. RAM issues are very mysterious in nature, and
each time I've run into one, I've always stumbled across memory being bad only after
troubleshooting everything else. It's for this reason that nowadays I'll often test the
memory on a server or workstation first, since it's very easy to do. Even if memory
has nothing to do with an issue, it's worth checking anyway since it could become a
problem later.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[369]

Most distributions of Linux (Ubuntu included) feature Memtest86+ right on the
installation media. Whether you create a bootable CD or flash drive, there's a
memory test option available from the Ubuntu Server media. When you first boot
from the Ubuntu Server media, you'll first be asked to choose your language, and
then you'll be shown an installation menu. Among the choices there will be an option
to Test memory:

Ubuntu Server installation menu

Other editions of Ubuntu, such as the Ubuntu desktop distribution or any of its
derivatives, also feature an option to test memory. Even if you don't have installation
media handy for the server edition, you can use whichever version you have. From
one distribution or edition to another, the Memtest86+ program doesn't change
very much.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[370]

When you choose the Test memory option from your installation media, the
Memtest86+ program will immediately get to work and start testing your memory
(press Esc to exit the test). The test may take a long time, depending on how much
memory your workstation or server has installed. It can take minutes, or even hours
to complete. Generally speaking, when your machine has defective RAM, you'll see
a bunch of errors show up relatively quickly, usually within the first 5-10 minutes.
If you don't see errors within 15 minutes, you're most likely in good shape. In my
experience, every time I've run into defective memory, I'll see errors in 15 minutes or
less (usually within 5). Theoretically though, you could very well have a small issue
with your memory modules that may not show up until after 15 minutes, so you
should let the test finish if you can spare the time for it.

Memtest86+ in action

The main question becomes when to run Memtest86+ on a machine. In my
experience, symptoms of bad memory are almost never the same from one machine
to another. Usually, you'll run into a situation where a server doesn't boot properly,
applications close unexpectedly, applications don't start at all, or perhaps an
application is behaving irregularly. In my view, testing memory should be done
whenever you experience a problem that doesn't necessarily seem straight-forward.
In addition, you may want to consider testing the memory on your server before
you roll it out into production. That way, you can assure that it starts out as free of
hardware issues as possible.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 13

[371]

If the test does report errors, you'll next want to find out which memory module is
faulty. This can be difficult, as some servers can have more than a dozen memory
modules installed. To narrow it down, you'd want to test each memory module
independently if you can, until you find out which one is defective. You should also
continue to test the other modules, even after you discover the culprit. Reason being,
having multiple memory modules going bad isn't outside the realm of possibility,
considering whatever situation led to the first module becoming defective may have
affected others.

Another tip I'd like to pass along regarding memory is that when you do discover
a bad stick of memory, it's best to erase the hard disk and start over if you can. I
understand that this isn't always feasible, and you could have many hours logged
into setting up a server. Some servers can take weeks to rebuild, depending on their
workload. But at least keep in mind that any data that passes through defective
RAM can become corrupted. This means that data at rest (data stored on your hard
disk) may be corrupt if it was sitting in a defective area of RAM before it was written
to disk. When a server or workstation encounters defective RAM, you really can't
trust it anymore. I'll leave the decision on how to handle this situation up to you
(hopefully you'll never encounter it at all) but just keep this in mind as you plan your
course of action. Personally, I don't trust an installation of any operating system after
its hardware has encountered such issues.

I also recommend that you check the capacitors on your server's motherboard
whenever you're having odd issues. Although this isn't necessarily related to
memory, I mention it here because the symptoms are basically the same as bad
memory when you have bad capacitors. I mean you're experiencing issues that
seem erratic and don't have an obvious cause. I'm not asking you to get a voltage
meter or do any kind of electrician work, but sometimes it may make sense to open
the case of your server, shine a flashlight on the capacitors, and see if any of them
appear to be leaking fluid or expanding. The reason I bring this up is because I've
personally spent hours troubleshooting a machine (more than once) where I would
test the memory and hard disk, and look through system logs without finding any
obvious causes, only to later look at the hardware and discover capacitors on the
motherboard were leaking. It would have saved me a lot of time if I had simply
looked at the capacitors. And that's really all you have to do, just take a quick glance
around the motherboard and look for anything that doesn't seem right.

www.hellodigi.ir

http://technet24.ir

Troubleshooting Ubuntu Servers

[372]

Summary
While Ubuntu is generally a very stable and secure platform, it's important to be
prepared for when problems occur and that you know how to deal with them. In this
chapter, we discussed common troubleshooting we can perform when our servers
stop behaving themselves. We started off by evaluating the problem space, which
gives us an understanding of how many users or servers are affected by the issue.
Then, we looked into Ubuntu's log files, which are a treasure trove of information we
can use to pinpoint issues and narrow down the problem. We also covered several
networking issues that can come up, such as issues with DHCP, DNS, and routing.

In our final chapter, we'll take a look at preventing problems from occurring in the
first place and recovering from disasters that manage to sneak through anyway.
While it's impossible to prevent every problem that can possibly occur, it's critical
that we understand how to make our servers as resilient as we possibly can. We'll
take a look at a few approaches to accomplish this, such as backing up important
files with rsync, recovering broken GRUB installations, as well as creating and
restoring system images with Clonezilla.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[373]

Preventing and Recovering
from Disasters

In an enterprise network, a disaster can strike at any time. As administrators,
we always do our best to design the most stable and fault-tolerant server
implementations we possibly can, but what matters most is how we are able to deal
with disasters. As stable as server hardware generally is, any component of a server
can fail at any time. In the face of a disaster, we need a plan. How can you attempt
to recover data from a failed disk? What do you do when your server all of a sudden
decides it doesn't want to boot? How do you re-image a server quickly to get it back
online? These are just some of the questions we'll answer as we take a look at several
ways we can prevent and recover from disasters. In this final chapter, we'll cover the
following topics:

•	 Preventing disasters
•	 Utilizing Git for configuration management
•	 Implementing a backup plan
•	 Creating system images with Clonezilla live
•	 Utilizing bootable recovery media

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[374]

Preventing disasters
As we proceed through this chapter, we'll look at ways we can recover from
disasters. If we can prevent a disaster from occurring in the first place, then that's
even better. We certainly can't prevent every type of disaster that can possibly
happen, but having a good plan in place and following that plan will lessen the
likelihood. A good disaster recovery plan will include a list of guidelines to be
followed in regards to implementing new servers and managing current ones.
This plan may include information such as an approved list of hardware (such as
hardware configurations known to work efficiently in an environment) as well as
rules and regulations for users, a list of guidelines to ensure physical and software
security, proper training for end users, and methods of change control. Some of these
concepts we've touched on earlier in the book, but they are worth repeating from the
standpoint of disaster prevention.

First, we talked about the Principle of least privilege back in Chapter 12, Securing Your
Server. The idea is to give your users as few permissions as possible. This is very
important for security, as you want to ensure only those trained in their specific
jobs are able to modify only the resources that they are required to. Accidental data
deletion happens all the time. To take full advantage of this principle, create a set
of groups as part of your overall security design. List departments and positions
around your company, and the types of activities each are required to perform.
Create system groups that correspond to those activities. For example, create an
accounting-ro and accounting-rw group, for categorizing users within your
accounting department that should have the ability to only read or read and write
data. If you're simply managing a home file server, be careful of open network shares
where users have read and write access by default. By allowing users to do as little as
possible, you'll prevent a great deal of disasters right away.

Also in Chapter 12, Securing Your Server, we talked about best practices for the
sudo command. While the sudo command is useful, it's often misused. By default,
anyone that's a member of the sudo group can use sudo to do whatever they want.
We talked about how to restrict sudo access to particular commands, which is
always recommended. Only trusted administrators should have full access to sudo.
Everyone else should have sudo permissions only if they really need it, and even
then, only when it comes to commands that are required for their job. A user with
full access to sudo can delete an entire filesystem, so it should never be taken lightly.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[375]

In regards to network shares, it's always best to default to read-only whenever
possible. This isn't just because of the possibility of a user accidentally deleting data,
it's always possible for applications to malfunction and delete data as well. With a
read-only share, the modification or deletion of files isn't possible. Additional
read-write shares can be created for those that need it, but if possible, always
default to read-only.

Although I've spent a lot of time discussing security in a software sense, physical
security is important too. For the purposes of this book, physical security doesn't
really enter the discussion much because our topic is specifically Ubuntu Server,
and nothing you install in Ubuntu is going to increase the physical security of your
servers. It's worth quickly noting, however, that physical security is every bit as
important as securing your operating systems, applications, and data files. All it
would take is someone tripping over a network cable in a server room to disrupt an
entire subnet or cause a production application to go offline. Server rooms should be
locked, and only trusted administrators should be allowed to access your equipment.
I'm sure this goes without saying and may sound obvious, but I've worked at several
companies that did not secure their server room. Nothing good ever comes from
placing important equipment within arms-reach of unauthorized individuals.

In this section, I've mentioned Chapter 12, Securing Your Server, several times.
In that chapter, we looked into securing our servers. A good majority of a disaster
prevention plan includes a focus on security. This includes, but is not limited
to, ensuring security updates are installed in a timely fashion, utilizing security
applications such as failure monitors and firewalls, and ensuring secure settings for
OpenSSH. I won't go over these concepts again here since we've already covered
them, but essentially, security is a very important part of a disaster prevention plan.
After all, users cannot break what they cannot access, and hackers will have a harder
time penetrating your network if you design it in a security-conscious way.

Effective disaster prevention consists of a list of guidelines for things like user
management, server management, application installations, security, and procedure
documents. A full walk-through of proper disaster prevention would be an entire
book in and of itself. My goal with this section is to provide you with some ideas
you can use to begin developing your own plan. A disaster prevention plan is not
something you'll create all at once, but is rather something you'll create and refine
indefinitely as you learn more about security and what types of things to watch
out for.

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[376]

Utilizing Git for configuration
management
One of the most valuable assets on a server is its configuration. This is second only
to the actual data stored on the server. Often, when we implement a new technology
on a server, we'll spend a great deal of time editing configuration files all over the
server to make it work as best as we can. This can include any number of things from
Apache virtual host files, DHCP server configuration, DNS zone files, and more. If
a server were to encounter a disaster from which the only recourse is to completely
rebuild it, the last thing we'll want to do is re-engineer all of this configuration from
scratch. This is where Git comes in.

Git is a development tool, used by software engineers everywhere for the purpose
of version control for source code. In a typical development environment, an
application being developed by a team of engineers can be managed by Git, with
each engineer contributing to a repository that hosts the source code for their
software. One of the things that makes Git so useful is how you're able to go back to
previous versions of a file in an instant, as it keeps a history of all changes made to
the files within the repository.

Git isn't just useful for software engineers, though. It's also a really useful tool we can
leverage for keeping track of configuration files on our servers. For our use case, we
can use it to record changes to configuration files, and push them to a central server
for backup. When we make changes to configuration, we'll push the change back to
our Git server. If, for some reason, we need to restore the configuration after a server
fails, we can simply download our configuration files from Git back onto our new
server. Another useful aspect of this approach is that if an administrator implements
a change to a configuration file that breaks a service, we can simply revert back to a
known-working commit and we'll be immediately back up and running.

Configuration management on servers is so important, in fact, I highly recommend
that every Linux administrator takes advantage of version control for this purpose.
Although it may seem a bit tricky at first, it's actually really easy to get going once
you practice with it. Once you've implemented Git for keeping track of all your
server's configuration files, you'll wonder how you've ever lived without it. I'll walk
you through what you'll need to do in order to implement this approach. To get
started, you'll want to install the git package:

apt-get install git

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[377]

For this to work effectively, you'll need a Git server. You don't necessarily have
to dedicate a server just for this purpose, you can use an existing server. The only
important aspect here is that you have a central server onto which you can store
your Git repositories. All your other servers will need to be able to reach it via your
network. Some administrators will use GitHub for this, and while that may be fine
for some, I'm going to walk you through using standard Git instead, as often you'll
want to keep your configuration files private, rather than have them publicly hosted
on GitHub. GitHub does offer private repositories, but for a fee. Setting up your own
Git server won't cost you anything but time and disk space. On whatever machine
you've designated as your Git server, install the git package on it as well. Believe
it or not, that's all there is to it. Since Git uses OpenSSH by default, we only need to
make sure that the git package is installed on the server as well as our clients. We'll
need a directory on that server to house our Git repositories, and the users on your
servers that utilize Git will need to be able to modify that directory.

Now, think of a configuration directory that's important to you, that you want to
place into version control. A good example is the /etc/apache2 directory on a web
server. That's what I'll use in my examples in this section. But you're certainly not
limited to that. Any configuration directory you would rather not lose is a good
candidate. If you choose to use a different configuration path, change the paths I give
you in my examples to that path.

On the server, create a directory to host your repositories. I'll use /git in
my examples:

mkdir /git

Next, you'll want to modify this directory to be owned by the administrative user
you use on your Ubuntu servers. Typically, this is the user that was created during
the installation of the distribution. You can use any user you want actually, just
make sure this user is allowed to use OpenSSH to access your Git server. Change
the ownership of the /git directory so it is owned by this user. My user on
my Git server is jay, so in my case I would change the ownership with the
following command:

chown jay:jay /git

Next, we'll create our Git repository within the /git directory. For Apache, I'll create
a bare repository for it within the /git directory. A bare repository is basically a
skeleton of a Git repository, that doesn't contain any useful data, just some default
configuration to allow it to act as a Git directory. To create the bare repository, cd
into the /git directory, and execute:

git init --bare apache2

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[378]

You should see the following output:

Initialized empty Git repository in /git/apache2/

That's all we need to do on the server for now for the purposes of our Apache
repository. On your client (the server that houses the configuration you want to
place under version control), we'll copy this bare repository by cloning it. To set
that up, create a /git directory on your Apache server (or whatever kind of server
you're backing up), just as we did before. Then, cd into that directory, and clone your
repository with the following command:

git clone 192.168.1.101:/git/apache2

For that command, replace the IP address with either the IP address of your Git
server, or its hostname if you've created a DNS entry for it. You should see the
following output, warning us that we've cloned an empty repository:

warning: You appear to have cloned an empty repository.

This is fine, we haven't actually added anything to our repository yet. If you were
to cd into the directory we just cloned, and list its storage, you'd see it as an empty
directory. If you use ls -a to view hidden directories as well, you'll see a .git
directory inside. Inside the .git directory, we'll have configuration items for Git
that allow this repository to function properly. For example, the config file within
the .git directory contains information on where the remote server is located. We
won't be manipulating this directory, I just wanted to give you a quick overview on
what its purpose is. Note that if you delete the .git directory within your cloned
repository, that basically removes version control from the directory and makes it a
normal directory.

Anyway, let's continue. We should first make a backup of our current /etc/apache2
directory on our web server, in case we make a mistake while converting it to being
version controlled:

cp -rp /etc/apache2 /etc/apache2.bak

Then, we can move all the contents of /etc/apache2 into our repository:

mv /etc/apache2/* /git/apache2/

The /etc/apache2 directory is now empty. Be careful not to restart Apache at this
point, it won't see its configuration files, and will fail to restart. Remove the (now
empty) /etc/apache2 directory:

rm /etc/apache2

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[379]

Now, let's make sure that Apache's files are owned by root. The problem though, is
if we use the chown command as we normally would to change ownership, we'll also
change the .git directory to be owned by root as well. We don't want that, because
the user responsible for pushing changes should be the owner of the .git folder. The
following command will change the ownership of the files to root, but won't touch
hidden directories such as .git:

find /git/apache2 -name '.?*' -prune -o -exec chown root:root {} +

When you list the contents of your repository directory now, you should see that all
files are owned by root, except for the .git directory, which should be owned by
your administrative user account.

Next, create a symbolic link to your Git repository so the apache2 daemon can
find it:

ln -s /git/apache2 /etc/apache2

At this point, you should see a symbolic link for Apache, located at /etc/apache2.
If you list the contents of /etc while grepping for apache2, you should see it as a
symbolic link:

ls -l /etc | grep apache2

lrwxrwxrwx 1 root root 37 2016-06-25 20:59 apache2 -> /git/apache2

If you reload Apache, nothing should change, since it should find the same
configuration files as it did before, since its directory in /etc maps to /git/apache2
which includes the same files it did before:

systemctl reload apache2

If you see no errors, you should be all set. Otherwise, make sure you created the
symbolic link properly.

Next, we get to the main attraction. We've copied Apache's files into our repository,
but we didn't actually push those changes back to our Git server yet. To set that
up, we'll need to associate the files within our /git/apache2 directory into version
control. The reason for this is because simply having files stored within the git
repository folder isn't enough for Git to care about them. We have to tell Git to pay
attention to individual files. We can add every file within our Git repository for
Apache by entering the following command from within that directory:

git add .

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[380]

This basically tells Git to add everything in the directory to version control. You can
actually do the following to add an individual file, if you wanted to add files one at
a time:

git add <filename>

In this case, we want to add everything, so we used a period in place of a directory
name to add the entire current directory.

If you run the git status command from within your Git repository, you should
see output indicating that Git has new files that haven't been committed yet. A git
commit simply finalizes the changes locally. Basically, it packages up your current
changes to prepare them for being copied to the server. To create a commit of all the
files we've added so far, cd into your /git/apache2 directory, and run the following
to stage a new commit:

git commit -a -m "My first commit."

With this command, the -a option tells Git that you want to include anything that's
changed in your repository. The -m command allows you to attach a message to the
commit, which is actually required.

Finally, we can push our changes back to the Git server:

git push origin master

The git push command takes the contents of our commit, and pushes everything
up to the server. After a commit has been pushed, anyone who downloads a copy of
the Git repository will receive the latest changes. If we've already downloaded a Git
repository, we can have it check in to the server to download any changes that may
have been made with the following command:

git pull

When we execute a git pull, we're telling Git to check in with the master (the
server), and check to see if our local copy of the repository is up to date with the
master. If it's not, Git will download any recent changes.

What you may find interesting if you've never worked with Git before, is that the
server copy of a repository won't include the same file structure as what you've
uploaded. The server repository is more or less a database of changes, with
instructions of how to produce the actual files. This is why when you list the contents
of the Git repository on the server side, you'll see a completely different listing of
files. Whenever you clone a Git repository though, the resulting directory structure
will be just as you left it. Git will reassemble the files exactly as they were when you
clone the repository to a client.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[381]

From this point forward, if you need to restore a repository onto another server,
all you should need to do is perform a Git clone. To clone the repository into your
current working directory, execute the following:

git clone 192.168.1.101:/git/apache2

Now, each time you make changes to your configuration files, you can perform
a git commit and then git push to make the changes to the server to keep the
content safe:

git commit -a -m "Updated config files."

git push origin master

If, for some reason, you aren't able to download a Git repository
from your server via SSH, check the authorization log (/var/
log/auth.log for clues). Since Git is using SSH by default, it
will depend on the underlying connection in order to work, and
the authorization log on the server will often include helpful
information on why a connection may not be working.

Now we know how to create a repository, push changes to a server, and pull the
changes back down. Finally, we'll need to know how to revert changes should our
configuration be changed with non-working files. First, we'll need to locate a known-
working commit. My favorite method is using the tig command. The tig package
must be installed for this to work, but it's a great utility to have at your disposal:

apt-get install tig

The tig command (which is just git backwards), gives us a semi-graphical interface
to browse through our Git commits. To use it, simply execute the tig command from
within a Git repository. In the following example screenshot, I've executed tig from
within a repository for a DNS server's bind9 daemon:

An example of the tig command, looking at a repository for the bind9 daemon

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[382]

While using tig, you'll see a list of Git commits, along with their dates and
comments that were entered with each. To inspect one, press the up and down arrow
keys to change your selection, then press Enter on the one you want to view. You'll
see a new window, which will show you the commit hash (which is a long string
of alpha-numeric characters), as well as an overview of which lines were added or
removed from the files within the commit. To revert one, you'll first need to find the
commit you want to revert to, and get its commit hash. The tig command is great
for finding this information. In most cases, the commit you'll want to revert to is
the one before the change took place. In my example screenshot, I removed some
decommissioned hosts on 4/7/2016. If I want to restore that file, I should revert to the
commit before that, on 4/4/2016. I can get the commit hash by highlighting that entry
and pressing Enter. It's at the top of the window. Then, I can exit tig by pressing Q,
and then revert to that commit. To checkout a specific commit, I can execute the git
checkout command along with the hash for the commit:

git checkout 356dd6153f187c1918f6e2398aa6d8c20fd26032

And just like that, the entire directory tree for the repository instantly changes to
exactly what it was before the bad commit took place. I can then restart or reload the
daemon for this repository, and it will be back to normal. At this point, you'd want to
test the application to make sure that the issue is completely fixed. After some time
has passed and you're finished testing, you can make the change permanent. To do
so, we will first switch back to the most recent commit:

git checkout master

Then, we permanently switch master back to the commit that was found to be
working properly:

git revert --no-commit 356dd6153f187c1918f6e2398aa6d8c20fd26032

Then, we can commit our reverted Git repository, and push it back to the server:

git commit -a -m "The previous commit broke the application. Reverting."

git push origin master

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[383]

As you can see, Git is a very useful ally to utilize when managing configuration files
on your servers. This benefits disaster recovery, because if a bad change is made that
breaks a daemon, you can easily revert the change. If the server were to fail, you can
recreate your configuration almost instantly by just cloning the repository again.
There's certainly a lot more to Git than what we've gone over in this section, so feel
free to pick up a book about it if you wish to take your knowledge to the next level.
But in regards to managing your configuration with Git, all you'll need to know is
how to place files into version control, update them, and clone them to new servers.
Some services you run on a server may not be good candidates for Git, however.
For example, managing an entire MariaDB database via Git would be a nightmare,
since there is too much overhead with such a use case and database entries will
likely change too rapidly for Git to keep up. Use your best judgment. If you have
some configuration files that are only manipulated every once in a while, they'll be a
perfect candidate for Git.

Implementing a backup plan
Creating a solid backup plan is one of the most important things you'll ever do as a
server administrator. Even if you're only using Ubuntu Server at home as a personal
file server, backups are critical. During my career, I've seen disks fail many times. I'll
often hear arguments about which hard disk manufacturer beats others in terms of
longevity, but I've seen disk failures so often, I don't trust any of them. All disks will
fail eventually, it's just a matter of when. And when they do fail, they'll usually fail
hard with no easy way to recover data from them. Later on in this chapter, we'll look
at a few data recovery tricks, but honestly, if you need to recover data from a failed
disk, your approach is already wrong. A sound approach to managing data is such
that any disk or server can fail, and it won't matter, since you'll be able to regenerate
your data from other sources, such as a backup or secondary server.

There's no one best backup solution, since it all depends on what kind of data you
need to secure, and what software and hardware resources are available to you. For
example, if you manage a database that's critical to your company, you should back
it up regularly. If you have another server available, set up a replication slave so
that your primary database isn't a single point of failure. Not everyone has an extra
server lying around, so sometimes you have to work with what you have available.
This may mean that you'll need to make some compromises, such as creating regular
snapshots of your database server's storage volume, or regularly dumping a backup
of your important databases to an external storage device.

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[384]

The rsync utility is one of the most valuable pieces of software around to server
administrators. It allows us to do some very wonderful things. In some cases, it can
save us quite a bit of money. For example, online backup solutions are wonderful
in the sense that we can use them to store off-site copies of our important files.
However, depending on the volume of data, they can be quite expensive. With
rsync, we can back up our data in much the same way, with not only our current
files copied over to a backup target, but also differentials as well. If we have another
server to send the backup to, even better.

At one company I've managed servers for, they didn't want to subscribe to an online
backup solution. To work around that, a server was set up as a backup point for
rsync. We set up rsync to back up our file server to a secondary server. Once the
initial backup was complete, the secondary server was sent to one of our other offices
in another state. From that point forward, we only needed to run rsync weekly, to
back up everything that had been changed since the last backup. Sending files via
rsync to the other site over the Internet was rather slow, but since the initial backup
was already complete before we sent the server there, all we needed to back up
each week was differentials. This is not only an example of how awesome rsync is
and how we can configure it to do pretty much what paid solutions do, but also the
experience was a good example of utilizing what you have available to you.

We've already gone over rsync in Chapter 8, Accessing and Sharing Files, so I won't
repeat too much of that information here. But since we're on the subject of backing
up, the --backup-dir option is worth mentioning again. This option allows you
to copy files that would normally be replaced and copy them to another location.
As an example, here's the rsync command I mentioned in Chapter 8, Accessing and
Sharing Files:

CURDATE=$(date +%m-%d-%Y)

rsync -avb --delete --backup-dir=/backup/incremental/$CURDATE /src /
target

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[385]

This command was part of the topic of creating an rsync backup script. The first
command simply captures today's date and stores it into a variable named $CURDATE.
In the actual rsync command, we refer to this variable. The -b option (part of the
-avb option string), tells rsync to make a copy of any file that would normally
be replaced. If rsync is going to replace a file on the target with a new version, it
will move the original file to a new name before overwriting it. When it's about
to overwrite a file, the --backup-dir option tells rsync, to put it somewhere else
instead of copying it to a new name. We give the --backup-dir option a path, where
we want the files that would normally be replaced to be copied to. In this case, the
backup directory includes the $CURDATE variable, which will be different every day.
For example, a backup run on 5/28/2016 would have a backup directory of the
following path, if we used the command I gave as an example:

/backup/incremental/5-28-2016

This essentially allows you to keep differentials. Files on /src will still be copied to
/target, but the directory you identify as a --backup-dir will contain the original
files before they were replaced that day.

On my servers, I use the --backup-dir option with rsync quite often. I'll typically
set up an external backup drive, with the following three folders:

current

archive

logs

The current directory always contains a current snapshot of the files on my
server. The archive directory on my backup disks is where I point the --backup-
dir option to. Within that directory will be folders named with the dates that the
backups were taken. The logs directory contains log files from the backup. Basically,
I redirect the output of my rsync command to a log file within that directory, each
log file being named with the same $CURDATE variable so I'll also have a backup log
for each day the backup runs. I can easily look at any of the logs for which files were
modified during that backup, and then traverse the archive folder to find an original
copy of a file. I've found this approach to work very well. Of course, this backup is
performed with multiple backup disks that are rotated every week, with one always
off-site. It's always crucial to keep a backup off-site in case of a situation that could
compromise your entire local site.

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[386]

The rsync utility is just one of many you can utilize to create your own backup
scheme. The plan you come up with will largely depend on what kind of data
you want to protect and what kind of downtime you're willing to endure. Ideally,
we would have an entire warm-site with servers that are carbon-copies of our
production servers, ready to be put into production should any issues arise.
However, that's also very expensive, and whether or not you can implement such
a routine will depend on your budget. However, Ubuntu has many great utilities
available that you can use to come up with your own system that works. If nothing
else, utilize the power of rsync to back up to external disks and/or external sites.

Creating system images with Clonezilla
live
Clonezilla is a wonderful solution for backing up entire disks or partitions. Using
Clonezilla, you can recover a server to bare-metal, including not only data, but
also the entire operating system. Clonezilla essentially allows you to create hard
disk images, similar to paid tools such as Acronis. It can be used as either bootable
live media, or it can be installed on a server and clients can reach it via Preboot
eXecution Environment (PXE) boot.

Clonezilla itself is not actually related to Ubuntu in any way, but I bring it up in
this book because this tool is extremely useful and a disk imaging solution is a
very worthy aspect of a good deployment scheme. Using Clonezilla, you can use
disk images to greatly reduce setup time, and also to back up complex setups. For
example, imagine that you typically have a check-list of 20 configuration tweaks that
need to be made to each server before you put one into production. With Clonezilla,
you can set up one server with all the tweaks you need for your network, and create
an image of it. Then, for any additional server you wish to deploy, you can simply
restore the Clonezilla image with all your tweaks baked-in, and never have to do that
work again.

Another good example is for workstation operating systems. Perhaps you have a
standard operating system with a pre-defined set of applications. You can configure
all the tweaks and applications you use in any environment, and save it to an image.
Deploying end-user workstations then becomes a breeze. While I bring up Clonezilla
in the context of deploying Ubuntu Server and Ubuntu Workstation, it's not specific
to Linux at all. I've seen it used for creating base images for Windows as well as Mac
OS X. While I won't go over the latter two use cases, just keep in mind that in most
cases Clonezilla is flexible and doesn't care which operating system you're imaging.
An imaging solution benefits disaster recovery because it allows us to get a new
machine up and running quickly when one fails.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[387]

As I've mentioned, there are two styles of use with Clonezilla. You can create live
media and boot a computer from it, and save images to or restore images from a
network share. Additionally, you can set up Clonezilla as a server and clients can
use PXE boot to boot to Clonezilla over the network. In this section, I'll be going over
the former, using live media. In my opinion, there is very little value in setting up a
Clonezilla server. The reason being that, the overhead is extreme for something like
an imaging solution. Sure, setting up a Clonezilla server seems nice in theory, but
having to maintain such a server is added overhead you don't need. It's not much
slower to boot from external media than the network. In addition, documentation
for setting up Clonezilla as a server is often sparse and unreliable. If I wrote a
walk-through for setting up such a server, chances are the instructions would
change again by the time this book were printed. Take it from me—spare yourself
the headache and use the live media method!

With the live media method, you'll create Clonezilla media from either an ISO or ZIP
file. If you prefer a bootable CD-ROM, you'll use the ISO file. If you need to create a
bootable USB flash drive, you'll use the ZIP file version. I'm assuming by this point
in our adventure that you already know how to use an ISO file to create a bootable
CD. If you need to use flash media instead, you can refer to the documentation on
Clonezilla's site for creating media. I won't go over creating boot media here, since
everyone's computer and installed applications are different. In summary though,
creating a bootable CD for Clonezilla is done the same way as any other Linux
distribution. You can find the necessary files at the Clonezilla website http://
clonezilla.org/.

The next thing you'll need to use for Clonezilla is a network file share location. In
Chapter 8, Accessing and Sharing Files, we took a look at sharing files with NFS as
well as Samba. Clonezilla prefers a share named images, though you can name it
whatever you wish (you'll just have to type it in when Clonezilla asks). Basically,
you'll need a file share on another computer or server on your network where
Clonezilla can read and save its files. The easiest way to do this is to create a
Samba share on a Linux server, or a regular shared folder on a Windows machine.
Clonezilla can access both Samba and Window's shares, but needs to be granted read
and write access to it. During the process, Clonezilla will ask you for a username and
password for the share, so be sure you have an account created on the server that
Clonezilla will be able to use. If in doubt, create a user named clonezilla on your
file server, with a password, and full access to your images share.

www.hellodigi.ir

http://clonezilla.org/
http://clonezilla.org/
http://technet24.ir

Preventing and Recovering from Disasters

[388]

Now I'll walk you through the process of creating a new disk image. To get started,
set up an operating system on a reference computer. This is going to be the setup
you'll want to deploy to other machines. It really doesn't matter what you use as
the reference system. But for fun, try setting up an Ubuntu Workstation (either on a
computer or on a VM) and set it up just the way you like it. Change your wallpaper,
install your favorite applications, tweak your settings just the way you like them, and
make yourself at home. Then, boot that computer or workstation from the Clonezilla
boot media you've created so we can take an image of it. You'll see the main menu,
which will look like the following screenshot. You'll see several options within the
Clonezilla boot menu:

Clonezilla's main menu

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[389]

The first option, Clonezilla live (Default settings, VGA 800x600) is fine for most.
However, there's another option you can consider, which is nested underneath the
section Other modes of Clonezilla live. There, you'll find another option, Clonezilla
live (To RAM. Boot media can be removed later). That option allows you to boot
Clonezilla live in a way that the entire utility will be loaded to RAM, allowing you
to eject the disc or remove the flash drive after it finishes copying it to memory. This
can help if you want to image multiple computers with only a single boot media.
Regardless of which option you use, the next steps in this section will be the
same. On the next screen that appears after Clonezilla finishes loading, you'll
choose your language:

Clonezilla's language selection menu

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[390]

At this screen, choose your language by using the up and down arrows keys, and
press Enter to confirm your selection. Next, you'll have a chance to choose your
keymap. You can select a different keymap from a list by selecting the relevant
option. Otherwise, you can just choose the default option, Don't touch keymap. In
most cases, that should suffice. You won't need to do much typing to use Clonezilla.

Clonezilla's keymap selection menu

Next, you'll have an option to Start_Clonezilla Start Clonezilla. Press Enter to
choose that option.

Clonezilla's start screen

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[391]

On the next screen, you'll choose between whether or not you'll want to utilize disk
images, or work directly from one disk to another. In addition to being able to save
disk images, Clonezilla will allow you to clone one disk to another. For the sake of
this section, we'll choose device-image, but keep in mind that Clonezilla allows you
to clone directly to disks, should you ever need to utilize that option.

Clonezilla's OCS screen

Next, Clonezilla will ask you where it can expect to save or write disk images. You
can use the samba_server option here, to use a network file share. This is what I'll
show you. But in addition to using Samba, Clonezilla is able to mount NFS shares
as well. Also, you can use the local_dev option if you'd like to bypass networking
altogether and use an external hard disk or a flash drive to act as storage for your
images. The rest of the section will continue on as if we've chosen the samba_server
option. However, keep note that Clonezilla features many flexible options for where
it can store its data.

Clonezilla's image directory

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[392]

On the next screen, we'll tell Clonezilla how to obtain an IP address. You can either
choose dhcp or you can give it a static IP address if you wish. I'll continue on as if
we've chosen dhcp, but if you'd like to use a static IP address, go ahead and choose
that option and type in the values.

Clonezilla's Network Config options

Next, Clonezilla will ask you for the IP address or hostname for the server hosting
your images share. Enter that IP address or hostname, and press Enter:

Entering an IP address for the network server for Clonezilla

Clonezilla will then ask you to enter your domain. You can leave this blank and
press Enter if you don't have one. If you're using a Windows share on a server that's
a member of a Windows domain, feel free to enter that here:

Domain option during Clonezilla process

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[393]

Next, Clonezilla will ask you for the username that has permission to access your
images share, defaulting to administrator. Change this to your username for that
share, and press Enter.

Entering a username for Clonezilla

Now Clonezilla will ask you for the name of your images share, defaulting to
/images. The share name is relative to the share root of your server, so keep
that in mind when entering it in. For example, if the network path to your share
is //myserver/shares/images, you would enter /shares/images.

Choosing an image share

Next, you'll be asked for the security mode. Just press Enter for this, I don't foresee
any modern situations in which you'll need to use NT LAN Manager (NTLM).

Security mode option during Clonezilla process

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[394]

The next prompt will tell you that you'll need to enter your password for the share.
Don't enter it yet, instead just press Enter:

Notice of password entry

After you press Enter, you'll see on the bottom of the screen that you'll be prompted
for the password for the user you're accessing the images share with. Go ahead and
enter it:

Entering the password for the Clonezilla share

A screen will now show, showing the current mounts on your machine with your
images share listed. You'll see the text Press Enter to continue. Do that.

Now, you'll select either Beginner mode or Expert mode for Clonezilla. There are
useful options underneath Expert mode, but for now, choose the default option
for Beginner:

Clonezilla mode selection prompt

Now we get to the most important screen of the entire process. We've mounted a
network share, and authenticated our access to it. Now, we tell Clonezilla what we
want it to do. In our case, we want to choose the option savedisk so we can create a
new image:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[395]

Clonezilla's OCS selection screen.

Next, Clonezilla will ask you for the name of your image. You can name it anything
you want. Press Enter after you've given the image a name.

Naming the server image

After you give the image a name, Clonezilla will ask you which disk you want to
take an image of. If you only have one disk, it will automatically select it. If you have
more than one, use your up and down arrow keys to change the selection, and press
the Spacebar to tell Clonezilla to take an image of it. Press Enter when done.

Selecting savedisk

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[396]

On the next screen, you'll be asked if you want Clonezilla to run an fsck (filesystem
check) on the disk you're taking an image from. If you have any reason to believe
that the disk's integrity may be questionable, go ahead and choose the option
Interactively check and repair source file system before saving. Otherwise, just
press Enter:

Choosing whether or not to run fsck while saving an image

Next, Clonezilla will ask you whether or not you want it to perform a sanity check
of the image after it's done saving. While it may add additional time to the process
of saving the image, I recommend you choose Yes, check the saved image. With this
option, if anything goes wrong when the image is saved and it doesn't pass a sanity
check, Clonezilla will warn you so you can try to create it again.

Choosing whether or not to check the image after it's saved

Clonezilla features the ability to encrypt your image if you need to keep private
data on it. I'll leave this one up to you. In most cases, you'll encrypt data stored on
a server, not the server image itself. I'll go on as if we've chosen the default, Not to
encrypt image:

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[397]

Clonezilla features an option to encrypt your image for privacy

Almost there! Next, Clonezilla will ask you to Press Enter to continue, and then will
ask if you're sure you'd like to proceed through the process. Press Y and then Enter to
start the process of saving the image.

Clonezilla in the process of saving an image

Now Clonezilla will save the image onto your file server. The process usually goes
by fairly quickly, but it all depends on how much of your source disk has been used.
If you chose the option to have Clonezilla check your image, you'll see another
set of progress bars appear after the image is done saving. Clonezilla will let you
know when it's done, and it will give you an option to shut down or reboot the
reference computer.

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[398]

The process for restoring an image is quite similar to the process for saving it.
There are a few things to keep in mind, however:

• You can restore an image onto a server with a disk just as large as the disk
the image was taken from or larger. You cannot, for example, restore an
image taken on a server with a 256 GB drive onto a server with a 128 GB
drive. In that case, the server you're restoring the image to must have a 256
GB drive or larger.

• The image will only contain used space, so if you have an image taken from a
server with a 128 GB drive, the image will be much smaller. Since there's also
compression being used, the image will actually be smaller than the actual
used space on a server.

• If your server is using LVM for the disk you're taking an image from, the
image may be just as large as the entire disk, since Clonezilla is not able to
see used space within LVM, it appears to Clonezilla as if the entire disk is
being used.

To restore an image, boot the machine you want to restore to with the Clonezilla
media, and follow the same process we've followed in this section up until the select
mode screen appears. This is the screen that gives you an option to save your disk or
restore it. Simply choose the restoredisk option:

Back to the Clonezilla select mode screen

Clonezilla will now show you a list of the images you've saved into your images
share on your network. Simply select the image you want to restore, proceed
through a few confirmation screens, and Clonezilla will restore your image.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[399]

Although it may seem a bit out of place for a walk-through for using Clonezilla in a
book about Ubuntu Server, this is one of those utilities that will simplify deploying
Ubuntu Server, as well as workstation operating systems all across your network.
You'll only need to configure a base server one time, and then from that point
on, you can restore your image onto other servers and start off from an already
established foundation. To make the most of this process, think of some tweaks you
can implement on every server you set up. If you create an image with those tweaks
already implemented, you'll have less work to do when you set up a new server.
And while there are certainly quite a few screens you traverse through while using
Clonezilla, the process is actually faster than installing Ubuntu from its ISO image.

Utilizing bootable recovery media
I've mentioned live media several times within this book. The concept of live
media is a wonderful thing, as we can boot into a completely different working
environment from the operating system installed on our device, and perform tasks
without disrupting installed software on the host system. The desktop version of
Ubuntu, for example, offers a complete computing environment we can use in order
to not only test hardware and troubleshoot our systems, but also to browse the Web
just as we would on an installed system. In terms of recovering from disasters, live
media becomes a saving grace.

As administrators, we'll run into one problem after another. This gives us our job
security. Computers often seemingly have a mind of their own, failing when least
expected. Our servers and desktops can encounter a fault at any time, and live media
allows us to separate hardware issues from software issues, by troubleshooting from
a known and good working environment.

One of my favorites when it comes to live media is the desktop version of Ubuntu.
Although geared primarily toward end users who wish to install Ubuntu on a laptop
or desktop, as administrators we can use it to boot a machine that normally wouldn't,
or even recover data from failed disks. For example, I've used Ubuntu live media to
recover data from both failed Windows and Linux systems, by booting the machine
with the live media and utilizing a network connection to move data from the bad
machine to a network share. Often, when a computer or server fails to boot, the data
on its disk is still accessible. Assuming the disk wasn't encrypted during installation,
you should have no problem accessing data on a server or workstation using live
media such as Ubuntu live media.

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[400]

Sometimes, certain levels of failure require us to use different tools. While Ubuntu's
live media is great, it doesn't work for absolutely everything. One situation is a
failing disk. Often, you'll be able to recover data using Ubuntu's live media from
a failing disk, but if it's too far gone, then the Ubuntu media will have difficulty
accessing data from it as well. Another useful tool when it comes to failing disks is
(believe it or not) Clonezilla, which we have just gone over in the previous section.
Clonezilla's primary focus is disk imaging, but we can use it for recovery as well. It
doesn't always work, but it's worth a shot. If you recall, during the process of using
Clonezilla, you were asked whether you'd like to use Beginner or Expert mode,
which I had you use Beginner mode. In Expert mode, we have an additional option
we can leverage when saving an image, known as rescue.

When you select Expert mode during the process of saving an image with Clonezilla,
you'll see an additional screen that's not normally a part of the process, the extra
parameters screen. It looks like the following:

Back to the Clonezilla select mode screen

The -rescue option is listed among the other extra parameters on this screen. To
activate it, move the selection to it with the down arrow key, and press the Spacebar
to check the box next to it, which activates the feature. The way this option works is
if Clonezilla encounters a bad sector, instead of failing to create the image, it will skip
that bad sector and move on to the next. Basically, it will still create an image of your
drive, even if some of the sectors are unreadable. Then, you can restore this image
onto a known good drive, and then attempt a file system check with your operating
system. In some cases, the image being restored onto a good disk will allow the
operating system to repair the file system damage caused by the bad sectors, and
then be completely fixed. In other cases, the disk is either too far gone, or the bad
sectors are in areas that contain important data that the resulting image will be
missing. This trick is certainly worth a try, though. I've actually saved an unbootable
server using this method, and that was great considering the company who owned
the server never backed it up a single time!

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[401]

In addition, you can actually restore a system's ability to boot, using a third-party
utility known as Boot Repair. This utility will allow you to restore GRUB on a
system which has a damaged boot sector and is no longer able to boot. GRUB is a
crucial service, since it's the bootloader that's responsible for a system's ability to
boot a Linux distribution. Should GRUB ever stop functioning properly, the Boot
Repair utility is a good way to fix it. Having to reinstall or repair GRUB is actually
quite common on systems that dual boot some flavor of Linux with Windows, as
Windows will often overwrite the boot-loader (thus wiping out your option to boot
Linux) when certain updates are installed. Windows always assumes it's the only
operating system in use, so it has no problem wiping out other operating systems
that share the same machine.

The Boot Repair utility is not recommended if the underlying system
is using EFI System Partition (ESP).

To use this utility, first boot the affected machine from Ubuntu live media (the
desktop version) and connect to the Internet. Then, you can install the Boot Repair
utility with the following commands:

add-apt-repository ppa:yannubuntu/boot-repair

apt-get update && apt-get install boot-repair

Now, the Boot Repair utility is installed within the live system. You can access it
from the Ubuntu dash, or you can simply enter the boot-repair command from the
terminal to open it:

The main screen of the Boot Repair utility

www.hellodigi.ir

http://technet24.ir

Preventing and Recovering from Disasters

[402]

For most situations, you can simply choose the default option, Recommended repair.
There are advanced options as well if you'd like to do something different; you can
view these options by expanding the Advanced options menu. This will allow you
to change where GRUB is reinstalled, in a case where you're restoring GRUB onto a
different drive than the main drive. It also allows you to add additional options to
GRUB in a case where you're having issues with certain hardware configurations,
and even allows you to upgrade GRUB to its most recent version. Using Boot Repair,
you should be able to resurrect an unbootable system, in a case where the underlying
GRUB installation has become damaged.

As you can see, live media can totally save the day. Clonezilla and Ubuntu live
image for its desktop version are great boot-disks to have available to you. Ubuntu
live image alone is something I've made use of constantly, mainly for recovering data
from failing machines, or virus-ridden Windows machines. One of the best aspects
of using Ubuntu live image is that you won't have to deal with the underlying
operating system and software set at all, you can bypass both by booting into a
known working desktop, and then copy any important files from the drive right onto
a network share. Another important feature of Ubuntu live media is the memory
test option. Quite often, strange failures on a computer can be traced to defective
memory. Other than simply letting you install Ubuntu, the live media is a Swiss-
army knife of many tools you can use to recover a system from disaster. If nothing
else, you can use live media to pinpoint whether a problem is software or hardware
related. If a problem can be reproduced within the installed environment but not
within a live session, chances are a configuration problem is to blame. If a system
also misbehaves within a live environment, it may help you identify a hardware
issue. Either way, every good administrator should have live media available to
troubleshoot systems and recover data when the need arises.

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

Chapter 14

[403]

Summary
In this chapter, we looked at several ways in which we can prevent and recover from
disasters. Having a sound prevention and recovery plan in place is an important key
to managing servers efficiently. We need to ensure we have backups of our most
important data ready for whenever servers fail, and we should also keep backups
of our most important configurations. Ideally, we'll always have a warm site set up
with pre-configured servers ready to go in a situation where our primary servers
fail, but one of the benefits of open-source software is that we have a plethora of
tools available to us that we can use to create a sound recovery plan. In this chapter,
we looked at leveraging rsync as a useful utility for creating differential backups,
and we also looked into setting up a Git server that we can use for configuration
management, which is also a crucial aspect of any sound prevention plan. We also
took a look at Clonezilla, which we can use to create deployment images to allow
us to set up new servers quickly. We are also able to use Clonezilla to attempt data
recovery, should we run into an issue with one of our disks. We also talked about the
importance of live media in diagnosing issues.

And with this chapter, this book comes to a close. I'd like to thank each and every
one of you, my readers, for taking the time to read this book. Writing this book
has been an extremely joyful experience. I'd also like to thank Packt Publishing for
giving me the opportunity to write a book about one of my favorite technologies.
Writing this book was definitely an honor. When I first started with Linux in 2002,
I never thought I'd actually be an author, teaching the next generation of Linux
administrators the tricks of the trade. I wish each of you the best of luck, and I hope
this book has been beneficial to you and your career.

www.hellodigi.ir

http://technet24.ir

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[405]

Index
Symbols
~/.ssh/config file

about 133
SSH connections, simplifying with 133

A
Acronis 386
additional storage volumes

adding 80-84
administrator access

configuring, with sudo 63-66
AMD-V 298
Apache

configuring 269-275
installing 269-275
securing, with SSL 278-284

Apache modules
installing 276-278

application logs 354
apt-get dist-upgrade command 329
apt-get upgrade command 329
aptitude command

about 157-159
using 157-159

attack surface
lowering 326-329

authorization log 356

B
backup plan

implementing 383-386
Berkeley Internet Name Daemon (BIND)

package 204

bind
name resolution (DNS),

setting up with 204-211
bootable recovery media

utilizing 399-402
bootable Ubuntu Server flash drive

creating, in Linux 10-12
creating, in Mac 13-15
creating, in Windows 7-9

Boot Repair 401
Broadcast Address 197
B-tree file system (Btrfs) 83

C
Caching Name Server 205
Canonical Name (CNAME) 210
Certificate Signing Request (CSR) 282
Clonezilla

about 386
reference 387

Clonezilla live
system images, creating with 386-399

configuration management
Git, utilizing for 376-383

containers, Docker
creating 315-322
managing 315-322
running 315-322

Cron
tasks, scheduling with 188-190

www.hellodigi.ir

http://technet24.ir

[406]

D
databases

managing 255-261
database server

setting up, requisites 246, 247
DenyHosts 334
DHCP Reservation 119
Digital Ocean

about 95
URL 2

Digital Ocean VPS 76
directory permissions

setting 68-74
disasters

preventing 374, 375
Disk Cache 185
disks

decrypting, with Linux Unified Key Setup
(LUKS) 344, 345

encrypting, with Linux Unified Key Setup
(LUKS) 344, 345

disk usage
viewing 76-80

Docker 315
Document Root 270
Dynamic DNS 108
Dynamic Host Control Protocol (DHCP) 196

E
EFI System Partition (ESP) 401
encryption 3
encryption at rest 3

F
Fail2ban

about 334
configuring 334-337
installing 334-337

file permissions
setting 67-74

files
sharing, with Windows users 223-228
transferring, with rsync 233-238
transferring, with SCP 238-240

file server
considerations 221-223

Filesystem Hierarchy Standard (FHS) 88
firewall

setting up 341-343
Fully Qualified Hostname (FQDN) 219

G
Git

about 376
utilizing, for configuration

management 376-383
GNU Privacy Guard (GnuPG) 146
Group ID (GID) 46
groups

managing 56-58

H
hard links

about 106
using 107-109

high availability
setting up, with keepalived 285-290

htop
about 176-179
using 176-179

Hub 315

I
inodes 77
Internet gateway

setting up 215-217
IP addresses

serving, with isc-dhcp-server 199-204
IP address scheme

planning 195-198
isc-dhcp-server

IP addresses, serving with 199-204

J
jobs

handling 171-173

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[407]

K
keepalived

high availability, setting up with 285-290
Kernel-based Virtual Machine (KVM) 298
keymap 390
killall command 174
kill command 174

L
Linode

URL 2
Linux name resolution 122, 123
Linux networks

about 111
hostname, setting 112, 113
network interfaces, managing 114-118
setting up 111
static IP addresses, assigning 118-121

Linux package management 136, 137
Linux RAM

URL 184
Linux Signals 174
Linux Unified Key Setup (LUKS)

about 25, 344
disks, decrypting 344, 345
disks, encrypting 344, 345

load average 190-192
Logical Volumes 98
Long-Term Support (LTS) 5, 137
LVM volumes

utilizing 97-106

M
MariaDB

about 338
best practices 338-341
installing 248-251
in Ubuntu 16.04, differences 254, 255

MariaDB configuration 251-253
memory usage

about 184-187
monitoring 184-187

MySQL 338

N
name resolution, DNS

setting up, with bind 204-211
Ncurses Disk Usage Utility 79
netstat command 327
Network Manager 124
Network Time Protocol (NTP) 165, 195
NFS 221
NFS Client 222
NFS shares

setting up 229-232
NT LAN Manager (NTLM) 393

O
OpenSSH

about 125, 126, 325, 327
securing 330-334
working with 125-129

ownCloud
configuring 290-294
installing 290-294

P
package maintainer 136
packages

about 142, 143
backing up 156
restoring 156
searching 142, 143

password policies
managing 59-63

passwords
managing 59-63

Personal Package Archive (PPA) 146
Physical Address Extension (PAE) 7
Physical Volumes 98
Pluggable Authentication

Module (PAM) 62
PPA

URL 147
Preboot eXecution Environment (PXE)

boot 386

www.hellodigi.ir

http://technet24.ir

[408]

Principle of Least Privilege 330
processes

killing 174, 175
process ID (PID) 166
PS1 prompt 112
ps command

about 166
running processes, displaying with 166-170

Public Key Authentication 129

R
Raspberry Pi

Ubuntu Server, installing on 37-39
remote file systems

mounting, with SSHFS 241-243
rescue 400
role 3
root-cause analysis 352
rsync

about 384
files, transferring with 233-238

running processes
displaying, with ps command 166-170

S
Samba

about 221
files, sharing with Windows users 223-228

SCP (Secure Copy)
files, transferring with 238-240

secondary DNS server
creating 211-215

Security Checklist 330
server

updating 149-155
Server Message Block (SMB) 222
Services for UNIX 222
slave DB server

setting up 262-267
Snap packages

about 160-162
installing 160-162

software
installing 138-141
uninstalling 138-141

software repositories
about 144-148
managing 144-148

SSH Agent 132
SSH connections

simplifying, with ~/.ssh/config file 133
SSH File System (SSHFS)

remote file systems, mounting with 241-243
SSH key management

about 129-132
working with 129

SSL
Apache, securing with 278-284

Start of Authority (SOA) 208
Static IP assignment 119
Static Lease 119
storage volumes

/etc/fstab file 89-93
formatting 84-87
hard links, using 106-109
mounting 87-89
partitioning 84-87
swap, managing 94-97
symbolic links, using 106-109
unmounting 87-89

subnets 196
Subsystem for UNIX-based

Applications 222
subtree checking 230
sudo

administrator access,
configuring with 64-66

locking down 346, 347
sudo command 374
swappiness 187
symbolic links

about 106
using 106-109

system clock
keeping, in sync with NTP 217-219

system images
creating, with Clonezilla live 386-399

system log 357
system logs 354
system processes

about 179-183
handling 179-183

www.hellodigi.ir

http://technet24.ir
http://technet24.ir

[409]

T
tasks

scheduling, with Cron 188-190
Teletypewriter 168
temporary 88
Time to Live (TTL) 208
troubleshooting, Ubuntu Servers

about 349
defective RAM, diagnosing 368-371
network issues, tracing 359-364
problem space, evaluating 350, 351
resource issues, troubleshooting 364-368
root-cause analysis, conducting 352-354
system logs, viewing 354-358

U
Ubuntu Packages

URL 143
Ubuntu Server

32-bit installation 6
64-bit installation 7
about 1
environment, setting up 2
installing 18-37
installing, on Raspberry Pi 37, 38
obtaining 4-6
partition layout, planning 16, 17
role, determining 3
troubleshooting 349
URL 4
user management 41

Uncomplicated Firewall (UFW) 342
units 179
Universally Unique Identifier (UUID) 90
Universal Naming Convention (UNC) 228
Universal USB installer

reference 6
User ID (UID) 46
user management

/etc/passwd 49-53
/etc/shadow 49-53
about 41

administrator access, configuring
with sudo 63-67

default configuration files, distributing,
with /etc/skel 53, 54

directory permissions, setting 67-74
file permissions, setting 67-74
groups, managing 56-58
password policies, managing 59-63
passwords, managing 59-63
root, using 42, 43
users, creating 43-48
users, removing 43-48
users, switching 54, 55

users
switching between 54, 55

V
VirtualBox

URL 2
Virtual IP (VIP) 285
virtualization support 298
virtual machine network

bridging 311-314
virtual machines

creating 306-311
virtual machine server

setting up 298-306
Virtual Private Server (VPS) 2, 275
Voice over IP (VoIP) 196
Volume Groups 98
VT-x 298

W
Windows users

files, sharing with 223-228

Z
Zone File 204

www.hellodigi.ir

http://technet24.ir

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Deploying Ubuntu Server

	Setting up our lab
	Determining your server's role
	Obtaining Ubuntu Server
	Deciding between 32-bit and 64-bit installations
	Creating a bootable Ubuntu Server flash drive (Windows)
	Creating a bootable Ubuntu Server flash drive (Linux)
	Creating a bootable Ubuntu Server flash drive (Mac)
	Planning the partition layout
	Installing Ubuntu Server
	Installing Ubuntu Server (Raspberry Pi)
	Summary

	Chapter 2: Managing Users

	Understanding when to use root
	Creating and removing users
	Understanding the /etc/passwd and /etc/shadow files
	Distributing default configuration files with /etc/skel
	Switching between users
	Managing groups
	Managing passwords and password policies
	Configuring administrator access with sudo
	Setting permissions on files and directories
	Summary

	Chapter 3: Managing Storage Volumes

	Viewing disk usage
	Adding additional storage volumes
	Partitioning and formatting volumes
	Mounting and unmounting storage volumes
	Understanding the /etc/fstab file
	Managing swap
	Utilizing LVM volumes
	Using symbolic and hard links
	Summary

	Chapter 4: Connecting to Networks

	Setting the hostname
	Managing network interfaces
	Assigning static IP addresses
	Understanding Linux name resolution
	Understanding Network Manager
	Getting started with OpenSSH
	Getting started with SSH key management
	Simplifying SSH connections with a ~/.ssh/config file
	Summary

	Chapter 5: Managing Software Packages

	Understanding Linux package management
	Installing and removing software
	Searching for packages
	Managing software repositories
	Keeping your server up to date
	Backing up and restoring packages
	Making use of aptitude
	Installing Snap packages
	Summary

	Chapter 6: Controlling and Monitoring Processes

	Showing running processes with the ps command
	Managing jobs
	Killing misbehaving processes
	Utilizing htop
	Managing system processes
	Monitoring memory usage
	Scheduling tasks with Cron
	Understanding load average
	Summary

	Chapter 7: Managing Your Ubuntu Server Network

	Planning your IP address scheme
	Serving IP addresses with
isc-dhcp-server
	Setting up name resolution (DNS) with bind
	Creating a secondary DNS server
	Setting up an Internet gateway
	Keeping your system clock in sync
with NTP
	Summary

	Chapter 8: Accessing and Sharing Files

	File server considerations
	Sharing files with Windows users using Samba
	Setting up NFS shares
	Transferring files with rsync
	Transferring files with SCP
	Mounting remote filesystems with SSHFS
	Summary

	Chapter 9: Managing Databases

	Preparations for setting up a database server
	Installing MariaDB
	Taking a look at MariaDB configuration
	Understanding how MariaDB differs in Ubuntu 16.04
	Managing databases
	Setting up a slave DB server
	Summary

	Chapter 10: Serving Web Content

	Installing and configuring Apache
	Installing additional Apache modules
	Securing Apache with SSL
	Setting up high availability with keepalived
	Installing and configuring ownCloud
	Summary

	Chapter 11
: Virtualizing Hosts and Applications
	Setting up a virtual machine server
	Creating virtual machines
	Bridging the virtual machine network
	Creating, running, and managing Docker containers
	Summary

	Chapter 12
: Securing Your Server
	Lowering your attack surface
	Securing OpenSSH
	Installing and configuring Fail2ban
	MariaDB best practices
	Setting up a firewall
	Encrypting and decrypting disks with LUKS
	Locking down sudo
	Summary

	Chapter 13: Troubleshooting
Ubuntu Servers

	Evaluating the problem space
	Conducting a root-cause analysis
	Viewing system logs
	Tracing network issues
	Troubleshooting resource issues
	Diagnosing defective RAM
	Summary

	Chapter 14: Preventing and Recovering from Disasters

	Preventing disasters
	Utilizing Git for configuration management
	Implementing a backup plan
	Creating system images with Clonezilla live
	Utilizing bootable recovery media
	Summary

	Index

