
ptg14200515

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Exam Ref 70-481
Essentials of Developing
Windows Store Apps
Using HTML5 and
JavaScript

Wouter de Kort

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Wouter de Kort

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014940677
ISBN: 978-0-7356-8529-1

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Anne Hamilton
Developmental Editor: Karen Szall
Editorial Production: Box Twelve Communications
Technical Reviewer: Todd Meister
Cover: Twist Creative • Seattle

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

ptg14200515

Contents at a glance

Introduction	 xiii

Preparing for the exam	 xvii

Chapter 1	 Design Windows Store apps	 1

Chapter 2	 Develop Windows Store apps	 57

Chapter 3	 Create the user interface	 125

Chapter 4	 Program user interaction	 191

Chapter 5	 Manage security and data	 243

Index	 295

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 xiii
Microsoft certifications	 xiii

Acknowledgments	 xiv

Free ebooks from Microsoft Press	 xiv

Errata, updates, & book support	 xv

We want to hear from you	 xv

Stay in touch	 xv

Preparing for the exam	 xvii

Chapter 1	 Design Windows Store apps	 1
Objective 1.1: Design the UI layout and structure . 1

Evaluating the conceptual design 	 2

Deciding how the UI will be composed 	 7

Designing for the inheritance and reuse of visual elements 	 10

Designing for accessibility	 11

Deciding when custom controls are needed	 12

Using the Hub App template	 13

Objective summary	 15

Objective review	 16

Objective 1.2: Design for separation of concerns. 17

Planning the logical layers of your solution to meet
application requirements	 17

Designing loosely coupled layers	 19

Incorporating WinMD Components	 22

Objective summary	 24

Objective review	 25

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/booksurvey/

ptg14200515

vi Contents

Objective 1.3: Design and implement Process Lifetime
Management (PLM). 26

Choosing a state management strategy	 26

Handling the onactivated event	 27

Handling the suspend event (oncheckpoint)	 31

Preparing for app termination	 32

Checking the ActivationKind and previous state	 37

Objective summary	 39

Objective review	 39

Objective 1.4: Plan for an application deployment. 40

Planning a deployment based on Windows 8
application certification requirements	 40

Preparing an app manifest (capabilities and declarations)	 44

Signing an app	 48

Planning the requirements for an enterprise deployment	 49

Objective summary	 50

Objective review	 51

Answers. 52

Chapter 2	 Develop Windows Store apps	 57
Objective 2.1: Access and display contacts. 57

Calling the ContactPicker class 	 58

Filtering which contacts to display 	 59

Displaying a set number of contacts	 61

Creating and modifying contact information	 65

Selecting specific contact data	 66

Objective summary	 68

Objective review	 68

Objective 2.2: Design for charms and contracts. 69

Choosing the appropriate charms based on app requirements	 69

Designing an application to be charm- and contract-aware	 74

Configuring the application manifest for correct permissions	 75

Objective summary	 76

Objective review	 77

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

viiContents

Objective 2.3: Implement search. 78

Providing search suggestions using the SearchPane and
SearchBox control classes	 78

Searching and launching other apps	 81

Providing and constraining search within an app	 81

Providing search result previews	 82

Implementing activation from within search	 84

Configuring search contracts	 84

Objective summary	 86

Objective review	 86

Objective 2.4: Implement Share in an app. 87

Using the DataTransferManager class to share data with
other apps	 87

Accepting sharing requests by implementing activation
from within Share	 90

Limiting the scope of sharing using the DataPackage object	 92

Implementing in-app Share outside of the Share charm	 93

Using web links and application links	 93

Objective summary	 95

Objective review	 96

Objective 2.5: Manage application settings and preferences. 97

Choosing which application features are accessed in AppSettings	97

Adding entry points for AppSettings in the Settings window	 98

Creating settings flyouts using the SettingsFlyout control	 99

Adding settings options to the SettingsFlyout control	 101

Storing and retrieving settings from the roaming app data store	105

Objective summary	 108

Objective review	 108

Objective 2.6: Integrate media features. 109

Supporting DDS images	 110

Implementing video playback	 111

Implementing XVP and DXVA	 112

Implementing TTS	 113

Implementing audio and video playback using HTML5 DRM	 115

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

viii Contents

Objective summary	 116

Objective review	 116

Answers. 118

Chapter 3	 Create the user interface	 125
Objective 3.1: Implement WinJS controls. 125

Using a FlipView control	 126

Using a flyout	 130

Using a Grid layout and a List layout	 132

Using a menu object	 135

Using a WebView control	 138

Using an item container	 140

Using the Repeater control	 142

Objective summary	 145

Objective review	 146

Objective 3.2: Implement HTML layout controls. 147

Implementing layout controls to structure your layout	 147

Implementing templates and bindings	 154

Supporting scrolling and zooming with CSS3	 156

Managing text flow and presentation, including overflow	 159

Objective summary	 161

Objective review	 161

Objective 3.3: Create layout-aware apps to handle windowing modes. 162

Using CSS3 media queries to adapt to different devices	 162

Responding to changes in orientation	 165

Adapting to new windowing modes by using the View-
Management namespace	 167

Managing settings for an apps view	 168

Objective summary	 170

Objective review	 170

Objective 3.4: Design and implement the app bar. 171

Determining what to put on the app bar based on app
requirements	 171

Styling and positioning app bar items	 173

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

ixContents

Designing the placement of controls on the app bar	 175

Handling AppBar events	 176

Objective summary	 177

Objective review	 178

Objective 3.5: Apply CSS styling. 179

Implementing gradients	 179

Implementing Grid layouts	 181

Implementing zooming	 182

Implementing scroll snapping	 182

Implementing media queries	 183

Objective summary	 183

Objective review	 184

Answers. 185

Chapter 4	 Program user interaction	 191
Objective 4.1: Manage input devices . 191

Capturing gesture library events	 192

Creating custom gesture recognizers	 196

Listening to mouse events or touch gestures	 198

Managing stylus input and inking	 198

Handling drag-and-drop events	 199

Objective summary	 201

Objective review	 202

Objective 4.2: Design and implement navigation in an app. 202

Handling navigation events, checking navigation
properties, and calling navigation functions by using
the WinJS.Navigation namespace	 203

Designing navigation to meet app requirements	 206

Using semantic zoom	 207

Loading HTML fragments	 210

Objective summary	 212

Objective review	 213

Objective 4.3: Create and manage tiles . 214

Creating and updating tiles and tile contents	 214

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

x Contents

Creating and updating badges (the TileUpdateManager class)	 219

Responding to notification requests	 221

app requirements	 224

Objective summary	 226

Objective review	 226

Objective 4.4: Notify users by using toast . 227

Enabling an app for toast notifications	 227

Populating toast notifications with images and text by
using ToastUpdateManager	 229

Playing sounds with toast notifications	 230

Responding to toast events	 231

Controlling toast duration	 232

Configuring and using Microsoft Azure Mobile Services
for push notifications	 232

Objective summary	 235

Objective review	 236

Answers. 237

Chapter 5	 Manage security and data	 243
Objective 5.1: Choose a data access strategy . 243

Choosing the appropriate data access strategy based
on requirements	 244

Objective summary	 250

Objective review	 250

Objective 5.2: Retrieve data remotely. 251

Using XHR or HttpClient to retrieve web services	 252

Setting appropriate HTTP verbs for REST	 255

Handling progress of data requests	 258

Consuming SOAP/WCF services	 259

Using WebSockets for bidirectional communication	 260

Objective summary	 262

Objective review	 262

Objective 5.3: Implement data binding . 263

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

xiContents

Binding data to controls by using data-win-control and
data-win-bind	 263

Choosing and implementing data-bound controls	 265

Binding data to item templates such as WinJS.Binding.Template	 266

Configuring an iterator with data-win-options	 266

Enabling filtering, sorting, and grouping data in the
user interface	 267

Objective summary	 269

Objective review	 270

Objective 5.4: Manage Windows authentication and authorization. . . . 271

Storing and retrieving credentials by using the
PasswordVault class	 271

Implementing the CredentialPicker class	 273

Verifying credential existence by using Credential Locker	 276

Storing account credentials in app settings	 278

Objective summary	 280

Objective review	 281

Objective 5.5: Manage web authentication. 282

Using the Windows.Security.Authentication.Web namespace	 282

Setting up OAuth2 for authentication	 283

Setting up Single Sign-On (SSO)	 284

Implementing the CredentialPicker class	 285

Implementing credential roaming	 285

Implementing the WebAuthenticationBroker class	 285

Supporting proxy authentication for enterprises	 286

Objective summary	 288

Objective review	 288

Answers. 290

Index	 295

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/booksurvey/

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

xiii

Introduction

Building apps for all kinds of devices is becoming more and more popular. If it’s your goal to
prove that you have the skills to build apps for the Microsoft ecosystem, this book is for you.

This book focuses on building Windows Store apps with HTML, JavaScript, and CSS. With
experience in building web applications—be it on the Microsoft platform or on another
platform—you can now use your existing skills to build Windows Store apps that run on
millions of devices and leverage all the functionality that Windows offers you.

This book covers Exam 70-481, Essentials of Developing Windows Store Apps Using
HTML5 and JavaScript, meaning that it closely follows the outline of the exam to help you
quickly find the content you need to prepare yourself for the exam.

You will learn how to design and develop your app, and how to create both a great UI and
user experience while making sure that everything is secure—both for the user and for your
app.

After finishing this book, you will understand how to build Windows Store apps that
prepare you for the ever-growing market of building apps.

This book covers every exam objective, but it does not cover every exam question.
Only the Microsoft exam team has access to the exam questions themselves and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in the text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

xiv Introduction

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

Acknowledgments

I’d like to thank the following people:

■■ Jeff Riley, for your excellent role in managing the production of this book.

■■ Karen Szall, for helping me through the whole editing process. I learned a lot from
your feedback and advice.

■■ Todd Meister, for your help in reviewing all the content and all your suggestions.

■■ Devon Musgrave, for helping me through the early stages of acquisitions and
contracts.

■■ To my wife, Elise, for her support.

■■ And to all the other people who played a role in getting this book ready. Thanks for
your hard work!

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Mi-
crosoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi
for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx
http://aka.ms/mspressfree

ptg14200515

xvIntroduction

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/ER481R2

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@micro-
soft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to http://
support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

From the Library of Ida Schander

www.hellodigi.ir

http://aka.ms/ER481R2
http://support.microsoft.com
http://support.microsoft.com
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

xvii

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your “at home” preparation and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 1

C H A P T E R 1

Design Windows Store apps
When you have a great idea for an app, it’s hard to resist the temptation to start up Visual
Studio and begin working on the new app. Resisting that temptation is necessary for building
a great app, however.

Windows Store apps are more than just a clever implementation; they require upfront
design, during which you consider the design goals that Microsoft describes for them.
Thinking about the goal of your app, designing a UI, and making sure that you follow the
Windows Store design principles are only some of the steps you need to consider.

This chapter helps you design your app, from initial
idea, to coding, and then planning for deployment. This
chapter covers the first objective in the Exam 70-481
objective domain (and this major topic area makes up
about 20 percent of the exam’s material). Although this
chapter isn’t code-heavy, there is a lot of discussion about
the process of designing an app.

Objectives in this chapter:
■■ Objective 1.1: Design the UI layout and structure

■■ Objective 1.2: Design for separation of concerns

■■ Objective 1.3: Design and implement Process Lifetime Management (PLM)

■■ Objective 1.4: Plan for an application deployment

Objective 1.1: Design the UI layout and structure

Designing your UI is the most important part of building a great app that appeals to users.
When going through the Windows Store, most users skim through screen shots and a short
list of features that your app has to offer. Making sure that you stand out, both graphically
and in the features you offer, is the core requirement for building a great app.

i m p o r t a n t

Have you read
page xvii?
It contains valuable
information regarding
the skills you need to
pass the exam.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 2	 CHAPTER 1	 Design Windows Store apps

This objective covers how to:
■■ Evaluate the conceptual design

■■ Decide how the UI will be composed

■■ Design for the inheritance and reuse of visual elements (for example, styles,
resources)

■■ Design for accessibility

■■ Decide when custom controls are needed

■■ Use the Hub App template

Evaluating the conceptual design
The release of Windows Phone 7 started a new era for Microsoft because it released a
version of Windows that showcases beautiful apps that follow a strict design philosophy.
With Windows 8, this experience is expanded to other devices. Although the possibilities in
your app and in the Windows ecosystem can be overwhelming, Microsoft offers clear design
guidance that can help you transform your idea into a real app. Using these principles when
evaluating your own design can help you develop and fine-tune your app until it becomes
something that everyone wants to have.

Microsoft design principles
Microsoft’s five foundational design principles include:

■■ Pride in craftsmanship

■■ Fast and fluid

■■ Authentically digital

■■ Do more with less

■■ Win as one

When designing your app, be prepared to devote time to the smallest details of all parts
of your app. Take pride in craftsmanship; see your app as a real work of craft. Make sure that
you are using the correct fonts and typography, are aligning all your pixels correctly, and are
taking pride in what you are doing.

Fast and fluid comes down to responsiveness and using the right animations. You have
probably seen Microsoft PowerPoint presentations in which an author creates too many
animations. Every slide comes in from a different direction, all elements appear with some
kind of animation, and you are distracted from the real goal of the presentation. Your apps
will also use animations, but animations and transitions should support the user experience,
not distract from it. Making sure that your app is responsive and uses simple but direct
animations to guide users through your app is what fast and fluid is all about.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 3

What’s the icon you use to save a document in Visual Studio? It’s a floppy disk! Depending
on your age, you might never have used a real floppy disk in your life. Maybe you save your
files to a regular hard drive, to a solid-state drive (SSD), or directly to the cloud. Should the
icon change depending on the location in which you save the file? Or should you accept the
fact that the digital world is different from the real world? That’s what being authentically
digital means. It can be a principle when designing small things such as adding a shadow to
an element. Why mimic the real world by adding a shadow when the user knows there isn’t
actually a shadow there?

Extending this principle, you can create digital experiences that are not possible in the real
world. Semantic zoom is one such area. If you open the Weather app on your Windows 8 PC,
you can use Ctrl+scroll wheel to zoom in and out. But instead of showing the information on
the screen smaller or larger, the app switches to a completely new view. Within this view, you
can pick a different category or switch dates. Although the process is different from what you
expect in the real world, it is perfectly possible in a digital app.

Doing more with less is another core principle of designing a Windows Store app. Compare
the screen shot of OneNote 2013 running on your desktop in Figure 1-1 to the screen shot of
OneNote 2013 running as a Windows Store app in Figure 1-2.

FIGURE 1-1  OneNote 2013 as a desktop app

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 4	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-2  OneNote 2013 as a Windows Store app

The desktop app shows a lot more on the screen, but is that really beneficial? What is
OneNote about? Isn’t it about taking notes, viewing pages, and easily jotting down your
thoughts? The Windows Store app version of OneNote focuses on those things. It shows options
for formatting and other commands only when you need them, so a much larger portion of the
screen can be used to accomplish the goal of your app: showing notes. Reducing chrome and
navigation elements is key. Of course, reducing elements shouldn’t be done so thoroughly that
users are completely lost in your app. For example, Microsoft made the decision to add a search
box directly to the interface of the Windows Store, as you can see in Figure 1-3. This search box
immediately helps users find the right place to search for an app.

The last design principle, Win as one, is about integrating with the existing Windows 8
ecosystem. Users learn that they can change settings for applications by using the Settings
charm, they expect to swipe up to open the app bar, and they can integrate with other apps
that are installed on their device. Making sure that your app immediately feels familiar helps
them use your app and ensures that they will return to it.

These five principles should guide you through the design of your app. Try to keep these
design principles in mind and let them guide every decision you make during development.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 5

FIGURE 1-3  A Windows Store app showing the search box

EXAM TIP

Make sure you know the five design principles for the exam. Understand the difference
between a regular desktop app and a Windows Store app.

Creating a vision
Look at the design principles that should guide your app. Your app shouldn’t be a monolithic,
giant application that can do everything a user will ever want. Focus on the experience that
you want to offer instead of the features. This is where a vision comes in. You should have
a clear idea of what your app is great at. Imagine that someone comes to you with the idea
of building a ToDo app. They visualize that users should be able to add tasks, mark them as
complete, and see a quick overview of what they still have to do. Try to determine what the
experience is that you want to give to users instead of only a list of features.

Why would a user use your app? What’s your app all about? After some brainstorming,
suppose that you come up with the following list:

■■ Add new tasks

■■ Mark tasks as completed

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 6	 CHAPTER 1	 Design Windows Store apps

■■ Collaborate with others on some tasks

■■ Remove tasks

■■ Get a list of uncompleted tasks

■■ Search through tasks

■■ Specify deadlines for tasks

Take a step back from this list of features and think about what would make your app
great. What scenario would make your app stand out from the competition?

One scenario that jumps out is the one about collaborating on tasks. Maybe you can think
of other scenarios that could be even better, but try to pick one single scenario to guide
your app.

Next, formulate your apps vision in a great at statement:

My ToDo app is great at letting people work together on a list of tasks.

Suddenly you have a clearer vision of your app. You can now check each feature that you
think of against your vision. Does it help with your vision or distract users from it?

The second step is deciding what user activities to support. Which steps are important for
users reaching the scenario of working together on a list of tasks? What is the ideal flow that
they should go through? Maybe you come up with something like this:

■■ Create a new task list

■■ Add tasks

■■ Share it with another user

■■ Report progress

These are the basic steps that form the flow of your app.

Now that you know what you want and which user activities you want to support, you
should start researching your platform. Windows 8 offers a broad set of capabilities that you
can use—from different controls and animations to ways to integrate with other applications.
For example, you can use the Share contract to implement the idea of sharing a task list with
someone else. You can use built-in controls to show a list of tasks and use the standard touch
gestures to let users select tasks and mark them as completed by clicking a button in the
app bar.

And there are many more possibilities! This book is about all the options that Windows 8
gives you when building apps, from tiles to notifications, from form factors to contracts. Many
things are possible when developing Windows Store apps, and you should be aware of those
that can help you with your design.

Now your app idea is coming together. You have a clear vision, you have targeted activities
that you want to support, and you understand the wealth of options that you can use when
coding your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 7

But before you start developing, you should create some prototypes of your app. You
might start with simple sketches on paper, but you can also use tools such as Expression
Sketchflow or even PowerPoint with the Storyboarding plug-in.

Figure 1-4 shows an example of what a prototype can look like in PowerPoint. The
advantage of these types of prototypes is that you can have users test them and give you
feedback without having to do any time-consuming development.

FIGURE 1-4  PowerPoint storyboarding for Windows Store apps

After following these steps, you will have some clear prototypes of your app and you can
start thinking about implementation.

Deciding how the UI will be composed
When creating a new Windows Store app in Visual Studio, you have several different options.
Figure 1-5 shows the project templates from which you can choose.

Deciding on the template to start with is an important step. If you have created some
sketches, you probably have figured out what the flow of your application will be. Choosing a
template that matches your flow closely can save you a lot of work.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 8	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-5  Creating a new JavaScript Windows Store app

The available templates are the following:

■■ Blank App

■■ Grid App

■■ Split App

■■ Hub App

■■ Navigation App

Selecting the right template depends on the type of navigation that you want to support.
You can choose a flat navigation if all content resides on the same hierarchical level (Internet
Explorer or a game, for example). If you have content that is hierarchical, such as categories
and items, you can choose for a hierarchical navigation pattern.

The Blank App template is the only template that comes without a navigation model.
This template gives you an empty app with only HTML, cascading style sheets (CSS), and
JavaScript files, together with some required files for a package manifest; a file to sign your
app; and some default images.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 9

Although it is not recommended to start with the Blank App template, you can use it if
you need a simple environment to test some features or if you have layout requirements that
don’t fit in the standard Windows Store model.

The Grid App template is the basis for apps that let the user browse through categories and
then navigate to individual items (a shopping or news app, for example). After creating this
project, you have a default structure of categories with items in them shown in three layers:
overview, category details, and item details. It implements navigation between pages and
comes with some sample data that you can customize.

The Split App template combines showing a list of items with item details on one page.
Think of it as a master-detail view of your data. It can be useful for building a blog reader
app, for example.

The Hub App template was added to Visual Studio 2013 with the release of Windows 8.1. This
template shows content in a horizontally panning view. The Hub App template is different from
other project templates because it uses a mix of sections that represent the items in your app.
Whereas the Grid App and Split App templates have a very specific way of showing items, the
Hub App template mixes all those approaches to create a compelling UI.

EXAM TIP

Be sure to try out the different project templates in Visual Studio. Become familiar with the
content of each template and try sketching some simple app ideas (such as a shopping app
or a chess game) with each so you understand how a template can get you started in the
right direction.

One aspect of the templates in Visual Studio that might not be immediately obvious is that
those templates implement a single-page application (SPA) structure. Regular websites use
multiple pages and hyperlinks to navigate from one page to another. While the page is loading,
your screen refreshes and a complete page is loaded.

An SPA uses a different architecture. Instead of having multiple pages, you load one page
when it starts and then use JavaScript to enable and disable elements. This process avoids
complete page reloads and gives your app a more fluid interface. When composing your
UI, keep this important aspect in mind. You can reuse the skeleton of your page and switch
different elements when navigating from “page to page.”

After you select your project template, you can use several item templates, as shown in
Figure 1-6. Those templates help you implement specific functionality, such as contracts, in
your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	10	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-6  The Add New Item dialog box

Designing for the inheritance and reuse of visual elements
When building software, you can easily fall into the trap of simply copying and pasting
elements (HTML, CSS, or some JavaScript) whenever you need them. However, although
simply duplicating code can give you some velocity, it slows you down in the end.

The more code you have in your project, the harder it is to understand. Maintainability
also becomes an issue; making a change to each copy of an element is not only cumbersome
but can also lead to errors when you forget to change a copy.

During the design phase, you can easily see where certain elements will be repeated, so
make sure from the start that you find a suitable solution instead of a plain copy-and-paste
process.

Of course, remember principles such as Keep It Simple (KIS) and You Aren’t Gonna Need It
(YAGNI), which remind you that you shouldn’t go overboard planning to reuse elements that
you will never reuse. Instead of wasting time on creating complex controls that can easily be
reused but never will be, start with a simple solution and make sure that you adapt it when-
ever the requirements change.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 11

Using HTML, CSS, and JavaScript for your app development gives you ample opportunities
for reusing elements in your app.

CSS is probably the easiest to reuse. You should move styles that are used in multiple
places in your app to a common file and then reference that file whenever needed. Especially
because you are using the SPA architecture, you can load CSS elements once and then reuse
them throughout your application.

JavaScript is also easily reusable. You can include certain utility functions in your JavaScript
and call them from anywhere in your application. The next objective looks at structuring your
JavaScript in a reusable way.

You can also reuse HTML by using JavaScript controls. For example, HTML PageControl
enables you to reuse HTML pages by loading them through JavaScript. You can also build
custom controls if you want to create a reusable unit of HTML, JavaScript, and CSS.

These options are discussed in more detail throughout the book.

Designing for accessibility
Imagine using your app if you are colorblind or completely blind. What if you are deaf or
can’t use a mouse or touch device easily? Keeping users’ disabilities in mind is very important
for the design process.

Maybe you are faced with legal requirements that force you to make your app accessible.
Or maybe you are just thinking about all the possible users who can’t use your app if you
don’t design for accessibility.

Fortunately, implementing accessibility in your app isn’t difficult. HTML already has good
support for creating accessible websites, and your Windows Store app can expand on that
foundation.

Make sure that your HTML not only looks nice but also specifies what it does. Accessible
rich Internet applications (ARIAs) are defined for this purpose. An ARIA defines a set of special
attributes that can be added to your HTML. Those attributes describe the description and role
of elements that can be used by screen readers—for example, to help a user understand what
an element does.

Next to using ARIA attributes, you should also make sure that your app is accessible only
by using a keyboard, which means thinking about the tab index of elements, making sure that
a user can use the arrow keys to navigate and implement accelerator keys.

You should also test your app under different conditions. The testing could be with varying
resolutions and when using high-contrast teams or a larger font.

The Windows software development kit (SDK) comes with two tools that you can use to test
the accessibility of your app: Inspect and UI Accessibility Checker (AccChecker). Of course, you

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	12	 CHAPTER 1	 Design Windows Store apps

can also do some manual testing: Unplug your mouse, change your color theme, and adjust
font size. Narrator is an application that verifies your app can be used with a screen reader.

If you have followed the guidelines for accessibility, you can submit your app to the
Windows Store as being accessible, which helps users with disabilities find your app more
easily. Of course, Microsoft checks to see whether your app is accessible before allowing it.

MORE INFO  MAKING YOUR APP ACCESSIBLE

To learn more about accessibility in Windows Store apps using HTML and JavaScript, see
http://msdn.microsoft.com/en-us/library/windows/apps/hh452681.aspx. This page gives
you links to examples of using ARIAs, checklists, and tools that you need to make your app
accessible.

Deciding when custom controls are needed
When building your app, you’ll use standard HTML elements and prebuild Windows Library
for JavaScript (WinJS) controls created by Microsoft. With only these controls, you can build
most apps without many problems. They can be styled with CSS, and you can often attach
JavaScript to extend the behavior.

Sometimes you might need a custom control. Perhaps you want a calendar, some graph
controls, or something else that’s completely specific to your app.

First, see whether someone has already built your custom control. Companies such
as Telerik create control suites for all types of applications. A good starting point is
http://services.windowsstore.com/. You can find custom controls in the Controls & Frameworks
section.

A basic reusable piece of code can be created by using HtmlControl or PageControl.
More-complex controls can be implemented the same way as WinJS controls.

EXAM TIP

The exam requirements for Exam 70-481 don’t state that you should be able to create a
custom control. Exam 70-482 (Advanced Windows Store App Development Using HTML5
and JavaScript) requires you to create custom controls.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/hh452681.aspx
http://services.windowsstore.com/

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 13

Using the Hub App template
You have learned about composing your UI and choosing a template. The exam specifically
focuses on the Hub App template, so make sure that you understand how it works.

The Hub App template is an implementation of the hierarchical navigation pattern. The
Start screen is shown in Figure 1-7.

The template has a horizontal layout that shows the sections you defined. Within those
sections, you can show individual items. A user can select sections marked with > to view all
the items in that section. When you select an individual item, a details page displays.

Figure 1-8 shows the initial files created by the template. The most interesting part is the
Pages folder, which contains the Hub, Item, and Section pages. The data for Section and Item
pages is loaded from the static data.js file in the js folder.

FIGURE 1-7  Hub App template Start screen

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	14	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-8  Files created by the Hub App template

Adapting the template is easy. Get some meaningful data in for your app, which can be
static test data that you put in the data.js file or that is asynchronously loaded by the app
from an external data source.

Adding your own styling and behavior is just as important, of course. Using the Hub App
template as a foundation for your app steers you in the right direction for an attractive app!

MORE INFO  CHANGING THE HUB APP TEMPLATE

Microsoft published a complete example that shows you how to change the Hub
App template to load data asynchronously. This is a good way to get started with
the template! You can find it here: http://code.msdn.microsoft.com/windowsapps/
Hub-template-sample-with-4b70002d.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Hub-template-sample-with-4b70002d
http://code.msdn.microsoft.com/windowsapps/Hub-template-sample-with-4b70002d

ptg14200515

	 Objective 1.1: Design the UI layout and structure	 CHAPTER 1	 15

Thought experiment 
Designing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are implementing an app for a popular restaurant, and the owners want users
to be able to place orders through the app. The app should keep track of the users’
preferences and make special offers based on their purchase history.

1.	 Formulate a “great at” statement for your app.

2.	 Decide which template to use as the basis for your app.

3.	 Decide whether your app should be accessible.

Objective summary
■■ When designing your app, make sure to follow the Microsoft design principles: pride in

craftsmanship, fast and fluid, authentically digital, do more with less, and win as one.

■■ Make sure that you have a “My app is great at” statement to focus your app on one
single user scenario and implement it fully.

■■ Visual Studio offers project templates that you can use as a starting point for your app:
the Blank App, Hub App, Navigation App, Split App, and Grid App templates.

■■ You can easily reuse HTML, CSS, and JavaScript throughout your app to create a
consistent look and feel and to ensure maintainability.

■■ Accessibility is important for creating an app that can be used by users with disabilities.

■■ Custom controls that you create can be used to reuse HTML, JavaScript, and CSS.

■■ The Hub App template is a new template in Windows 8.1 that you can use to create
attractive apps that use a mixed mode of showing content to the user.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	16	 CHAPTER 1	 Design Windows Store apps

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are developing the ToDo app in collaboration with designers who are new at
Windows Store development. They encourage you to use animations in your app. What
should you do?

A.	 Explain that animations are of the past and are distractions that Windows Store
apps should avoid.

B.	 Agree with them and let them describe a list of animations that they want to use.

C.	 Refer them to the documentation and show them the list of animations used in
Windows Store apps.

D.	 Meet with the designers and create custom animations that are useful for your
application.

2.	 Why is the “great at” statement so important for an app?

A.	 A great at statement isn't important; apps are not allowed to become popular
because the platform doesn't support it.

B.	 A great at statement isn't important because apps are only allowed to have limited
functionality.

C.	 Without a “great at” statement, you can’t follow the Microsoft design principles.

D.	 It creates a vision that you can use to guide the development of your app and
make sure your app truly excels in your supported user goal.

3.	 Which of the following Microsoft design principles are important when designing your
app? (Choose all that apply.)

A.	 Pride in craftsmanship

B.	 Integrate with the cloud

C.	 Fast and fluid

D.	 Authentically digital

E.	 Do more with less

F.	 Win as one

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 17

Objective 1.2: Design for separation of concerns

Software development is still a relatively young profession. Although other disciplines have
established well-defined and accepted rules for their craft, the rules of software development
are still evolving.

This objective discusses the principles that the software industry has established in the last
couple of decades. These principles revolve around building maintainable software that can
be easily understood and extended. You will learn how to use layers to build your application
and how Windows Metadata (WinMD) Components fit in the picture.

This objective covers how to:
■■ Plan the logical layers of your solution to meet application requirements

■■ Design loosely coupled layers

■■ Incorporate WinMD Components

Planning the logical layers of your solution to meet
application requirements
When doing some handiwork (or watching someone else do it) you probably use a variety
of tools. Some tools, like a multi tool, can be used for a multiple scenarios. However, you can
imagine scenarios where some parts of a multi tool become obsolete or broken. Changes to
one element of your tool will affect other parts. Having dedicated tools with a specific goal
often use fuller and requires less maintenance.

Maintenance and having a specific goal is also important for software design. But when
building software, it’s a lot harder to recognize and avoid mistakes in these types of designs.

Separation of concerns (SoC) entails splitting a computer program into logical sections so
that each section addresses a specific concern. SoC is important for creating maintainable
applications that can be easily tested.

Typical examples of SoC are HTML, JavaScript, and CSS. Each performs a unique role in
creating a webpage or app. HTML is the semantic structure of your page, CSS is the styling,
and JavaScript adds client-side functionality.

You can mix these three concerns. For example, although you can add styling directly on
your HTML elements, these designs are unnecessarily complex, hard to maintain, and difficult
to extend.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	18	 CHAPTER 1	 Design Windows Store apps

How does SoC apply to your app? A typical app has to do multiple things: fetch data from
somewhere, extract the necessary fields from it, and maybe perform some other validations
on it before showing it on the screen. These tasks should not be plunged into one single
monolithic object that spans your whole app. Instead, you should divide those tasks into
separate areas and make them work together.

This process is called layering, and an application can consist of several logical layers. An
application typically includes a UI layer, service layer, business layer, and data layer.

The layers have specific tasks. The business layer doesn’t have to know how to fetch data;
that is the responsibility of the data layer. The data layer doesn’t know how the data is dis-
played on the screen; that is the work of the UI layer.

A typical diagram of this architecture is shown in Figure 1-9.

UI

Business

Data

FIGURE 1-9  Diagram showing layering architecture

The diagram shows three typical layers stacked on top of each other. All layers also must
address security and logging.

Before you start coding your app, you should have a reasonable idea of the different layers
that you need in your application.

When you create a new app from one of the templates (the Hub App template, for example),
you see that data.js is responsible for fetching data. In this way, you centralize all knowledge
about data access to one location. Other parts of your app can call into the data object and use
it without knowing anything about the specifics of your data storage mechanism.

Logical layers of an application differ from tiers. Maybe you have heard the term N-tiered
application. A tier is a layer (or a couple of layers) that is physically separated from other
layers. It might be a web service running somewhere in the cloud on Microsoft Azure that
contains a piece of functionality from your app or from a database that stores the data for
your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 19

Logical layers can be placed on separate tiers, but it’s not a requirement to do so to
achieve a well-designed app.

Designing loosely coupled layers
JavaScript as a language has its own particular challenges for designing large-scale applications.
Languages such as C++ or C# implement a paradigm called object-oriented programming, which
enables you to create small classes that are targeted at doing one single task. You can configure
scope for objects, group them, and build your application this way.

JavaScript is a powerful language, but it wasn’t designed for building large applications.
Ideas from object-oriented languages such as classes and modules are not built in to the
JavaScript language.

Of course, you can just jump in and start developing your app without thinking too much
about layering. However, as your app starts to grow, maintainability and the overall quality of
your app will be negatively affected.

Avoiding global state
In JavaScript, everything you create is globally accessible by default, so every variable you
declare can be modified anywhere in your code. Naming conflicts can occur when you
declare the same variable twice, which can lead to unforeseen problems when a variable is
modified somewhere in the application without an easy way to track the changes.

These conflicts don’t occur for variables and functions declared inside a function. JavaScript
limits the scope of those objects to the scope of the function. This limitation enables you to
implement the concept of private (which you can find in languages such as C#) in JavaScript.

To avoid global state and create private data, the default JavaScript files created by the
Visual Studio templates wrap their content like this:

(function () {
 ...
})();

What you see here is an anonymous, self-invoking function. The function is declared with-
out a name, and it is immediately executed at the end of its declaration. This function allows
you to scope all the items inside the function.

You don’t want to keep all items private; some functions or variables should be exposed.
To help you, WinJS uses the concept of namespaces.

By using the WinJS.Namespace.define method, you can set a name for your namespace
and configure which items are accessible:

var namespacePublicMembers = { clickEventHandler: button1Click };
 WinJS.Namespace.define("startPage", namespacePublicMembers);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	20	 CHAPTER 1	 Design Windows Store apps

In this example, you define a namespace called startPage and expose a variable named
clickEventHandler. This event handler points to the button1Click function defined inside your
anonymous method.

Instead of having to use only plain functions and exposing them through namespaces, you
can use WinJS to create classes. By using the WinJS.Class.define method, you can create a new
class that has both behavior and data.

You can use the following plain JavaScript code to create a class-like object:

function Robot(name) {
 this.name = name;
}

Robot.prototype.modelName = '4500';
Robot.harmsHumans = false;

You create a class named Robot that expects a name on creation. It also has a modelName
property that’s unique for each instance. The harmsHumans property is static, meaning that it
is shared across all instances.

Instead of using this syntax, WinJS exposes a helper method called WinJS.Class.define. You
can use the following code to create your Robot class:

var Robot = WinJS.Class.define(
 // The constructor function.
 function(name) {
 this.name = name;
 },
 // The set of instance members.
 { modelName: "" },
 // The set of static members.
 { harmsHumans: false });

var myRobot = new Robot("Mickey");

myRobot.modelName = "4500";
Robot.harmsHumans = false;

WinJS also gives you a helper method to implement inheritance, which is a concept of
object-oriented development in which you define base classes and derived classes. You can
create a hierarchy of classes that all share behavior and data, but can also add additional
elements to their base class.

A classic example is found with animals. If you have a base class Animal, you can add
elements to it such as IsAlive or Age. Now you can derive specific subtypes such as Mammal
or Bird. They can add their own data such as IsWarmBlooded or Fly.

There are problems, however. Can all birds fly? How should you express that not all types
of birds can fly? You can start adding checks to make sure you don’t execute a method that’s
not implemented on the current class, but going down this road where not all subclasses sup-

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 21

port the methods defined on a base class leads to code that’s unmaintainable. Discussing all the
fine-grained details of developing class hierarchies is outside the scope of this exam. If you start
building more-complex applications, it pays to be familiar with object-oriented design concepts.

MORE INFO  OBJECT-ORIENTED DESIGN

Lots of books, articles, tutorials, and other material exist on the topic of object-oriented
design. A good starting point is reading material produced by Robert Martin, who is
considered to be one of the founders of object-oriented design: http://www.objectmentor.
com/omSolutions/oops_what.html.

Using strict mode
JavaScript is usually very forgiving of the way you write your code. You can use a variable
without ever declaring it, write to a read-only property, extend objects that are marked as not
extensible, delete functions, or duplicate properties and other strange errors that won’t be
immediately obvious when they start producing errors in your code.

Strict mode is a feature in JavaScript that you must explicitly enable. Enabling it results in
better error-checking in your code to avoid the types of errors mentioned previously. You en-
able strict mode by adding the following line to your programs:

"use strict";

This line can be scoped to global scope (which applies to all code in your whole application,
even external code), or you can use it inside a function that scopes it to the function.

Using TypeScript
JavaScript needs some help to become suitable for building large applications. Microsoft also
noticed this lack, so it started developing TypeScript.

TypeScript is a superset of JavaScript that still compiles to plain JavaScript that can be used
to run your apps. At development time, it adds extra features such as typing, classes, modules,
generics, and inheritance.

These features significantly improve working with JavaScript. Look at the following
TypeScript code:

class Greeter {
 greeting: string;
 constructor(message: string) {
 this.greeting = message;
 }
 greet() {
 return "Hello, " + this.greeting;
 }
}
var greeter = new Greeter("world");

From the Library of Ida Schander

www.hellodigi.ir

http://www.objectmentor.com/omSolutions/oops_what.html
http://www.objectmentor.com/omSolutions/oops_what.html

ptg14200515

	22	 CHAPTER 1	 Design Windows Store apps

The class keyword, constructors, and property typing are elements that are added by
TypeScript, which allows the compiler to give you much better support. It finds errors, helps
you with IntelliSense, and works with other Visual Studio features that improve your workflow.

There is nothing that stops you from using TypeScript for building your Windows Store
apps. There are even TypeScript definition files for the Document Object Model (DOM) and
WinJS libraries. As a JavaScript developer, you should definitely consider using TypeScript.

MORE INFO  TYPESCRIPT

For more information on TypeScript, see the TypeScript website at http://www.typescript-
lang.org/. An open-source repository for type definitions can be found at https://github.
com/borisyankov/DefinitelyTyped. You can download definition files to start working with
WinJS libraries.

Incorporating WinMD Components
When working on your Windows Store apps with HTML, JavaScript, and CSS, you call in to
libraries defined in WinJS, which are built on the native C++ WinRT run time.

Calling in to a native dynamic-link library (DLL) from JavaScript is normally not supported.
Microsoft put a lot of effort into creating an infrastructure that supports the interoperability
of different languages to create apps for the Windows platform.

A regular C++ native component does not include metadata, which is necessary to create
the correct mapping between the native components and the other languages. To make this
work, Microsoft created a new file type named Windows Metadata (WinMD).

If you are running Windows 8, you can find these files in C:\Windows\System32\
WinMetadata. The format of these files is the same as used by the .NET Framework for the
Common Language Infrastructure (CLI).

WinMD files can contain both code and metadata. Those in your System32 directory
contain only metadata, however. This metadata is used by Visual Studio to provide IntelliSense
at design time. At run time, the metadata is used to signal that the implementation of all the
methods found there is supplied by the run time, which is why the files don’t have to contain
actual code; they make sure that the methods are mapped to the correct methods in WinRT.

When building JavaScript apps, you have the choice to implement part of your application
in another language, such as C# or C++. Those projects can contain code that’s hard to
implement in JavaScript while still integrating nicely with your app.

If you want to create your own WinMD assembly, create a WinRT Component in Visual
Studio. The WinRT Component compiles down to a .winmd file that you can then use.

From the Library of Ida Schander

www.hellodigi.ir

http://www.typescriptlang.org/
http://www.typescriptlang.org/
https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped

ptg14200515

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 23

The following example shows some code that you can have inside your WinRT project:

namespace MyComponent
{
 public sealed class MyClass
 {
 public int DoSomething(int x)
 {
 return x + 42;
 }

 }
}

If you add a reference to your WinRT Component project in your app project, you can use
the MyClass class from the C# project in the following way from your JavaScript code:

 var myClass = new MyComponent.MyClass();
 var value = myClass.doSomething(42);

This code calls in to the C# code and executes a method. The function name starts with a
lowercase “d” in the JavaScript code. C# has the convention that element names should start
with an uppercase character; JavaScript follows a convention in which each element starts
with a lowercase character. This is why a method starting with an uppercase character in C#
starts with a lowercase letter in JavaScript.

EXAM TIP

Remember that you can mix JavaScript and C# or C++ code when building your app.

There are a couple of restrictions when you use WinRT Components:

■■ The fields, parameters, and return values of all the public types and members in your
component must be WinRT types.

■■ Public classes and interfaces can contain methods, properties, and events. A public
class or interface can’t do the following, however:

■■ Be generic

■■ Implement an interface that is not a WinRT interface

■■ Derive from types that are not inside the WinRT

■■ Public classes must be sealed.

■■ Public structures can have only public fields as members, which must be value types or
strings.

■■ All public types must have a root namespace that matches the assembly name and
does not start with Windows.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	24	 CHAPTER 1	 Design Windows Store apps

MORE INFO  WINMD COMPONENTS

For more info on creating WinMD Components, see the official documentation at
http://msdn.microsoft.com/library/windows/apps/hh779077.aspx.

Thought experiment 
Designing a large application

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your company is starting a new app project, and you are asked to sketch the initial
architecture. You have read about the advantages of using a layered application,
but a colleague argues against that architecture.

How should you react to his following statements?

1.	 A layered application complicates development.

2.	 Layering slows down development because developers have to wait for a layer to
be completed before they can continue.

3.	 JavaScript can’t be used to build a layered application.

Objective summary
■■ Dividing your application into distinct layers helps you create maintainable applications

that are easier to extend.

■■ Typical layers are the UI, business, and data layers.

■■ When working with JavaScript, pay attention to how you structure your code to avoid
some of the inherent JavaScript problems such as global state. You can use self-invoking
anonymous functions to apply some scoping to your code.

■■ TypeScript is a superset of JavaScript that helps you write application-scale JavaScript.

■■ WinMD Components can be written in other languages such as C++ and C#, and can
then be used from JavaScript Windows Store apps.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/library/windows/apps/hh779077.aspx

ptg14200515

	 Objective 1.2: Design for separation of concerns	 CHAPTER 1	 25

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are designing an app that connects to an external web service to load data for the
app. This data is then processed and displayed on the screen. From which layer should
the web service be called?

A.	 Data layer

B.	 Service layer

C.	 Business layer

D.	 UI layer

2.	 Should you avoid global state in JavaScript applications?

A.	 No. Global state is easy because you can share data between different parts of
your app.

B.	 No. It’s not possible to avoid global state in JavaScript.

C.	 Yes. Avoiding global state keeps your code free from unwanted side effects and
aids maintainability.

D.	 Yes. Global state is not possible in Windows Store apps.

3.	 Which elements can you use to build a layered application? (Choose all that apply.)

A.	 WinJS.Class.define

B.	 WinJS.Namespace.define

C.	 WinMD Components

D.	 Web services

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	26	 CHAPTER 1	 Design Windows Store apps

Objective 1.3: Design and implement Process Lifetime
Management (PLM)

When working with regular desktop applications, you are used to launching and closing them
yourself. When you switch to another application, other running applications stay in memory,
and you can easily switch back to them. When your computer starts running slowly, you start
closing applications and maybe even open Task Manager to check what’s happening.

Windows Store apps behave differently. Microsoft doesn’t want users to bother with
actively closing applications, so it created Process Lifetime Management (PLM) for Windows
Store apps that manages the lifetime of an app without any user intervention.

The life cycle of your app is the foundation on which you build. Make sure that you get
it right. You can have a beautiful app, but when it doesn’t behave as users expect, you will
lose them.

This objective covers how to:
■■ Choose a state management strategy

■■ Handle the suspend event (oncheckpoint)

■■ Prepare for app termination

■■ Handle the onactivated event

■■ Check the ActivationKind and previous state

Choosing a state management strategy
Windows Store apps can be launched and terminated in a couple of different ways. Un-
derstanding the application life cycle and anticipating it in your app lead to a better user
experience in which your app naturally behaves as a user would expect.

Apps start their lives in the not running state. You launch the app by clicking the tile on the
Start screen; your app then displays its splash screen, loads data, and begins running.

That’s the easy track. In reality, however, a lot more can happen. Figure 1-10 shows the
typical life cycle of an app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 27

Low Resources

Resuming

Activated Suspending
Running

Not running

Terminated
Suspended

FIGURE 1-10  The life cycle of an app

When your app is in the suspended state, it consumes less memory than it consumes in the
running state and it doesn’t get scheduled for CPU time, which saves power to enable longer
battery times on tablets and laptops. Although Windows tries to keep as many apps as pos-
sible in the suspended state, when the operating system is running low on resources (typically
memory), Windows starts terminating apps that haven’t been used for some time.

Choosing your state management strategy comes down to understanding the life cycle
of your app and responding appropriately. What does this mean? When users (game or blog
readers, for example) leave your app and then return to it, they expect to come back at the
same point with the same settings as when they left.

In the meantime, maybe Windows suspended your app or even terminated it. However,
the users don’t know the situation and want to continue working with your app. So you have
to respond to the events such as suspension or resumption and make sure that you save the
correct state and restore it whenever necessary so users don’t notice anything.

You can take this process one step farther. Because apps can be installed on multiple
devices, you should accommodate a user switching between those devices when using your
app. You need to save all the details of the users’ actions to an external source and reload
them whenever an app launches on a device. Windows helps you by automatically roaming
data to all user devices so that you can share state across devices and provide a seamless
experience.

Handling the onactivated event
Your app can be activated in a variety of ways. The most obvious one, of course, is a user
directly launching it by clicking the app tile on the Start screen. There are also many more
ways to activate apps. If you use toast notifications (which are discussed in more detail in

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	28	 CHAPTER 1	 Design Windows Store apps

Chapter 4, “Program user interaction”), a user can launch your app by clicking a notification.
If you are implementing contracts (see Chapter 2, “Develop Windows Store apps,” for more
details), a user can launch your app with the Search or Share charms, by file type, or with URI
associations.

These activation events require a different strategy. Fortunately, the Visual Studio
templates give you some boilerplate code that you can use to react to those events. After you
create a new app from the Blank App template, you see the following code in the default.js
file:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 // TODO: This application has been reactivated from suspension.
 // Restore application state here.
 }
 args.setPromise(WinJS.UI.processAll());
 }
};

The code shows how to subscribe to the onactivated event of your WinJS application. Inside
the event handler, you can see whether your app is newly launched or you are resuming from a
suspended state.

This state affects the steps you need to take. If the app is newly launched, initialize the app
and show its home screen to users. If users return to your app, make sure that they return to
the exact same point.

If the UI content has changed since the app was suspended, you need to load the new
data and update your UI accordingly. Your app’s activated event is running while Windows
shows the splash screen, which is why you should make sure that your initialization is as fast
as possible.

Your app can also be associated with a certain file type or a URI. Associating your app with
a file type is configured in the application manifest.

Figure 1-11 shows the Manifest Designer with the File Type Association configured for files
that have an extension of .my.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 29

FIGURE 1-11  The Manifest Designer dialog box showing the File Type Associations

After configuring these settings, launch the app from Visual Studio to register your new
file type with Windows. You can then create a new text file and change the extension to .my.
Double-click the new file to launch your app.

During the activated event of your app, you can see whether the app is launched from an
associated file:

if (args.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.file) {
 var file = args.detail.files[0];
 Windows.Storage.FileIO.readTextAsync(file).then(function (text) {
 });

 // The number of files received is eventArgs.detail.files.size
 // The first file is eventArgs.detail.files[0].name
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	30	 CHAPTER 1	 Design Windows Store apps

This code checks to see whether ActivationKind is of type file. If so, the arguments passed
to your activated event handler contain a details.files property that contains information
about the file or files that a user selected when launching your app. In this example, you are
dealing with a plain text file, so you can pass it to Windows.Storage.FileIO.readTextAsync and
read the text content of the file.

Your app can also be activated from a URI. One example is the Windows Store. By
navigating to a URI of the form ms-windows-store:PDP?PFN=, you launch the Windows
Store and navigate to the specified Package Family Name. The ms-windows-store part of
the URI is called the protocol.

You can add your own protocols to the app to associate it with specific URIs. Figure 1-12
shows the Manifest Designer with a newly added protocol of mypro.

FIGURE 1-12  The Manifest designer dialog box showing the Protocol declaration

Of course, it’s important to configure a logo and descriptive display name, after which you
can launch the app to register your protocol with Windows. Opening Windows Explorer and
navigating to mypro://content launches your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 31

Just as with File Type Associations, you can see whether the app is launched from a URI in
your activated event:

if (args.detail.kind === activation.ActivationKind.protocol) {
 var uri = args.detail.uri;
 var rawUri = uri.rawUri;
}

The args.detail.uri property contains information about the URI that launched your app. It
is up to you to parse the URI and take appropriate action.

Remember that both the files and URIs that launch your app can be harmful. You should
never trust the input a user gives you and always use security measures when dealing with
external input.

Handling the suspend event (oncheckpoint)
When a user switches to another app, Windows suspends your app after a couple of seconds,
which enables the user to immediately switch back to your app without it having to do
any work.

Whenever Windows notices that the user isn’t coming back right away, your app is
suspended. Windows then raises the checkpoint event. In this event, you can save any user
state that you want to restore when the app would be resumed from termination.

The syntax of subscribing to the checkpoint event is as follows:

 app.oncheckpoint = function (args) {
 };

Inside the function, you can save any state or other data that you want to restore when the
app moves from terminated to running in the WinJS.Application.sessionState object. The con-
tent of this object is serialized to your local appdata folder. When the app is activated again
from the terminated state, the sessionState object is rehydrated from your local appdata
folder. You can then use the data inside the sessionState object to reinitialize your app.

This process can be as easy, as the following example shows:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 var value = WinJS.Application.sessionState.value;
 }
 args.setPromise(WinJS.UI.processAll());
 }
};

app.oncheckpoint = function (args) {
 WinJS.Application.sessionState.value = 42;
};

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	32	 CHAPTER 1	 Design Windows Store apps

When your app goes into suspension, a value of 42 is saved inside your sessionState object.
When the app launches from a terminated state, the value is retrieved from the object.

You can also use the WinJS.Application object directly to write and read state from the
local, temp, or roaming folders. Writing directly to those folders can be useful if your data
can’t be directly serialized to a string or if you want specific control over the location of
your data.

When using any asynchronous actions inside a checkpoint event, you have to signal it to
the operating system. Windows assumes that you saved all your state when the checkpoint
events returns, so it doesn’t give your app any CPU time. To avoid losing CPU time with
asynchronous operations, you can use the args.setPromise() method, as in the activated
event.

Remember that you never get more than five seconds. If you don’t return from the
checkpoint method or finish all your asynchronous operations within five seconds, your app is
terminated.

Preparing for app termination
When your app goes from running to suspended, you receive a notification from the
Windows operating system. But when your app goes from suspended to terminated, your app
doesn’t receive a notification. This is by design and is actually quite logical.

Your app is terminated because the operating system is low on resources. Activating your
app only to prepare itself for termination could become troublesome because the sole act of
activating the app uses resources. And when your app tries to save some state to disk or call
web services, even more memory is used.

To save resources, your app doesn’t get called when your app terminates. Instead, you
should do all your work in the checkpoint event discussed in the previous section. Then when-
ever your app goes from suspended to terminated, you have saved all the required state.

EXAM TIP

Remember that there is no separate event for termination. You should save all state in the
checkpoint event and make sure that your app can completely recover from termination.

Using background tasks
But what if you want to keep running when the user closes your app? You can do so by using
background tasks. You can request Windows to grant permission to execute code in the
background by using the application Manifest Designer.

Figure 1-13 shows the application Manifest Designer with a BackgroundTask extension.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 33

The background task is configured to trigger on a system event and on a timer. When the
Background Task is triggered, it launches the JavaScript file js\backgroundtask.js. Your back-
ground task consists of two parts: the actual task and the code to register your task.

FIGURE 1-13  The Manifest Designer dialog box showing the Background Tasks declaration

Begin with registration. The following method lets you register a background task:

function registerTask(taskEntryPoint, taskName, trigger, condition) {

 var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();

 builder.name = taskName;
 builder.taskEntryPoint = taskEntryPoint;
 builder.setTrigger(trigger);

 if (condition !== null) {
 builder.addCondition(condition);
 builder.cancelOnConditionLoss = true;
 }

 var task = builder.register();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	34	 CHAPTER 1	 Design Windows Store apps

 task.addEventListener("progress", new BackgroundTaskSample.progressHandler(task).
onProgress);
 task.addEventListener("completed", new BackgroundTaskSample.completeHandler(task).
onCompleted)

 var settings = Windows.Storage.ApplicationData.current.localSettings;
 settings.values.remove(taskName);
};

This method takes a parameter that points to your JavaScript file that contains the actual
task, a name, the trigger you want to use, and a condition that determines whether the task
should run. You can call the method like this:

registerTask("js\\backgroundtask.js",
 "SampleJavaScriptBackgroundTask",
 new Windows.ApplicationModel.Background.SystemTrigger(
 Windows.ApplicationModel.Background.
SystemTriggerType.timeZoneChange, false),
 null);

This code registers a background task that runs whenever users change their time zone
without any other conditions.

Triggers can be any of the following:

■■ SmsReceived  The background task is triggered when a new Short Message Service
(SMS) message is received by an installed mobile broadband device.

■■ UserPresent  The background task is triggered when the user becomes present.

■■ UserAway  The background task is triggered when the user becomes absent.

■■ NetworkStateChange  The background task is triggered when a network change
occurs, such as a change in cost or connectivity.

■■ ControlChannelReset  The background task is triggered when a control channel is
reset.

■■ InternetAvailable  The background task is triggered when the Internet becomes
available.

■■ SessionConnected  The background task is triggered when the session is connected.

■■ ServicingComplete  The background task is triggered when the system has finished
updating an app.

■■ LockScreenApplicationAdded  The background task is triggered when a tile is added
to the lock screen.

■■ LockScreenApplicationRemoved  The background task is triggered when a tile is
removed from the lock screen.

■■ TimeZoneChange  The background task is triggered when the time zone changes on
the device (for example, when the system adjusts the clock for daylight savings time
[DST]).

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 35

■■ OnlineIdConnectedStateChange  The background task is triggered when the
Microsoft account connected to the account changes.

■■ BackgroundWorkCostChange  The background task is triggered when the cost of
background work changes.

Remember that for triggers such as user presence and others, your app must also be
visible on the lock screen.

If you are not interested in every trigger change, you can add additional conditions to your
background task:

■■ UserPresent  Specifies that the background task can run only when the user is present.
If a background task with the UserPresent condition is triggered and the user is away,
the task doesn’t run until the user is present.

■■ UserNotPresent  Specifies that the background task can run only when the user is not
present. If a background task with the UserNotPresent condition is triggered and the
user is present, the task doesn’t run until the user becomes inactive.

■■ InternetAvailable  Specifies that the background task can run only when the Internet
is available. If a background task with the InternetAvailable condition is triggered and
the Internet is not available, the task doesn’t run until the Internet is available again.

■■ InternetNotAvailable  Specifies that the background task can run only when the
Internet is not available. If a background task with the InternetNotAvailable condition
is triggered, and the Internet is available, the task doesn’t run until the Internet is
unavailable.

■■ SessionConnected  Specifies that the background task can run only when the user’s
session is connected. If a background task with the SessionConnected condition is
triggered and the user session is not logged on, the task runs when the user logs on.

■■ SessionDisconnected  Specifies that the background task can run only when the
user’s session is disconnected. If a background task with the SessionDisconnected
condition is triggered and the user is logged on, the task runs when the user logs off.

■■ FreeNetworkAvailable  Specifies that the background task can run only when a free
(nonmetered) network connection is available.

■■ BackgroundWorkCostNotHigh  Specifies that the background task can run only
when the cost to do background work is low.

After configuring the triggers and conditions, the only thing you need is the actual task. In
the previous example, you pointed to a specific JavaScript file: js/backgroundtask.js.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	36	 CHAPTER 1	 Design Windows Store apps

A simple background task can look like this:

(function () {
 "use strict";

 var cancel = false,
 progress = 0,
 backgroundTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current,
 cancelReason = "";

 function onCanceled(cancelEventArg) {
 cancel = true;
 cancelReason = cancelEventArg.type;
 }
 backgroundTaskInstance.addEventListener("canceled", onCanceled);

 function onTimer() {
 var key = null,
 settings = Windows.Storage.ApplicationData.current.localSettings,
 value = null;

 if ((!cancel) && (progress < 100)) {
 setTimeout(onTimer, 1000);
 progress += 10;
 backgroundTaskInstance.progress = progress;
 } else {
 backgroundTaskInstance.succeeded = (progress === 100);
 value = backgroundTaskInstance.succeeded ? "Completed" : "Canceled with
reason: " + cancelReason;

 key = backgroundTaskInstance.task.name;
 settings.values[key] = value;

 close();
 }
 }
 setTimeout(onTimer, 1000);
})();

This code is a self-enclosing function that contains the task, which consists of the onTimer
method that does the actual work. It also has a cancel event handler to see whether the task
should be canceled.

The Windows.UI.WebUI.WebUIBackgroundTaskInstance.current property gives you access
to the background task framework of Windows. You can check for cancellation and signal
success or failure by using this object.

The call to close at the end of your task is required to signal that your task is done.

Background tasks are not meant to be used for long-running tasks. They should be used
to respond to changes in the environment and run short tasks on a timer.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 37

Checking the ActivationKind and previous state
For the exam, make sure that you understand the reasoning behind the ActivationKind enu-
meration and the value for the previous state of your app.

When you look at the activated event, you see both the kind and the previous state used:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 } else {
 }
 args.setPromise(WinJS.UI.processAll());
 }
};

ActivationKind can have a lot of different values:

■■ Launch  The user launched the app or tapped a content tile.

■■ Search  The user wants to search with the app.

■■ ShareTarget  The app is activated as a target for share operations.

■■ File  An app launched a file whose file type is registered to be handled by this app.

■■ Protocol  An app launched a URL whose protocol is registered to be handled by
this app.

■■ FileOpenPicker  The user wants to pick files provided by the app.

■■ FileSavePicker  The user wants to save a file and selects the app as the location.

■■ CachedFileUpdater  The user wants to save a file for which the app provides content
management.

■■ ContactPicker  The user wants to pick contacts.

■■ Device  The app handles AutoPlay.

■■ PrintTaskSettings  The app handles print tasks.

■■ CameraSettings  The app captures photos or video from an attached camera.

■■ RestrictedLaunch  The user launched the restricted app.

■■ AppointmentsProvider  The user wants to manage appointments provided by the
app.

■■ Contact  The user wants to handle calls or messages for the phone number of a
contact provided by the app.

■■ LockScreenCall  The app launches a call from the lock screen. If the user wants to
accept the call, the app displays its call UI directly on the lock screen without requiring
the user to unlock. A lock screen call is a special type of launch activation.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	38	 CHAPTER 1	 Design Windows Store apps

Most values come from integrating with the operating system. When you start imple-
menting contracts, your app can be activated in a lot of different scenarios that you need to
handle. Chapter 2 provides more detail on implementing contracts.

If the user explicitly closed your app, you can assume that there was some kind of error
that the user wanted to correct. Restoring the state to the point where the user closed your
app doesn’t help. Instead, you should do a clean initialize of your app.

You can use the args.detail.previousExecutionState property to check the previous state of
the app. It can be one of the following values:

■■ NotRunning  The app is not running.

■■ Running  The app is running.

■■ Suspended  The app is suspended.

■■ Terminated  The app was terminated after being suspended.

■■ ClosedByUser  The app was closed by the user.

A previous state of NotRunning, which is the most common one, occurs whenever a user
launches your app for the first time. It can happen after installing the app, but also after a
computer reboot or when switching accounts.

A previous state of Running means that your app is already running, but one of its contracts
or extensions is activated.

Suspended happens whenever Windows kept your app in memory but didn’t assign any
CPU to it. When this happens, you might want to update any on-screen content to make sure
everything is up to date.

Terminated is the state you learned about in the previous sections. Whenever Windows
determines that your app should be removed from memory, it terminates your app. When
resuming from a terminated state, you need to reload all state, which can be done from the ses-
sionState object or from an external web service (when you want to make sure that everything
is up to date).

ClosedByUser has a different behavior. Whenever the user forcefully closes your app
(through Alt+F4 or the close gesture) and returns within 10 seconds, you do a clean startup
because Windows assumes that there was an error, and the user restarts the app. When the
user takes longer to return, you need to restore state so the user can continue.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Design and implement Process Lifetime Management (PLM)	 CHAPTER 1	 39

Thought experiment 
Strengthening your foundation

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You have developed an app sharing task lists with other users. However, your first
version is running, and users are reporting problems. What can you do to solve the
following problems?

1.	 Users want to create a task list on their main PC and then view it on their phone.
However, the changes never sync between devices, making it impossible.

2.	 After coming back to their app, changes are lost, and they have to start over.

3.	 Users report that after launching their app, they sometimes see data that’s out of
date.

Objective summary
■■ Windows Store apps go through a life cycle in which an app can be not running,

running, suspended, or terminated.

■■ The activated event is important for initializing your app for users.

■■ The checkpoint event allows you to save any user state and data before your app gets
suspended and possibly terminated.

■■ When your app gets activated, it is important to know the reason why your app is
activated and its previous state.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are creating a game as a Windows Store app that features real-time action, and
you are thinking about state management. Which of the following statements is true
about state management? (Choose all that apply.)

A.	 For a game, you don’t have to consider state management.

B.	 You need to implement the activated event.

C.	 You need to implement the checkpoint event.

D.	 You need to implement the terminated event.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	40	 CHAPTER 1	 Design Windows Store apps

2.	 A user closes your Windows 8.1 app by pressing Alt+F4. What should you do when the
user returns the following day?

A.	 Do a fresh start of the app because the user forcefully closed the app.

B.	 Reload all user state and continue as if the user never left.

C.	 Show a dialog box that asks whether the user wants to continue or start over.

D.	 Restart the application behind the scenes to force a clean start.

3.	 You want to restore any saved state when the app resumes. Which event do you use?

A.	 Ready

B.	 Loaded

C.	 Checkpoint

D.	 Activated

Objective 1.4: Plan for an application deployment

No matter how good your app is, users won’t use it if you don’t deploy it. Planning your
deployment is an important part of developing your application. Microsoft decided that not
all apps are allowed in to the Windows Store. Knowing these requirements and understanding
how to configure your app for deployment is the topic of this objective.

You also learn how to deploy an app for your enterprise when you don’t use the public
Windows Store.

This objective covers how to:
■■ Plan a deployment based on Windows 8 application certification requirements

■■ Prepare an app manifest (capabilities and declarations)

■■ Sign an app

■■ Plan the requirements for an enterprise deployment

Planning a deployment based on Windows 8 application
certification requirements
To publish your app to the Windows Store, the first step is to acquire a developer account.
The Express editions of Visual Studio require you to purchase such an account. MSDN
subscribers already have an account that they can use for free.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 41

After you have an account, register your new app with the Windows Store to reserve the
name that you want to use. This name is then reserved for you for one year. After one year,
the name will be free for other developers to use.

During this process, you also have to configure the way your app will be sold. Is it free?
Are you using a trial? Or maybe in-app purchases? Answering these questions forces you to
think about those steps before you start your app. You can plan your app around the business
model that you want to support and make sure that your app fully supports it.

When you finish your app, you can submit it to the Windows Store. If you haven’t done so,
you can now supply the information on your app name, selling details, and services such as
in-app purchases or trial support.

You also need a rating for your app, which can be an age rating (such as 3+ or 16+) or a
rating board (such as ESRB or PEGI). Think carefully about this rating; when in doubt, choose
the strictest one. Especially if your app uses some public Internet service (such as Twitter), you
need to use a rating of at least 12+ or even 16+ because you never know what shows up on
users’ screens.

If your app uses some form of cryptography, you need to mention it. Other very important
parts are the description, feature list, and screen shots of your app. Make sure to consider
these options carefully. This information will show up in the Windows Store and it should
convince a user to install your app.

Another important step is to ensure that the tester can fully use your app. If your app
requires a web service to be available, make sure that the web service is running when your
app goes through submission. If the tester needs to log on to your app, supply a demo
account that gives the tester access to all features of your app.

Creating your app package
The most important part of your submission is the actual application data. Your app is
submitted in what’s called an app package.

The easiest way to create an app package is with Visual Studio. If you are running the
Express edition of Visual Studio, you have a Store menu with an option to Create App
Packages. If you run Visual Studio Professional or higher, you can find the Store menu as a
submenu of Project.

The Create App Package allows you to build a package and upload it to the Windows Store
or to create it locally.

The package that gets created is an .appx file, which is a zip file. You can open it in Windows
Explorer and check out the files in it after changing the extension to .zip. The package contains
everything that’s required for your app, such as JavaScript, CSS, HTML, and images. It also con-
tains some metadata in the form of a manifest (which you will learn about in the next section), a
signature, and a block map.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	42	 CHAPTER 1	 Design Windows Store apps

The block map is a description of the data in your package, split into distinct blocks of
data. By splitting your package into separate parts, the Windows Store can download only
the parts that have changed when an update of your app is released. Downloading only the
updated parts saves users a lot of bandwidth, which is becoming more and more important
with mobile devices.

Certification requirements
After creating your package and submitting all the required information, you can submit your
app to the Windows Store. Your app then goes through a series of tests to check your app
thoroughly before it is allowed or disallowed from the Windows Store.

Microsoft released an official document (see the following More Info box) that outlines all
certification requirements for the Windows Store. This document is frequently updated, so
become familiar with it before publishing your app.

MORE INFO  APP CERTIFICATION REQUIREMENTS FOR THE WINDOWS STORE

The complete description of app certification requirements can be found at http://msdn.
microsoft.com/en-us/library/windows/apps/hh694083.aspx.

Some steps in this document are obvious. You shouldn’t submit an app that doesn’t work,
doesn’t add any value, or is not branded. You are not allowed to hack the system. Trying to
communicate with other apps or loading remote scripts is forbidden. Be careful with privacy-
related data by giving the user some consent options.

Windows App Certification Kit
The Windows App Certification Kit helps you test your app in an automated way similar to the
way Microsoft will test your app upon submission. The easiest way to run the Windows App
Certification Kit is to create your app package from Visual Studio. After the package is created,
Visual Studio asks you whether you want to start the validation process (see Figure 1-14).

MORE INFO  COMPLETE LIST OF TESTS

For a complete description of all the tests run by the Windows App Certification Kit and
how to troubleshoot failures, see http://msdn.microsoft.com/en-us/library/windows/apps/
jj657973.aspx.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh694083.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657973.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657973.aspx

ptg14200515

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 43

FIGURE 1-14  The Create App Packages dialog box

After starting the Windows App Certification Kit, some information is collected; then you
see the dialog box shown in Figure 1-15. The Windows App Certification Kit runs many tests
for you.

FIGURE 1-15  The Windows App Certification Kit dialog box

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	44	 CHAPTER 1	 Design Windows Store apps

Additional certification requirements
You shouldn’t depend solely on the results of the Windows App Certification Kit; you should
also perform extensive manual testing of your app.

For example, you should test your app on multiple platforms. Maybe your app works
great on your local PC, but that doesn’t mean it will work on a Microsoft Surface tablet or
other less-resource-intensive systems. In some countries/regions, Microsoft helps by having
special app development days during which you can come in and test your app on a series of
devices. Microsoft also advises you about any issues your app may have.

MORE INFO  TEST CASES

MSDN provides a list of possible test cases that you can run against your app at
http://msdn.microsoft.com/en-us/library/windows/apps/dn275879.aspx.

Preparing an app manifest (capabilities and declarations)
When you create a new Windows Store app, Visual Studio adds a file called
package.apxxmanifest to your project.

This file is called an application manifest. When you open the manifest, the Manifest
Designer loads (see Figure 1-16).

The Manifest Designer includes pages that you can use to configure your app:

■■ Application  Allows you to set some application-wide settings such as a start page
and supported rotations. You can also configure notifications and tile update settings.

■■ Visual Assets  Allows you to configure different resolutions for images that are shown
in the Windows Store. You can also configure tile images and your splash screen.

■■ Capabilities  Specifies the features or devices that your app can use on the user’s
system.

■■ Declarations  You configure how your app integrates with Windows and other apps.

■■ Content URIs  Your app can load web pages into an iframe. Those pages are normally
restricted and have limited access to the user’s system. Here you can specify URIs that
can access geolocation devices and the Clipboard, and can send script notifications to
your app.

■■ Packaging  Allows you to configure the display name of your package, version, and
publisher information.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/dn275879.aspx

ptg14200515

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 45

FIGURE 1-16  The Manifest Designer, showing the Application page

The exam requires you to understand all elements of the manifest, but it pays special
attention to the capabilities and declaration settings.

Why are those settings so important? They configure what your app is allowed to do on a
user’s system. Instead of allowing every integration by default, Windows Store apps need to
explicitly ask for permission. Users can see the list of required permissions when installing an
app from the Windows Store and can decide whether they trust your app enough to allow
those permissions.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	46	 CHAPTER 1	 Design Windows Store apps

For example, it would be strange if your RSS Reader app needed access to your webcam. It
is a lot more likely for a chat application that features video chat. You can ask permission for
the following capabilities:

■■ Enterprise Authentication  Typically not needed for an app; it allows your app to
connect to resources on an intranet that requires domain authentication.

■■ Internet (Client)  Requests Internet action over public networks. This option is enabled
by default and should be disabled if your app does not require the Internet.

■■ Internet (Client & Server)  Allows both inbound and outbound connections.

■■ Location  Requests access to the current location (from a GPS sensor or from network
information).

■■ Microphone  Requests access to the microphone’s audio feed.

■■ Music Library  Requests access to the music library to add, change, or delete files.

■■ Pictures Library  Requests access to the pictures library to add, change, or delete files.

■■ Private Network (Client & Server)  Requests access to inbound and outbound net-
work access for a user’s trusted places (such as home and work devices that are on the
same network).

■■ Proximity  Requests the capability to connect to other devices through Wi-Fi Direct or
near field proximity radio.

■■ Removable Storage  Requests access to removable storage devices. Allows you to
add, change, or delete file types that you have defined in the Declarations page.

■■ Shared User Certificates  Gives you access to application programming interfaces
(APIs) for requesting the user to authenticate through a security card, certificate, and
so on.

■■ Videos Library  Requests access to the videos library to add, change, or delete files.

■■ Webcam  Requests access to the webcam’s video feed so you can take snapshots or
movies.

Although you should never select more capabilities than are strictly required, trying to
access a restricted area of the system without the required capability results in an error.

Next to capabilities, you also need to configure your declarations, which are required
to support contracts and extensions. (A contract defines an agreement between apps; an
extension is an agreement between your app and Windows.)

MORE INFO  CONTRACTS AND EXTENSIONS

Contracts and extensions are discussed in more detail in Chapter 2.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 47

The declarations that you can configure are the following:

■■ Account Picture Provider  Allows users to use your app to change their account
pictures.

■■ AutoPlay  Allows users to choose your app in the auto play dialog box.

■■ Background Tasks  Apps can use background tasks to run app code even when the
app is suspended. Background tasks are intended for small work items that require no
interaction with the user.

■■ Cached File Updater  If your app caches file is on local disk, you can subscribe to
events such as the user opening the file (so you can check to see whether there is a
newer version) or to download newer versions of a file as soon as they are available.
OneDrive (formerly known as SkyDrive) is a good example of this kind of behavior.

■■ Camera Settings  Allows you to customize the flyout that displays camera options.

■■ Contact Picker  Enables your app to show up in the list of apps that can provide
contact data whenever a user looks for a contact.

■■ File Type Associations  Allows your app to register for handling certain file types (files
with the same extension). The file type can be an existing file type or a new file type
that’s specific for your app.

■■ File Open Picker  Allows users to directly select files from your app while using another
app.

■■ File Save Picker  Allows users to save files directly to your app from another app.

■■ Print Task Settings  Allows you to customize the flyout that displays advanced print
settings.

■■ Search  Adds a search pane to your app that allows users to search in your app and in
the data of other apps.

■■ Share Target  Allows users to share data from your app with other apps.

There are many possibilities for integrating your app with other apps and with Windows.
Whenever you want to implement any of these features, you should update your manifest
accordingly.

An exception is when you add a Share or File Open contract. You can add these contracts
in Visual Studio in the Add New Item dialog box (see Figure 1-17). When you use this dialog
box, your manifest is updated accordingly.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	48	 CHAPTER 1	 Design Windows Store apps

FIGURE 1-17  The Add New Item dialog box

EXAM TIP

Make sure that you understand how to use the manifest to configure what your app is
allowed to do on a user’s device. Remember that you need a privacy statement when your
app communicates with the Internet.

Signing an app
To publish your app in the Windows Store, it has to be signed with a certificate. When locally
testing your app, Visual Studio generates a certificate that can be used to install your app on
a machine that has a developer license.

After creating your package through Visual Studio, you can find the package in the
AppPackage folder. Inside this folder, you see a .cer file containing your certificate. When you
publish your app to the Windows Store, a new certificate is generated that is linked to your
publishers account. This certificate is then used by users to install the app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 49

MORE INFO  CREATING A CERTIFICATE

If you want to manually create a certificate, you can use command-line tools that are part of
the Windows Driver Kit (WDK). Documentation can be found at http://msdn.microsoft.com/
en-us/library/windows/apps/jj835832.aspx.

Planning the requirements for an enterprise deployment
When deploying an enterprise app to users outside of your company, the easiest option is to
use the Windows Store. By adding a sign-in page to your app, you can manage licenses and
restrict access to your app.

However, if you want to deploy an app to internal users only, you probably don’t want to
use the Windows Store. This process is called sideloading.

Although your app is not validated for the Windows Store, you should make sure that
you still follow the certification requirements for the Windows Store. Use the Windows App
Certification Kit to validate your app before distributing it inside your company.

The Windows Store normally creates a trusted certificate for you, but you have to create it
if you deploy your app without the Windows Store. Make sure that your app is signed with a
certificate that’s trusted by the PCs on which you will install your app. You can use a certificate
that’s already installed on your company’s network or install a custom certificate specifically
for your app.

When your company devices are domain-joined, you can easily configure a Group Policy
that allows apps to be sideloaded. You can then install the apps by using the Deployment
Image Servicing and Management (DISM) command-line tool or by running Windows
PowerShell cmdlets.

Another option is to use Microsoft System Center Configuration Manager or Windows
Intune. These commercial products that can manage Windows installations in a corporate
environment are available from Microsoft.

MORE INFO  SYSTEM CENTER AND INTUNE

For more information on System Center, see http://blogs.technet.com/b/keithmayer/
archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-201
2-service-pack-1.aspx#.UuuSxPldXxQ. Documentation for Intune can be found at
http://blogs.technet.com/b/windowsintune/archive/2012/10/31/deploying-windows-
8-apps-using-windows-intune.aspx.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/jj835832.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj835832.aspx
http://blogs.technet.com/b/keithmayer/archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-2012-service-pack-1.aspx#.UuuSxPldXxQ
http://blogs.technet.com/b/keithmayer/archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-2012-service-pack-1.aspx#.UuuSxPldXxQ
http://blogs.technet.com/b/keithmayer/archive/2013/02/25/step-by-step-deploying-windows-8-apps-with-system-center-2012-service-pack-1.aspx#.UuuSxPldXxQ
http://blogs.technet.com/b/windowsintune/archive/2012/10/31/deploying-windows-8-apps-using-windows-intune.aspx
http://blogs.technet.com/b/windowsintune/archive/2012/10/31/deploying-windows-8-apps-using-windows-intune.aspx

ptg14200515

	50	 CHAPTER 1	 Design Windows Store apps

Thought experiment 
Distributing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are creating an app that will be distributed through the Windows Store with
your branding and by several companies that have their own branding. With this in
mind, answer the following questions:

1.	 Do you need to follow the official certification requirements?

2.	 How can you easily change the branding of your app?

3.	 Can you use the Windows Store certificate to distribute your app in enterprise
environments?

Objective summary
■■ Microsoft has created specific requirements for apps that want to be distributed

through the Windows Store.

■■ Use the Windows App Certification Kit to validate your app.

■■ An app manifest describes your app and states which integration with the operating
system and other apps it supports.

■■ A certificate is required to distribute your app to other users. The Windows Store helps
you generate a certificate.

■■ You can distribute your app within an enterprise by a process called sideloading, so
you don’t have to use the Windows Store.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Plan for an application deployment	 CHAPTER 1	 51

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What is contained inside your app package? (Choose all that apply.)

A.	 HTML, JavaScript, and CSS files

B.	 A block description

C.	 A certificate

D.	 A manifest

2.	 You want to access an external web service from your app. Which capability do you
require?

A.	 Internet (Client & Server)

B.	 Internet (Client)

C.	 Private network (Client & Server)

D.	 Home Network (Client & Server)

3.	 You want to send your Windows 8 app to a group of testers. What should you do?

A.	 Ask them to install Visual Studio and send them the source code of your app.

B.	 Send them an app package with Windows PowerShell scripts.

C.	 Create a Windows Installer to install the app on their devices.

D.	 Submit the app to the Store so they can install it.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	52	 CHAPTER 1	 Design Windows Store apps

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1.	 The My Restaurant app is great at helping users find the food they love. Of course, you

can come up with other “great at” statements. The point is to choose one and use it to
guide your app.

2.	 You can use the Grid App template if you want to center your app on categories of
food or recommendations.

3.	 Yes. A restaurant attracts a variety of individuals, so you should anticipate that some
might have disabilities.

Objective 1.1: Review
1.	 Correct answer: C

A.	 Incorrect: Animations should be used in a Windows Store app. You can use the
animations already created for you by Microsoft.

B.	 Incorrect: You shouldn’t design your own animations. You want a consistent
feeling across all apps, which is why Microsoft created an animation library.

C.	 Correct: Animations should be used in your app. The documentation shows
which animations are suggested by Microsoft, and your designer can use those
animations in his design.

D.	 Incorrect: You should use the animation library instead of creating completely
custom animations.

2.	 Correct answer: D

A.	 Incorrect: The platform supports apps of any size.

B.	 Incorrect: Apps can support multiple user scenarios. They should use the
“great at” statement to make sure that all scenarios contribute to one great user
experience.

C.	 Incorrect: Having an app that looks beautiful, is fast and fluid, and integrates with
other apps doesn’t require a “great at” statement. The statement is about what
your app does and the user experience it delivers.

D.	 Correct: Your “great at” statement brings focus to your app and helps you to excel
at what you want your app to do.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 1	 53

3.	 Correct answers: A, C, D, E, F

A.	 Correct: Pride in craftsmanship is a Microsoft design principle.

B.	 Incorrect: Cloud integration is not a Microsoft design principle.

C.	 Correct: Fast and fluid is a Microsoft design principle.

D.	 Correct: Authentically digital is a Microsoft design principle.

E.	 Correct: Do more with less is a Microsoft design principle.

F.	 Correct: Win as one is a Microsoft design principle.

Objective 1.2: Thought experiment
1.	 It is true that a layered application initially adds complexity to your code. Code is

spread over several files, and not all code is allowed to call all other code. However, this
does increase maintainability and helps you to centralize code around specific tasks,
which pays off in the end.

2.	 This is not true. When a layer defines its interface, other layers can depend on those
interface definitions. An implementation could then be faked (such as a static set of
test data). You could also implement your application in vertical slices of functionality
by developing all layers simultaneously instead of layer by layer.

3.	 Although JavaScript was not created with large-scale applications in mind, you can
certainly create a good architecture in JavaScript. Another way is to use TypeScript to
extend JavaScript and make it more suitable for large-scale applications.

Objective 1.2: Review
1.	 Correct answer: A

A.	 Correct: The data layer is responsible for fetching data from an external web
service.

B.	 Incorrect: The service layer is not meant to fetch data from external resources.
Instead, it should coordinate actions in your own app.

C.	 Incorrect: The business layer enforces business rules and functionality; it does not
communicate with external web services.

D.	 Incorrect: The UI layer should not communicate with external data sources.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

2.	 Correct answer: C

A.	 Incorrect: Sharing data should not be done through global state because it might
create unwanted side effects.

B.	 Incorrect: You can avoid global state by scoping data to the containing function.

C.	 Correct: Avoiding global state creates a better maintainable app.

D.	 Incorrect: Global state is possible in every JavaScript project.

3.	 Correct answers: A, B, C, D

A.	 Correct: Creating classes is a core element of building a layered application.

B.	 Correct: Namespaces group classes, which helps you separate code into distinct areas.

C.	 Correct: WinMD Components can be used to create C# assemblies. This separation
in assemblies automatically creates a separation in your code.

D.	 Correct: A web service is a distinct tier of your application that can host one or
more layers.

Objective 1.3: Thought experiment
1.	 Windows Store apps can save data to a roaming folder, which is automatically synced

between all user devices.

2.	 By handling the checkpoint event, you can save data before the app is suspended.
When resuming from a terminated state, you can then restore this data.

3.	 When resuming your app, you need to restore data from the user’s folder, but you
should also make sure that data is not out of date. By using your activated event, you
can refresh your external data.

Objective 1.3: Review
1.	 Correct answers: B, C

A.	 Incorrect: A game needs state management just like every other app. Make sure
that users can continue playing games from the moment they left.

B.	 Correct: The activated event should be used to restore any state after the app
terminated.

C.	 Correct: The checkpoint event can be used to save state before the app is
suspended and eventually terminated.

D.	 Incorrect: The terminated event does not exist.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 1	 55

2.	 Correct answer: B

A.	 Incorrect: Starting with Windows 8.1, you should completely refresh any data only
if the user returns within 10 seconds after closing the app.

B.	 Correct: If a user doesn’t launch the app within 10 seconds, treat the close action
as a normal suspend and terminate.

C.	 Incorrect: This is never an option. You should not show unnecessary dialog boxes
to the user.

D.	 Incorrect: Restarting the application is not an option. You can decide what you
want to do with the current application state. However, you should try to follow the
required action of resuming the app if the user does not return within 10 seconds.

3.	 Correct answer: D

A.	 Incorrect: This is a DOM event that you don’t have to use inside your app. WinJS
offers convenient events that map to your app life cycle.

B.	 Incorrect: This is a DOM event that you don’t have to use inside your app. WinJS
offers convenient events that map to your app life cycle.

C.	 Incorrect: The checkpoint event should be used to save any state before the app
is suspended.

D.	 Correct: A web service is a distinct tier of your application that can host one or
more layers.

Objective 1.4: Thought experiment
1.	 Yes, especially because your app will be deployed to the public Windows Store. For the

internal distributed apps, it is also a good idea to follow all certification requirements.

2.	 The manifest enables you to specify different files for screen shots, tiles, and the splash
screen. Other branding can be done like any HTML and CSS app. You can configure
different images and CSS files to style your app.

3.	 No, this certificate is generated when publishing your app to the Windows Store. For
internal distribution, you need to sign your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	56	 CHAPTER 1	 Design Windows Store apps

Objective 1.4: Review
1.	 Correct answers: A, B, C, D

A.	 Correct: All your content files are included in the package.

B.	 Correct: The block description is included, which is used to split your app into
smaller chunks to make the update process easier.

C.	 Correct: A certificate is required for signing your app.

D.	 Correct: A manifest is required to describe your app. It is used to show your app in
the Windows Store, and to install and run the app on a user’s device.

2.	 Correct answer: B

A.	 Incorrect: The client and server requirement is used only if your app receives
requests from external sources. You are connecting only from your app to an
external web service.

B.	 Correct: It allows you to connect to your web service.

C.	 Incorrect: A private network is required only when you want to connect to other
devices inside the network; for example, inside a domain or inside a home net-
work.

D.	 Incorrect: The home network option does not exist.

3.	 Correct answer: B

A.	 Incorrect: Installing Visual Studio and having access to the source is not required,
and it would probably be too much work for testers.

B.	 Correct: Windows PowerShell scripts can install the app locally and test it.

C.	 Incorrect: A Windows Installer is not required. An app package can be installed
with the generated Windows PowerShell scripts.

D.	 Incorrect: If you want users to test your app, you should not submit it to the
Windows Store. That way, everyone can access your app. And because your app is
not yet ready, it will probably fail submission.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 57

C H A P T E R 2

Develop Windows Store apps
After you design your app, you want to start developing it. The Windows Store app environ
ment is unique because of the integration options it offers. Your app can work together
with the Windows operating system and with other apps through contracts and extensions,
which is the topic of this chapter.

This chapter helps you integrate with contact information, search, share, and configura-
tion settings. Implementing these features helps users find your app and make it easier to
use. The result is more usage of your app and a more popular app overall! The chapter ends
by discussing media features that your app can use.

This chapter covers the second objective in the Exam 70-481 objective domain and it
consists of 19 percent of the exam’s material. This chapter is a lot more code-heavy than the
previous chapter and will help you to implement contract-related features in Windows Store
apps.

Objectives in this chapter:
■■ Objective 2.1: Access and display contacts

■■ Objective 2.2: Design for charms and contracts

■■ Objective 2.3: Implement search

■■ Objective 2.4: Implement Share in an app

■■ Objective 2.5: Manage application settings and preferences

■■ Objective 2.6: Integrate media features

Objective 2.1: Access and display contacts

One way to integrate with other apps and Windows is by sharing contact information. You
can support scenarios in which users can pick contacts from other apps (such as the People
app) or your app can show contact information that other apps can use.

This objective shows you how to implement these scenarios.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	58	 CHAPTER 2	 Develop Windows Store apps

This objective covers how to:
■■ Call the ContactPicker (Windows.Applicationmodel.Contacts) class

■■ Filter which contacts to display

■■ Display a set number of contacts

■■ Create and modify contact information

■■ Select specific contact data

Calling the ContactPicker class
You can find all functionality for dealing with contacts in the Windows.Applicationmodel.
Contacts namespace. The ContactPicker class, which is defined in this namespace, enables
users to select contacts that you can use inside your app.

The following function shows how to launch the ContactPicker class and create a string
representation of a user’s data:

function pickContact() {
 var picker = Windows.ApplicationModel.Contacts.ContactPicker();
 picker.commitButtonText = "Select";

 picker.pickContactAsync().done(function (contact) {
 if (contact != null) {
 document.getElementById('output').innerText = contact.displayName;
 }
 });
};

Start by creating a new instance of the ContactPicker class:

 var picker = Windows.ApplicationModel.Contacts.ContactPicker();

You can then configure the instance and show it to the user. In this case, the only thing you
configure is the text the contact picker displays:

 picker.commitButtonText = "Select";

All work that might take a large amount of time is processed asynchronously, which helps
your app stay responsive while external work is being done. You can recognize asynchronous
methods by their names: they end with “async”. This naming convention is also true for the
contact picker. The pickContactsAsync method is processing asynchronously, which means
the method doesn’t return a result immediately. Instead, it returns a promise, which is an
object that wraps the asynchronous action and helps you continue when the asynchronous
action is finished or when something goes wrong.

In this case, use the done method to schedule some work that needs to process when the
promise completes:

 picker.pickContactAsync().done(function (contact) { … });

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Access and display contacts	 CHAPTER 2	 59

The contact parameter is passed from the contact picker to your function. Perhaps the
contact is null, which happens whenever the user cancels the contact picker and returns to
your app without selecting a contact.

You can also select multiple contacts by using the pickContactsAsync function, which
returns an array of contacts that you can use:

picker.pickContactsAsync().done(function (contacts) {
 if (contacts.length > 0) {
 var output = "";
 for (var i = 0; i < contacts.length; i++) {
 output += contacts[i].displayName;
 output += "\r\n";
 }
 document.getElementById('output').innerText = output;
 }
});

MORE INFO  CONTACT PICKER SAMPLES

Microsoft created a lot of Windows Store samples that you can download. You can find a
contact picker sample at http://code.msdn.microsoft.com/windowsapps/Contact-Picker-
App-sample-fc6677a1.

Filtering which contacts to display
When using the contact picker to let users select contacts for your app, you normally get all
contacts returned that are available for the user.

Sometimes your app needs to make sure that certain data is available for a contact. When
you want to select only those contacts that have data in the specific fields you require, you
can configure your contact picker to look for those fields.

By using the selectionMode property, you can configure the contact picker to select all
contacts or only contacts with the fields that you require:

// Select specific fields
picker.selectionMode = Windows.ApplicationModel.Contacts.ContactSelectionMode.fields;
// Select all contacts
picker.selectionMode = Windows.ApplicationModel.Contacts.ContactSelectionMode.contacts;

When you use the fields option, you can use the desiredFieldsWithContactFieldType
property to list the fields on which you want to filter:

picker.desiredFieldsWithContactFieldType.append(
 Windows.ApplicationModel.Contacts.ContactFieldType.email);

ContactFieldType can have one of the following values:

■■ Email

■■ PhoneNumber

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1

ptg14200515

	60	 CHAPTER 2	 Develop Windows Store apps

■■ ConnectedServiceAccount

■■ ImportantDate

■■ Address

■■ SignificantOther

■■ Notes

■■ Website

■■ JobInfo

Other values, such as instantMessage, location and custom, are still available but shouldn’t
be used. They might not be available in the next Windows release.

Specifying the ContactFieldType gives you only those contacts that have a specific field set.
After selecting contacts from the contact picker, you can apply additional filters to keep only
the contacts you want to use in your app. Maybe you want to filter on the company name or
some other criterion that’s appropriate for your app.

EXAM TIP

Using ContactFieldType does not mean that you load only the specified field from the
contact picker; you show only contacts that have a value for that field.

Because the data you get back from the contact picker is just an array, you can use array.
filter to filter your contacts before displaying them:

contacts = contacts.filter(function (element)
{
 return element.displayName.indexOf("a") != -1
});

This snippet filters your contacts to only those that contain the letter “a” in their name. The
function used to filter your data is called a predicate. You can make your predicate as complex
as needed.

If you have a scenario in which data is changing more frequently (users select contacts
multiple times, for example), you can use a WinJS.Binding.List object to store your data. A list
can have a custom filter applied to it that is used whenever the data is updated.

The following code shows how to create a list that is filtered with the same predicate as the
array in the previous example:

var itemList = new WinJS.Binding.List([]);
var filteredList = itemList.createFiltered(function (i) { return i.indexOf("a") != -1;
});
var publicMembers =
 {
 itemList: filteredList
 };
WinJS.Namespace.define("DataExample", publicMembers);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Access and display contacts	 CHAPTER 2	 61

The list starts out empty; then a filtered version of the list is created. This list is then
exposed through a custom namespace named DataExample.

You can bind to this list with the following HTML snippet:

<div id="basicListView" data-win-control="WinJS.UI.ListView"
 data-win-options="{itemDataSource : DataExample.itemList.dataSource}">
</div>

The data source for the list points to your custom created namespace and then the
itemList property. Whenever a contact is added, you can use the following code in your
pickContactAsync callback:

picker.pickContactAsync().done(function (contact) {
 if (contact != null) {
 itemList.push(contact.displayName);
 }
});

Whenever you push a new contact name to the list, the filter is applied, and the result is
bound to the ListView in your markup. However, filtering after users select contacts might
lead to unexpected behavior if they select a contact that then gets filtered when they return
to the app. When dealing with these scenarios, inform users of your choices.

You can’t directly use the contact object and push it to your item list; you should use a
not-WinRT object to add to your list. A not-WinRT object can be a simple string such as the
displayName or an object that you create.

Displaying a set number of contacts
Until now, you used the ContactPicker class to select contacts and use the data in your app.
Other apps offer you a set of contacts—and you use only the resulting data.

The People app is a good example of this type of app. If you launch it directly from the
Start screen, it shows you a hub interface with information about you, your favorite contacts,
and all other contacts you have.

But if you use the People app to select a contact from another app (through the
ContactPicker class), you get a different interface because the app is then launched with
ActivationKind. This different ActivationKind allows the app to show a different interface and
helps users select contacts from the app.

By configuring the manifest file, you can add a declaration for your app to be a contact
picker (see Figure 2-1).

The contact picker can be configured to use a Start page when your app is launched as a
contact picker. Windows loads this page and shows it to users with a header that allows them
to switch to other contact pickers and click a Select button or a Cancel button at the bottom
(see Figure 2-2).

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	62	 CHAPTER 2	 Develop Windows Store apps

FIGURE 2-1  The App Manifest Designer shows the ContactPicker declaration

FIGURE 2-2  A custom contact picker showing a blank page

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Access and display contacts	 CHAPTER 2	 63

Suppose that you have the following content for your contactPicker.html page:

<!DOCTYPE html>
<html>
<head>
 <title>Contact picker sample</title>

 <link rel="stylesheet" href="//Microsoft.WinJS.2.0/css/ui-light.css" />
 <script src="//Microsoft.WinJS.2.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.2.0/js/ui.js"></script>

 <script src="/js/contactPicker.js"></script>
</head>
<body>
 <div id="contactList"></div>
</body>
</html>

This is a basic HTML page that references the required cascading style sheets (CSS) and
scripts for a Windows Library for JavaScript (WinJS) application and loads the contactPicker.js
file.

The contactPicker.js file looks like this:

(function () {
 "use strict";
 var contactPickerUI;

 function activated(eventObject) {
 if (eventObject.detail.kind === Windows.ApplicationModel.Activation.
 ActivationKind.contactPicker) {
 sampleContacts.forEach(createContactUI);
 contactPickerUI = eventObject.detail.contactPickerUI;
 }
 }

 function createContactUI(sampleContact, index) {
 var element = document.createElement("div");
 document.getElementById("contactList").appendChild(element);
 element.innerHTML = "<div class='contact'><label>" +
 "<input id='" + sampleContact.id +
 "' value='" + index + "' type='checkbox' />" +
 sampleContact.displayName + "</label></div>";

 element.firstElementChild.addEventListener("change", function (ev) {
 if (ev.target.checked) {
 addContactToBasket(sampleContact);
 } else {
 removeContactFromBasket(sampleContact);
 }
 }, false);
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	64	 CHAPTER 2	 Develop Windows Store apps

 function addContactToBasket(sampleContact) {
 var contact = new Windows.ApplicationModel.Contacts.Contact();
 contact.firstName = sampleContact.firstName;
 contact.lastName = sampleContact.lastName;
 contact.id = sampleContact.id;

 contactPickerUI.addContact(contact);
 };

 function removeContactFromBasket(sampleContact) {
 if (contactPickerUI.containsContact(sampleContact.id)) {
 contactPickerUI.removeContact(sampleContact.id);
 }
 }
 var sampleContacts = [
 {
 displayName: "Wouter de Kort",
 firstName: "Wouter",
 lastName: "de Kort",
 id: "60666FA6-7A68-4F78-B3CE-6CBBC436E8CE"
 },
 {
 displayName: "Satya Nadella",
 firstName: "Satya",
 lastName: "Nadella",
 id: "60666FA6-7A68-4F78-B3CE-6CBBC436E8CE"
 },
];

 WinJS.Application.addEventListener("activated", activated, false);
 WinJS.Application.start();
})();

This file has a couple of important parts:

■■ Sample data at the end of the file is some sample data defined. This data can come
from an external web service, a file, or some other resource.

The activated event is where your UI is created when the page loads. This event is
activated by registering the event and calling WinJS.Application.start at the bottom of
the file. The event handler loops through the sample data and generates HTML that
shows each contact name and a check box that allows the user to select and deselect
the contact.

The add event handler is the place where a new Windows.ApplicationModel.Contacts.
Contact is created and initialized with the values from the selected contact. This con-
tact is then added to the selection by calling contactPickerUI.addContact(contact).

■■ The remove event handler sees whether the contact is present in the contactPickerUI
and then removes it from the selection.

Those parts form the basis of implementing your own contact picker. Of course, you
can put a lot more data into a contact and send it to the requesting app. You should
also add error handling in case something goes wrong.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Access and display contacts	 CHAPTER 2	 65

EXAM TIP

The previously mentioned sample (http://code.msdn.microsoft.com/windowsapps/Contact-
Picker-App-sample-fc6677a1) also shows how to implement a custom contact picker. You
should use this sample to become more familiar with how to create your own contact
picker. The code in this objective is based on this sample.

Creating and modifying contact information
The previous section described using the Contact class from the Windows.ApplicationModel.
Contacts namespace to create a contact that can be sent through the contact picker.

You can add a lot more data to a contact. The Contact class has the following properties:

■■ Addresses  Gets the contact addresses for a contact.

■■ ConnectedServiceAccounts  Gets the connected service accounts for a contact.

■■ DataSuppliers  Gets the data suppliers for a contact. The maximum string length for
each data supplier is 50 characters. Data suppliers are external sources such as Twitter,
LinkedIn, and Outlook. Data from those sources gets combined into one single contact
on the user’s device.

■■ DisplayName  Gets the display name for a contact. You can access this property only
from a UI thread.

■■ Emails  Gets the email addresses for a contact.

■■ FirstName  Gets and sets the first name for a contact. The maximum string length for
the first name is 64 characters.

■■ HonorificNamePrefix  Gets and sets the honorific prefix for the name for a contact.
The maximum string length for the honorific prefix is 32 characters. Examples of
honorific name prefixes are academic titles, but also titles such as Your Highness and
Your Majesty.

■■ HonorificNameSuffix  Gets and sets the honorific suffix for the name for a contact.
The maximum string length for the honorific suffix is 32 characters.

■■ Id  Gets and sets the identifier for a contact. The maximum string length for the
identifier is 256 characters.

■■ ImportantDates  Gets the important dates for a contact.

■■ JobInfo  Gets the job info items for a contact.

■■ LastName  Gets and sets the last name for a contact. The maximum string length for
the last name is 64 characters.

■■ MiddleName  Gets and sets the middle name for a contact. The maximum string
length for the middle name is 64 characters.

■■ Notes  Gets and sets notes for a contact. The maximum string length for notes is 4,096
characters.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1
http://code.msdn.microsoft.com/windowsapps/Contact-Picker-App-sample-fc6677a1

ptg14200515

	66	 CHAPTER 2	 Develop Windows Store apps

■■ Phones  Gets information about the phones for a contact.

■■ ProviderProperties  Gets the property set object for the contact.

■■ SignificantOthers  Gets the significant others for a contact.

■■ Thumbnail  Gets or sets a thumbnail image that represents a contact.

■■ Websites  Gets the website for a contact.

■■ YomiDisplayName  Gets the Yomi (phonetic Japanese equivalent) display name for a
contact.

■■ YomiFamilyName  Gets the Yomi (phonetic Japanese equivalent) family name for a
contact. The maximum string length for a Yomi family name is 120 characters.

■■ YomiGivenName  Gets the Yomi (phonetic Japanese equivalent) given name for a
contact. The maximum string length for the Yomi given name is 120 characters.

A contact is much more than just a name. Addresses, phone numbers, and other
communication details can all be linked to a contact. Contact details can be further divided
into different types, such as work and personal details. You even have specific fields for
dealing with different cultures.

The following code fragment shows how to add additional data to the Contact class:

var contact = new Windows.ApplicationModel.Contacts.Contact();
contact.firstName = "Satya";
contact.lastName = "Nadella";
contact.id = "861cb6fb-0270-451e-8725-bb575eeb24d5";

var workEmail = new Windows.ApplicationModel.Contacts.ContactEmail();
workEmail.address = "ceo@xxx.com";
workEmail.kind = Windows.ApplicationModel.Contacts.ContactEmailKind.work;
contact.emails.append(workEmail);

var workPhone = new Windows.ApplicationModel.Contacts.ContactPhone();
workPhone.number = "1234567890"
workPhone.kind = Windows.ApplicationModel.Contacts.ContactPhoneKind.work;
contact.phones.append(workPhone);

var workAddress = new Windows.ApplicationModel.Contacts.ContactAddress();
workAddress.streetAddress = "1 157th Ave NE"
workAddress.locality = "Redmond";
workAddress.region = "Washington";
workAddress.postalCode = "98052";
workAddress.kind = Windows.ApplicationModel.Contacts.ContactAddressKind.work;
contact.addresses.append(workAddress);

contactPickerUI.addContact(contact);

Selecting specific contact data
When a contact is returned from the contact picker to an app, it contains all data available
for that contact. So when a contact has multiple phone numbers, email addresses, and/or
addresses, they are present in the returned data.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Access and display contacts	 CHAPTER 2	 67

All these contact details specify their type of data through a kind property. By using the
predefined enumerations that are part of the Windows application model, you can filter your
data, as shown in the following example:

var result = "";

if (contact.phones.length > 0) {
 result += "Phone Numbers:";
 result += "\r\n";
 contact.phones.forEach(function (phone) {
 switch (phone.kind) {
 case Windows.ApplicationModel.Contacts.ContactPhoneKind.home:
 result += phone.number + " (home)";
 break;
 case Windows.ApplicationModel.Contacts.ContactPhoneKind.work:
 result += phone.number + " (work)";
 break;
 case Windows.ApplicationModel.Contacts.ContactPhoneKind.mobile:
 result += phone.number + " (mobile)";

 break;
 case Windows.ApplicationModel.Contacts.ContactPhoneKind.other:
 result += phone.number + " (other)";
 break;
 }
 result += "\r\n";
 });
}

In this example, you loop through all phone numbers on a contact. By using phone.kind
you can easily handle different types of phone numbers. The same can be done for other
data on a contact.

Thought experiment 
Designing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are exploring the Windows Store ecosystem and are interested in brainstorming
scenarios in which you can use contact picker integration.

List a type of app that can use the following:

1.	 The contact picker to select contacts from other apps.

2.	 The contact picker to expose contacts to other apps.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	68	 CHAPTER 2	 Develop Windows Store apps

Objective summary
■■ The ContactPicker class can show a UI to users. They can then select one or more

contacts to be used in your app.

■■ You can register your app as a contact picker so that apps (including your own) can
view contacts and select them from your app.

■■ A user can have contacts that have some fields filled in and others left blank. You can filter
contacts by using the selectionMode property and the desiredFieldsWithContactFieldType
collection. Using such a filter shows only those contacts that have the fields you require.

■■ A contact has multiple phone numbers, addresses, and so on. You can filter those
collections by using the kind property.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You added code to your activated event to respond to the activation kind of contact
picker, but your app doesn’t show up as a possible source of contacts when launching
the contact picker. What should you do to fix the problem?

A.	 The user should have your app running in the background to serve as a contact picker.

B.	 You have to call the activated event to launch the contact picker.

C.	 You have to add a Contact Picker declaration to your app manifest.

D.	 You have to use the pickContactAsync method to launch the contact picker.

2.	 You want to launch the contact picker from your app so a user can select one contact.
Which method should you use?

A.	 ContactPicker.addContact

B.	 ContactPicker.pickContactAsync

C.	 ContactPicker.pickContactsAsync

D.	 ContactPicker.pickContact

3.	 You want to make sure that a user selects only those contacts who have email
addresses. What can you do?

A.	 Use array.filter to exclude those contacts who don’t have an email address.

B.	 Use a WinJS list with a filter that excludes contacts who don't have an email address.

C.	 Use a ContactSelectionMode of fields with a desiredFieldsWithContactFieldType of
email.

D.	 Use a ContactSelectionMode of contact with a desiredFieldsWithContactFieldType
of email.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Design for charms and contracts	 CHAPTER 2	 69

Objective 2.2: Design for charms and contracts

A Windows Store app doesn’t work in total isolation. The Windows operating system offers a
complex ecosystem that your app can integrate with. This integration makes Windows Store
apps unique and it uses the Microsoft design principle of “win as one”: letting apps interact
with each other in a familiar manner so they complement each other.

Integrating apps is done through charms and contracts. This objective shows you the
available charms and contracts and describes how they can benefit your app. Understanding
charms and contracts is an important part of the exam because it is one of the cornerstones
of Windows 8.

This objective covers how to:
■■ Choose the appropriate charms based on app requirements

■■ Design an application to be charm- and contract-aware

■■ Configure the application manifest for correct permissions

Choosing the appropriate charms based on app
requirements
Charms can be accessed by swiping from the left, moving your mouse to the top- or bottom-
right corner, or pressing Windows+C. The charms bar that displays is shown in Figure 2-3.

FIGURE 2-3  The charms bar shows the Search, Share, Start, Devices, and Settings charms

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	70	 CHAPTER 2	 Develop Windows Store apps

The five charms you see here are the following:

■■ Search

■■ Share

■■ Start

■■ Devices

■■ Settings

The Start charm, which is the least interesting, allows users to return to the Start screen.
With this charm, users can always find a familiar location to return to the Start screen if they
want to leave an app. The other charms offer more possibilities and are discussed in the
following sections.

Search
Search is an important part of many apps. When you launch Search from the Start screen of
Windows, the Search charm displays (see Figure 2-4).

FIGURE 2-4  The Search charm

Search goes through all data on your PC, including installed applications and files, but also
content found on the Internet.

This search is global. You can also implement an in-app search. For an in-app search, use
the SearchBox control, which changed between Windows 8 and Windows 8.1. In Windows 8,
the Search charm is used for in-app and global searches. In Windows 8.1 you can choose
between using a search box, such as the one shown in Figure 2-5, or using the Search charm.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Design for charms and contracts	 CHAPTER 2	 71

FIGURE 2-5  The Windows Store shows a search box in the top-right corner

Users can use this Windows Store search box to search for apps in the store. When they
launch a search, a new page is shown that lists the search results (see Figure 2-6).

FIGURE 2-6  The Windows Store shows the results of searching on “Microsoft”

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	72	 CHAPTER 2	 Develop Windows Store apps

This page is completely specific to your app. You can define its layout, the way a user can
interact with it, and the results it shows.

You can help users by offering them both query and result suggestions. The difference
between them is shown in Figure 2-7. A result suggestion is a close match and immediately
navigates to a result. A query suggestion is used more as an autocomplete in which you start
a search for the specified query text.

FIGURE 2-7  The search box shows result suggestions at the top and query suggestions at the bottom

Another feature that helps your users is type to search. A user can just start a new search
simply by typing a search term; there is no need to type the term in the search box. Users can
launch an app and immediately start typing to search for something.

By integrating with the Search charm, you can let users launch your app from the charm
and directly start on the search results page.

Share
The Share charm enables data sharing between apps. For example, you browse the web, see
something you like, activate the Share charm, and send an email with a link to the page to a
friend.

The Share contract supports these types of scenarios. Apps can be both a share source (the
browser in this case) and a target (the email application). The source can provide the data that
it wants to share, and the target can take this data and use it.

Typical examples of applications that act as a share target are Twitter, Facebook, and Mail;
they take data and easily share it with other people.

Figure 2-8 shows an example of activating the Share charm from the Weather app. A list of
possible share targets is shown that the user can choose from.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Design for charms and contracts	 CHAPTER 2	 73

FIGURE 2-8  Activating the Share charm from within the Weather app and showing possible share targets

After selecting the Mail option, you see the display shown in Figure 2-9.

FIGURE 2-9  Choosing the Mail share target to share data from within the Weather app

When considering the Share contract, you have to split the implementation into two parts.
First, do you want to share any data from within your app? Suppose that you’re building a
Rich Site Summary (RSS) reader app. When users read something interesting, they can launch
the Share charm to send the article to others. In a game, you can use the Share charm to post
a recent achievement to Facebook. In a business app, you can share a report with other users.

The possibilities are endless, and you really need to consider it carefully. By integrating
Share, you add a social component to your app that can really improve its popularity.

Second, you need to decide whether your app can be a share target. Can other apps share
some data with your app? (This is true for social apps like Twitter and Facebook, or for email.)
If your app can receive data (text, images, or files), your app can act as a share target.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	74	 CHAPTER 2	 Develop Windows Store apps

Devices
Devices connected to your device can be accessed through the Devices charm. These devices
might include a printer, a projector, or a TV for streaming media. By integrating with the
Devices charm, you can support printing or streaming media to other devices.

Depending on your requirements, you can choose to integrate with the Devices charm.
Maybe you have information that a user should be able to print, such as a summary page or
a picture. If you have multimedia, such as audio or video, you can choose to stream them to
other devices.

Settings
Microsoft created the Settings charm to create a uniform configuration experience across all
Windows Store apps. Application–specific configuration options can be found in the Settings
charm. Figure 2-10 shows an example of the Settings charm for the Weather app.

.
FIGURE 2-10  The Settings charm for the Weather app

You should use the Settings charm for all configuration settings for your app.

Designing an application to be charm- and contract-aware
When designing your application, be aware of the different charms that are available. You
shouldn’t put any elements in the UI of your app if they belong in one of the charms.

The Search charm has some clear design guidelines that tell you what to do. By using the
search box in your app, preferably on all pages, you provide a clear location from which users
can start their search. By combining query and result suggestions, you help users find what
they are looking for.

The Share charm can greatly benefit your app. By thinking about the content of your app,
you can look for possibilities to implement sharing to make sure that your app integrates well
with other apps. This sharing can lead to higher app use when users start sending data to
your app or importing data from it.

The Devices charm is useful whenever your app needs to connect to other devices. When
you encounter such a requirement, you usually put this functionality in the Devices charm. You

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Design for charms and contracts	 CHAPTER 2	 75

can add a specific print button to your UI only when the functionality is an essential or logical
part of your application, such as printing an order confirmation at the end of an order process.

The Settings charm almost always should have a place in your app. All global settings
should be placed in this charm. If you have settings that are specific to a page, you can place
them in the app bar.

The remainder of this chapter focuses on implementing these charms so you get a better
sense of their use and implementation. Remember for now that when you are thinking about
a piece of functionality, you should always look at the charms and decide whether you can
use them or whether you should implement your functionality in-app.

Configuring the application manifest for correct
permissions
As mentioned in Chapter 1, “Design Windows Store apps,” the app manifest contains settings that
Windows can use to interoperate with your app. When your app wants to integrate with some
external resource, such as the Internet or a charm, you need to specify it in the app manifest.

The requested permissions are shown to the user in the Windows Store, but are also used
to validate your app when it is running. This validation step requires you to configure the app
manifest whenever you start working with charms or contracts.

Figure 2-11 shows the App Manifest Designer in Visual Studio with a list of all possible
declarations that you can add.

FIGURE 2-11  The App Manifest Designer showing a list of declarations

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	76	 CHAPTER 2	 Develop Windows Store apps

Each declaration has its own custom settings that you need to set. Windows then knows how
your app wants to integrate with other apps and can set the correct permissions for your app.

EXAM TIP

When you are asked to configure a charm or contract on the exam, don’t forget to
configure the application manifest.

Thought experiment 
Using charms and contracts

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are exploring the Windows 8 ecosystem. You have some great app ideas, but
you wonder whether using everything that Windows 8 has to offer is worth the
trouble. With this in mind, think about the following questions:

1.	 Why has Microsoft chosen to implement contracts and charms?

2.	 What are the advantages of using charms and contracts in your app?

3.	 Can you think of an existing application that would benefit from charm integration?

Objective summary
■■ An important facet of Windows Store apps is “winning as one.” Integration and

cooperation with other apps is crucial for your app to succeed.

■■ By offering contracts and charms, Microsoft created a flexible yet familiar way to
implement common tasks such as search, share, settings, and devices.

■■ By using the application manifest, you can configure your application to request
permissions to use charms and contracts.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Design for charms and contracts	 CHAPTER 2	 77

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are developing a ToDo app that keeps lists of tasks and you want to share these
task lists with other people. Should you implement the Share charm?

A.	 No; it is easier to use a Share button directly on the pages that view task lists.

B.	 No; you implement the Devices charm to send data through email.

C.	 Yes; users can easily share task lists from within your application to other applications.

D.	 Yes; users can share tasks through email or can print them.

2.	 Your app contains a lot of data that is divided in categories and items and you want to
be able to search. What should you do?

A.	 Implement the Search charm to support searching the data of your app.

B.	 Use a search box to allow for in-app searches.

C.	 Add a search button to the app bar that shows a custom menu for searching.

D.	 Use the Share charm to send your data to another application such as Excel, in
which it can be easily filtered.

3.	 Your application implements a share target, but it doesn’t show in the list of share
targets when viewed from other apps. How can you fix it?

A.	 Configure the app manifest with a Share Target declaration.

B.	 Other apps can’t share data to your app; this can be done only to the Mail app.

C.	 Add a configuration setting to the Settings charm to enable your app as a share
target.

D.	 Reinstall the app now that the Share contract is implemented.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	78	 CHAPTER 2	 Develop Windows Store apps

Objective 2.3: Implement search

By using the Search charm, you help users navigate your app and find what they want. When
implementing search, you combine the built-in features of Windows with your app’s specific
requirements.

This objective shows you what built-in features Windows offers and how you can use them
in your own app.

This objective covers how to:
■■ Provide search suggestions using the SearchPane and SearchBox control classes

■■ Search and launch other apps

■■ Provide and constrain search within an app, including inside and outside of the
Search charm

■■ Provide search result previews

■■ Implement activation from within search

■■ Configure search contracts

Providing search suggestions using the SearchPane and
SearchBox control classes
Search can be added in two different locations:

■■ In-app search through the SearchBox control

■■ In the Search charm with the SearchPane control

The following sections discuss these options, show you how to implement them, and
highlight the differences so you can make an informed decision.

In-app search with a search box
To add in-app search to your Windows Store app, start with a SearchBox control found in the
WinJS.UI namespace. Adding a SearchBox control is easy; all you need is the following HTML:

<div id="searchBoxId"
 data-win-control="WinJS.UI.SearchBox">
</div>

Figure 2-12 shows what the SearchBox control looks like on a black background.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement search	 CHAPTER 2	 79

FIGURE 2-12  The SearchBox control

A search box can be used when search is an essential part of your app. For example, in
the Windows Store, most people will use a search box to access the content the Store offers.
Showing the search box directly in your app signals to users where to start when they are new
to your app. When space is a problem is in your app, consider showing only the search icon or
moving the search box to your app bar.

By default, when the search box doesn’t have the focus, the control is dimmed. When the
control receives focus, it becomes active and changes color.

SearchBox exposes the querysubmitted event, which is important for responding to the
user starting a new search query. You can subscribe to this event with the following code:

var elem = document.querySelector("#searchBoxId");
elem.addEventListener("querysubmitted", searchHandler);

The querysubmitted event gets an argument of type SearchBoxQuerySubmittedEventArgs.
This class contains the following members:

■■ KeyModifiers  Gets any modifier keys that are pressed when the user presses Enter to
submit a query.

■■ Language  Gets the Internet Engineering Task Force (IETF) language tag (BCP 47 stan-
dard) that identifies the language currently associated with the user’s text input device.

■■ LinguisticDetails  Gets information about query text that the user enters through an
input method editor (IME).

■■ QueryText  Gets the query text of the current search.

The most important property is QueryText, which contains the text that the user searched
for. By combining it with the user’s language and linguistic details, you can provide custom-
ized search results for different kinds of users. Your app can then start searching through its
own content, but you can also search external content such as the Internet.

When it comes to search suggestions, SearchBox is quite intelligent. By default, it remem-
bers the previous search actions of a user. You can also add your own code to supply custom
search suggestions.

By subscribing to the suggestionsrequested event, you can supply suggestions while the
user is typing a query text. You can provide two types of search suggestions:

■■ Query suggestions

■■ Result suggestions

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	80	 CHAPTER 2	 Develop Windows Store apps

MORE INFO  RESULT SUGGESTIONS

Read the following section, “Providing search result previews,” for more information on
implementing result suggestions.

Query suggestions can be seen as an autocomplete for the user’s search text. When a user
selects a query suggestion, the search page is displayed with the selected query text.

Your app has total freedom in retrieving those query suggestions. For example, you can
use a static list of data inside your app, get it from a web service, or use one of the standard
formats such as OpenSearch or XML search.

The following code shows how to subscribe to the suggestionsrequested event:

var elem = document.querySelector("#searchBoxId");
elem.addEventListener("suggestionsrequested", suggestionsRequestedHandler);

Now you can handle the event with the following code:

function suggestionsRequestedHandler (args) {
 var queryText = args.detail.queryText,
 query = queryText.toLowerCase(),
 suggestionCollection = args.detail.searchSuggestionCollection;
 if (queryText.length > 0) {
 suggestionCollection.appendQuerySuggestion(query + " suggestion");
 }
}

The event argument you get has the same query details as the querysubmitted event.
It also has the searchSuggestionCollection that you can use to append search suggestions.
This example only appends the word “suggestion” to your query text. Of course, you can add
multiple suggestions from multiple sources, but this example shows the essential structure.

Issuing an OpenSearch or XML web service call follows the same pattern. Within your
suggestionsrequested event handler, you can fire a web service call and parse the result. This
data can then be added to the searchSuggestionCollection property.

Implementing search through the Search charm
When working with the Search charm, you use the Windows.ApplicationModel.Search.SearchPane
class to get access to the SearchPane for your app and expose events that you can use to
subscribe to queries and suggestion requests. The following code shows how to register for
query submissions to your app:

Windows.ApplicationModel.Search.SearchPane.getForCurrentView().onquerysubmitted =
 function (eventObject) {
 };

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement search	 CHAPTER 2	 81

When you add this code to the global scope of your app, you register for queries that
are submitted to your app. To integrate with the Search charm, you also need to edit the
app manifest and add the Search declaration. If you forget this, you get an exception when
executing the previous code.

You can use SearchPane the same way. In addition to the querysubmitted event, you also
have a suggestionsrequested event and a showOnKeyboardInput property, with which you
can make sure that the Search charm opens when a user starts typing and you can suggest
search results.

You can’t use both a search box and the Search contract in one app. You need to decide
which type of search you want to implement and then choose one.

Searching and launching other apps
One of the design decisions that changed between Windows 8 and Windows 8.1 has to do
with search. Because search is such an important scenario, Windows 8 offers a unique location
to start searching that’s the same for all apps: the Search charm.

Based on feedback and telemetry, this design wasn’t the ideal situation the designers
originally imagined. With Windows 8.1, Microsoft improved on the search experience by
changing the following characteristics:

■■ Searching everywhere—files, apps, settings, and the web—is now the default when the
Search charm is invoked, which saves the step of switching targets.

■■ For in-app search, the recommendation is to implement a search control directly on
the app canvas. The WinJS.UI.SearchBox control is included in WinJS for this purpose.

■■ For apps that want to provide a search capability but aren’t yet prepared to provide
a full in-app experience, you can use a simple button that invokes the Search charm
directly and work with the Search contract from there. In this case, the Search charm is
scoped to the app by default instead of “everywhere.”

A user can change the target of the Search charm to files, settings, or the Internet. The
capability to search other apps has been removed as of Windows 8.1.

Understanding these changes in the exam is important. By default, your app should now
use a search box for an in-app experience.

Providing and constraining search within an app
As a result of the design changes mentioned in the previous section, you should limit your
search results and suggestions to your in-app data. In Windows 8, search would go over
multiple apps and even the Internet.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	82	 CHAPTER 2	 Develop Windows Store apps

With the newly designed search box, your in-app search should limit its results to in-app
results. If it makes sense in the context of your app, you might choose to add web results to
your in-app results.

This is true when using the recommended search box, but also when using the Search
charm launched from within your app.

Providing search result previews
In the first section of this objective, you learned about adding query suggestions to both
SearchBox and SearchPanel. You can also add result suggestions to help users. These sugges-
tions, which are more specific to what the user is looking for, immediately link to a specific
search result. Figure 2-13 shows an example of both query and result suggestions in the
Windows Store. The result suggestions are shown at the top; after a separator, the query
suggestions display.

FIGURE 2-13  The query and result suggestions when searching in the Windows Store

When working with the SearchBox control, you can use the suggestionsrequested event
to handle query suggestions. The searchSuggestionCollection object that you get past as an
event argument can be used to add query suggestions, result suggestions, and separators.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement search	 CHAPTER 2	 83

The following code shows an example:

function suggestionsRequestedHandler(eventObject) {
 var queryText = eventObject.detail.queryText,
 suggestionCollection = eventObject.detail.searchSuggestionCollection;

 var imageUri = new Windows.Foundation.Uri("ms-appx:///images/image.png");
 var imageSource = Windows.Storage.Streams.RandomAccessStreamReference.
 createFromUri(imageUri);

 suggestionCollection.appendResultSuggestion("text", "detailText", "tag",
 imageSource, "imageAlternateText");

 suggestionCollection.appendSearchSeparator("");
 suggestionCollection.appendQuerySuggestion(queryText + "suggestion");
}

By using the appendResultSuggestion method, you can add a result suggestion for users.
Next to some string parameters, this method also expects a RandomAccessStreamReference
that points to an image that you want to display next to the result suggestion. This image
should be 40 × 40 pixels; otherwise, Windows scales it for you. This image can be created
from another image that you have somewhere in your app package by using an URI that
points to the location of your image.

After adding a separator, you can then add any query details you have. When a user
selects a query result, Windows uses this text and raises the querysubmitted event. But when
selecting a result suggestion, the user expects to be taken to the item directly instead of the
search results page.

You can handle result selections by subscribing to the resultsuggestionchosen event:

searchBox.addEventListener("resultsuggestionchosen", resultSelectedHandler);

This event gets an instance of SearchBoxResultSuggestionChosenEventArgs that has a tag
property set to the value of tag used when adding the result suggestion.

SearchPane has the same functionality. By subscribing to the onsuggestionsrequested
event and onresultsuggestionchosen, you can implement the same functionality as for
SearchBox.

EXAM TIP

Make sure that you understand that responding to a result suggestion should show the
result page instead of the search page.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	84	 CHAPTER 2	 Develop Windows Store apps

Implementing activation from within search
Chapter 1 discussed the life cycle of an app. When an app is launched, you can check the
ActivationKind enumeration for the reason why it launched. You can see whether a user
launched your app from the Search charm with the following code:

if (eventObject.detail.kind ===
 Windows.ApplicationModel.Activation.ActivationKind.search) {
 if (eventObject.detail.queryText === "") {
 // No query. Show the standard landing page
 } else {
 // Show search results
 }
}

When your app is activated through search, you first see whether the user entered any
query text. If not, the user just wants to open your app. If a query text is available, you can
immediately go to the search results page.

EXAM TIP

The activated event and the ActivationKind property are very important when it comes to
working with all contracts and charms that Windows supports. Become familiar with this
event and make sure that you understand the different values of ActivationKind.

Configuring search contracts
Windows uses the app manifest to check the permissions that your app requires. If your app
doesn’t request a permission for a feature, it can’t use that feature.

To use in-app search with SearchBox, you don’t need a contract. To integrate with the
Search charm, however, you have to create an explicit declaration in your app manifest to
request permission.

Figure 2-14 shows the Search declaration in the App Manifest Designer.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement search	 CHAPTER 2	 85

FIGURE 2-14  The App Manifest Designer showing the Search declaration

Executable and Entry Point are specific to C++ apps. In your JavaScript app, you don’t need
to configure them. The Start Page is specific to JavaScript apps. However, when using it in
combination with the Search declaration, it doesn’t do anything.

Thought experiment 
Choosing between SearchBox and SearchPane

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are designing a recipe app, and you are certain that your app needs search. You
have to choose between using SearchBox or using SearchPane. With that in mind,
answer the following questions:

1.	 What are the differences between SearchBox and SearchPane?

2.	 Describe a situation in which you would use SearchBox and describe a situation
in which you would use SearchPane.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	86	 CHAPTER 2	 Develop Windows Store apps

Objective summary
■■ SearchBox can be used for in-app search.

■■ SearchPane can be used with the Search charm. You can’t use both SearchBox
and SearchPane in one app. When using SearchPane, you have to add the Search
declaration to the app manifest.

■■ You can provide query and result suggestions to help users.

■■ Your app can be activated from search.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are trying to access SearchPane in your app. When you try to add a handler for the
querysubmitted event, your app crashes with an Access Is Denied error. What should
you do?

A.	 Run your app as administrator.

B.	 Use SearchBox instead of SearchPane.

C.	 Use the onsuggestionsrequested event.

D.	 Add a Search declaration to the app manifest.

2.	 Your app helps users find information about ingredients. A user searches for the text
“garl”, and you want to provide search suggestions. What should you do? (Choose all
that apply.)

A.	 Add a separator.

B.	 Add a query suggestion for “garl”.

C.	 Add a query suggestion for “garlic”.

D.	 Add a result suggestion for “garlic”.

3.	 You have a web service that returns XML suggestions to your app, and you use the
SearchBox control. You want to use those suggestions and display them to the user.
Which event should you use?

A.	 suggestionchosen

B.	 resultsuggestionsrequested

C.	 querysuggestionsrequested

D.	 suggestionsrequested

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement Share in an app	 CHAPTER 2	 87

Objective 2.4: Implement Share in an app

How often do you share data? Maybe you are reading an interesting article and you copy the
URL to an email. Or you see a funny picture and you want to share it on Twitter. Or you want
to share your new high score with friends.

The possibilities are endless. Microsoft understands that sharing data is an important part
of working with apps, and that is why Microsoft designed a complete infrastructure for shar-
ing data. You can help users easily share content they find in your app, and you can design
your app so other apps can share data with your app.

It all works together to make sure that apps become more popular and can “win as one.”
This objective shows you how to share data.

This objective covers how to:
■■ Use the DataTransferManager class to share data with other apps

■■ Accept sharing requests by implementing activation from within Share

■■ Limit the scope of sharing using the DataPackage object

■■ Implement in-app Share outside of the Share charm

■■ Use web links and application links

Using the DataTransferManager class to share data with
other apps
The most prevalent Share scenario is sharing data from your app to other apps. In such a
scenario, your app acts as a Share source (the next section discusses being a share target).

To initiate a Share action, you need a reference to the DataTransferManager class:

var dataTransferManager =
 Windows.ApplicationModel.DataTransfer.DataTransferManager.getForCurrentView();

You don’t have to add a declaration to your app manifest to share data from your app.
When you have an instance of the dataTransferManager, you can add an event handler for the
datarequested event. This event is fired whenever the user opens the Share charm.

The following code shows a simple example:

function registerForShare() {
 var dataTransferManager = Windows.ApplicationModel.DataTransfer.
 DataTransferManager.getForCurrentView();
 dataTransferManager.addEventListener("datarequested", shareTextHandler);
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	88	 CHAPTER 2	 Develop Windows Store apps

function shareTextHandler(e) {
 var request = e.request;
 request.data.properties.title = "Title for share";
 request.data.properties.description = "Description of share";
 request.data.setText("Hello Share!");
}

When you call the registerForShare method from the activated event, your app is set up
for Share. Figure 2-15 shows what the Share charm looks like when using this code.

FIGURE 2-15  The Share charm with sample content

Your datarequested handler gets an event object of type DataRequestedEventArgs. The
only property this object has is request, which is the object you use to supply the data you
want to share.

You can share different data formats. In the previous example, you saw how to share some
text. The formats you can share are these:

■■ Text

■■ Link

■■ HTML

■■ File

■■ Single

■■ Multiple files and images

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement Share in an app	 CHAPTER 2	 89

MORE INFO  CUSTOM FORMATS

You can create custom formats that are based on a published schema or on a schema that
you create and publish. For more information, see http://msdn.microsoft.com/en-us/library/
windows/apps/hh750306.aspx.

To configure what data to share, use the request.data property. This object has the
following methods that you can use to set data:

■■ SetApplicationLink  Sets the application link that a DataPackage object contains

■■ SetBitmap  Sets the bitmap image contained in the DataPackage object

■■ SetData  Sets the data contained in the DataPackage object in a RandomAccessStream
format

■■ SetDataProvider  Sets a delegate to handle requests from the target app

■■ SetHtmlFormat  Adds HTML content to the DataPackage object

■■ SetRtf  Sets the Rich Text Format (RTF) content contained in a DataPackage object

■■ SetStorageItems(IIterable(IStorageItem))  Sets the files and folders contained in a
DataPackage object

■■ SetStorageItems(IIterable(IStorageItem), Boolean)  Adds files and folders to a
DataPackage object

■■ SetText  Sets the text contained in a DataPackage object

■■ SetUri  Sets the URI contained in a DataPackage object

■■ SetWebLink  Sets the web link contained in a DataPackage object

By using these methods, you can share all kinds of data with other apps.

Your app might have data to share that takes some time to process. If you put all the logic
to create those items in your datarequested handler, activating the Share charm might take
much too long.

You can use deferring to avoid this problem. Instead of creating the data in your
datarequested handler, specify a method that the target app can request whenever the data
is needed by using the setDataProvider method on the DataPackage object. This method
expects the format that you want to share and a method that can be called whenever the
target needs the data:

request.data.setDataProvider(Windows.ApplicationModel.DataTransfer.StandardDataFormats.
 bitmap, onDeferredImageRequested);

In this case, you create a deferral for an image request, which gives your method the time
to process the image and send it to the share target when required.

Remember that this is different from executing a method asynchronously. To process an
asynchronous method in your datarequested handler, use the request.getDeferral method.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/hh750306.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh750306.aspx

ptg14200515

	90	 CHAPTER 2	 Develop Windows Store apps

After completing your asynchronous operation, call deferral.complete to signal to Windows
that your Share data is ready.

Accepting sharing requests by implementing activation
from within Share
In addition to sharing content from your app with other apps, you can configure your app to
be a share target. Other apps can then share content with your app, and your app suddenly
shows up when users are working with other apps.

To become a share target, you have to configure the app manifest. When your app is
installed, Windows then registers it as a share target, and your app shows up in the Share
charm.

Figure 2-16 shows the declaration for the Share contract.

FIGURE 2-16  The Share declaration in the App Manifest Designer

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement Share in an app	 CHAPTER 2	 91

To configure your app as a share target, define the data formats that your app supports.
Figure 2-16 shows a format of text and URI. Whenever an app wants to share these types of
data, your app will show up in the share targets list.

You also see a value for the Start page, which is the HTML page that Windows shows when
your app is selected as a share target.

As you saw in previous sections, Windows supports different ways of activating your app.
One way is as a share target. Whenever your app is registered as a share target, you should
check the ActivationKind like this:

app.onactivated = function (args) {
 if (args.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.
shareTarget) {
 // initialize view for share
 }
};

When your app is activated through Share, you get a shareOperation object passed as an
argument to your activated method: args.detail.shareOperation. This object contains the data
package that an app wants to share with you. It also lets you give progress reports to users
when the share operation is taking too much time.

For example, when an app wants to share some text with your app, you can use the
following code:

var shareOperation = eventObject.detail.shareOperation;
if (shareOperation.data.contains(
 Windows.ApplicationModel.DataTransfer.StandardDataFormats.text)) {
 shareOperation.data.getTextAsync().done(function (text) {
 // use text
 }, function (e) {
 // handle error
 }
 });
}

In your Share UI, you need a button to process your share logic. That code is completely
custom for your application.

The easiest way to get started implementing the share target is to open the dialog box for
adding a new item to your application and choosing Share Target Contract. It adds HTML,
JavaScript, and CSS files to your app that implement a basic UI for sharing. It also adds a Share
Target declaration to your manifest with a data format of text and URI.

MORE INFO  SHARING CONTENT TARGET APP SAMPLE

The sharing content target app sample provided by Microsoft shows how your app can
receive content from another app. You can find the sample at http://code.msdn.microsoft.
com/windowsapps/Sharing-Content-Target-App-e2689782.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782
http://code.msdn.microsoft.com/windowsapps/Sharing-Content-Target-App-e2689782

ptg14200515

	92	 CHAPTER 2	 Develop Windows Store apps

EXAM TIP

Make sure you understand the difference between being a share source and a share target.
Know when to use each one and how to implement both scenarios.

Limiting the scope of sharing using the DataPackage object
Data can be shared in multiple different data formats. Windows offers the following formats
that you can use:

■■ Bitmap is used for sharing images.

■■ HTML is used for sharing HTML content.

■■ Rich Text Format (RTF) is used for sharing RTF content.

■■ Storage Items is used for sharing files.

■■ Text is used for sharing plain text.

■■ URI is used for sharing URIs.

When looking at this list and thinking about an app you are planning to develop, you
probably see some potential candidates that you can use in your app. However, not all apps
find all data formats useful. Sharing HTML content from your music player? Or sharing files
from a recipe app? Maybe those scenarios are useful for your app, but you should think
carefully about the items you want to share.

You share data from your app by using the DataPackage class, which has several methods
that you can use to initialize your DataPackage:

■■ SetApplicationLink  Sets the application link

■■ SetBitmap  Sets the bitmap image contained in the DataPackage object

■■ SetData  Sets the data contained in the DataPackage object in a RandomAccessStream
format

■■ SetDataProvider  Sets a delegate to handle requests from the target app

■■ SetHtmlFormat  Adds HTML content to the DataPackage object

■■ SetRtf  Sets the RTF content contained in a DataPackage object

■■ SetStorageItems  Sets the files and folders contained in a DataPackage object

■■ SetText  Sets the text contained in a DataPackage object

■■ SetUri  Sets the URI contained in a DataPackage object

■■ SetWebLink  Sets the web link contained in a DataPackage object

By choosing the correct method, you can specify the type of data you want to share, which
determines which apps show up in the Share charm.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement Share in an app	 CHAPTER 2	 93

Implementing in-app Share outside of the Share charm
The Share charm, which is always available for users to activate, is useful when they decide to
share some data that your app has to offer.

In certain scenarios you might want to stimulate users to share something. Maybe they
have just achieved a new high score in your game, and you want them to share this with their
friends (hoping to attract new users to your app!).

To help them, you can activate the Share charm directly from your app with the following
line of code:

Windows.ApplicationModel.DataTransfer.DataTransferManager.showShareUI();

Figure 2-17 shows a very simple UI. When you click the Share text, the Share charm opens,
and you see the title and description that you configure in your app. The user can then select
the app that should act as a share target.

FIGURE 2-17  Opening the Share charm directly from within an app

Using web links and application links
To increase the visibility of your app, Microsoft not only adds your app to the Windows Store
but also generates a webpage that describes your app. Figure 2-18 shows an example: the
webpage for the Skype app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	94	 CHAPTER 2	 Develop Windows Store apps

FIGURE 2-18  Internet Explorer shows the webpage for the Windows Store Skype app

The good thing about this webpage is that whenever a user opens the page on a Windows
8 device, the Windows Store is automatically launched and shows the app page directly in
the store. These web links allow you to share a normal URL with users to showcase your app.
When users with Windows 8 click your link, they are taken to the store. Users can just view the
webpage and share the URL with others.

Application links are a little different because they expect the user to be on a Windows 8
device and directly link to the store. Application links can be useful when you link to another
app from your own app. Because users are already running your app, you know that they
have a Windows 8 device, and you can skip the part where you first launch their browser with
a web link and then take them to the Windows Store.

An application link that shows an app listing page has the following format:

ms-windows-store:PDP?PFN=

The Package Family Name (PFN) is unique for your app. You can find it in Visual Studio
or in the app listing page such as the one shown in Figure 2-18. When you open the HTML
source of the Skype app listing page, you find the following line:

var packageFamilyName = 'Microsoft.SkypeApp_kzf8qxf38zg5c';

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement Share in an app	 CHAPTER 2	 95

It is the PFN that you can use to link directly to Skype. Of course, you can use the same
technique to link to whatever package is in the Windows Store.

In addition to displaying an app listing page, you can process the following with the
Windows Store:

■■ Publisher  Opens the page displaying all apps from a publisher

■■ Updates  Opens the Windows Store updates page

■■ Search  Runs a search query and displays the results

■■ PDP  Opens an app’s listing page

■■ Review  Opens the “Write a review” page of an app’s listing

Thought experiment 
Sharing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are building a recipe app, and you wonder whether share is something your app
should support.

1.	 Should you make the app a share source?

2.	 Should you make the app a share target?

Objective summary
■■ The DataTransferManager class is crucial for a share source or share target.

■■ By using a DataPackage object, you can specify the data that you want to share with
other apps.

■■ By adding a Share declaration, you can respond to activation through share and
become a share target.

■■ Think about the data formats you want to support in your app and make sure that they
make sense to the user.

■■ You can directly activate share from within your app by calling showShareUI on the
DataTransferManager.

■■ Through web and application links, you can share URIs with users so they can find your
app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	96	 CHAPTER 2	 Develop Windows Store apps

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Your app should act like a share source. You are sharing some text data with other
apps. What should you do? (Choose all that apply.)

A.	 Add a Share declaration to your manifest.

B.	 Listen for the datarequested event.

C.	 Initialize a data package with the data you want to share.

D.	 Add a deferral to load the data for your share whenever required.

2.	 You want to add a button to your UI that shows the Share charm whenever a user
clicks it. What do you do?

A.	 You can’t add a button for share in your UI. Users should use the Search charm.

B.	 You can create a DataPackage object in the onclick of the button and configure it
with the data you want to share.

C.	 You can call showShareUI on the DataTransferManager to show the Share charm.

D.	 You can use an application link in your app that links to the Share charm.

3.	 Your app acts as a share target. What should you do?

A.	 Listen to the sharetargetedactivated event.

B.	 Listen to the activated event and check the ActivationKind.

C.	 Listen to the datarequested event.

D.	 Listen to the deferallsharerequest event.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Manage application settings and preferences	 CHAPTER 2	 97

Objective 2.5: Manage application settings and
preferences

The Settings charm offers a central location in which users can configure your app. Windows
adds some default content to the Settings charm such as a rate and review option. Your app
can add other options to the Settings charm and save the changes so they are synced across
user devices.

This objective shows you how to use the Settings charm in your apps.

This objective covers how to:
■■ Choose which application features are accessed in AppSettings

■■ Add entry points for AppSettings in the Settings window

■■ Create settings flyouts using the SettingsFlyout control

■■ Add settings options to the SettingsFlyout control

■■ Store and retrieve settings from the roaming app data store

Choosing which application features are accessed in
AppSettings
When you install your app through the Windows Store, Windows automatically adds two
sections to your Settings charm:

■■ Rate And Review

■■ Permissions

You can see an example of those two sections in Figure 2-19. When your app is not
installed through the Windows Store, there is no Rate And Review option in the Settings
charm.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	98	 CHAPTER 2	 Develop Windows Store apps

FIGURE 2-19  The Settings charm shows the Rate And Review and Permissions settings

The additional settings are entirely up to you. You should generally think about settings as
those that change frequently and those that don’t.

For example, users of a paint app frequently change the size and types of brushes, but
they probably configure the metric system only once. If a setting is part of the normal work-
flow, it should be in the app bar. If it is a setting that changes infrequently, you should put it
in the Settings charm.

Items that definitely belong in the Settings charm are informational items such as the app’s
privacy policy, help, version, and copyright information.

Adding entry points for AppSettings in the Settings
window
The Settings charm doesn’t contain settings; instead, it shows the groups of settings in your
app and allows you to navigate to them. These settings groups are called entry points.

You can add entry points with the WinJS.Application.onsettings event, which is raised
whenever the user launches the Settings charm. In your event handler, you can add additional
application commands and use them to populate the Settings charm:

app.onsettings = function (e) {
 e.detail.applicationcommands = {
 "defaultsDiv": { href: "html/DefaultSettings.html", title: "Defaults" },
 "helpDiv": { href: "html/HelpUI.html", title: "Help" }
 };
 WinJS.UI.SettingsFlyout.populateSettings(e);
}

This code adds two entry points to the Settings charm: Defaults and Help. Each points to a
different HTML page that contains the actual settings.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Manage application settings and preferences	 CHAPTER 2	 99

It is a best practice to add no more than four different sections to a Settings charm. You
should group settings as much as possible and give them a descriptive, one-word label. If you
don’t have a name for your group, name it Default.

From within your application, you can link directly to specific sections in the Settings
charm. Suppose that you want to add a Help button to your app bar that should show the
Help section in the Settings charm when clicked. You can do it with the following code:

document.getElementById("showHelp").addEventListener('click', function () {
 WinJS.UI.SettingsFlyout.showSettings("helpDiv", "html/HelpUI.html");
});

Make sure that the path and ID match that of the application command in the onsettings
event. To make your code more maintainable, move those IDs and paths to separate variables
and use them when referring to sections in the Settings charm.

If a specific section group is not useful in a scenario, don’t hide the label; instead, disable it
so the user can’t select it.

EXAM TIP

Never add a setting directly to the main settings page. Always use entry points that open
SettingsFlyout controls with the actual settings.

Creating settings flyouts using the SettingsFlyout control
The setting flyouts that you add as HTML pages should follow a few strict rules that describe
their appearance and behavior:

■■ Always launch a settings flyout from entry points in the Settings pane.
■■ Use a light-dismiss surface that appears on top of the main app content and

disappears when the user clicks outside the flyout or resizes the app. Closing the flyout
automatically lets people change a setting quickly and get back to the app.

■■ Make sure that the settings flyout appears on the same side of the screen as the
charms and Settings pane. Use the SettingsEdgeLocation property to determine which
side of the screen the Settings charm appears on.

■■ Slide the flyout in from the same side of the screen as your Settings pane instead of
from the top or bottom of the screen.

■■ A flyout must be full screen height, regardless of orientation, and should be narrow
(346 pixels) or wide (646 pixels). Choose the width that’s appropriate for the content;
don’t create custom sizes.

■■ The flyout header should include a back button, the name of the entry point that
opened the flyout, and the app’s icon.

■■ The header background color should be the same as the background color of your tile.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	100	 CHAPTER 2	 Develop Windows Store apps

■■ The border color should be the same color as the header, but 20 percent darker.
■■ Display settings content on a white background.

Fortunately, Microsoft added a WinJS.UI.SettingsFlyout control to help implement all these
rules. A basic template for your settings flyout can look like this:

<div id="defaultsDiv" data-win-control="WinJS.UI.SettingsFlyout"
 aria-label="Defaults Settings flyout"
 data-win-options="{settingsCommandId:'default',width:'narrow'}">
 <div class="win-header" style="background-color:#464646">
 <button type="button" onclick="WinJS.UI.SettingsFlyout.show()"
 class="win-backbutton"></button>
 <div class="win-label">Defaults</div>
 <img src="ms-appx:///images/smalllogo.png"
 style="position: absolute; right: 40px;" />
 </div>
 <div class="win-content">
 {App defaults content goes here}
 </div>
</div>

The div defines that it is a control of type WinJS.UI.SettingsFlyout. It also adds a header
with a back button, which lets the user return to the Settings charm overview.

You can put this template inside a HTML page that defines the HTML, head, and body
tags. You can also link to CSS and JavaScript files that are specific to your settings flyout.

MSDN helps you by defining some guidelines that are important when working with
settings. You don’t have to memorize them all, but make sure that you understand the
general rules and know how to apply them for your exam.

Some general principles include these:

■■ Create entry points for all app settings in the Settings pane.

■■ Keep your settings simple. Define smart defaults and keep the number of settings to a
minimum.

■■ If necessary, link from elements of your app’s UI to the Settings pane or deep-link to
a specific settings flyout. For example, you can link to your help settings flyout from a
Help button in the bottom app bar and from a Help entry point in the Settings pane.

■■ When a user changes a setting, the app should reflect the change immediately. Apply
settings changes instantly or as soon as a user is done interacting with the flyout.

■■ Use the WinJS.UI.SettingsFlyout control. This control implements the UI design guide-
lines by default.

■■ Don’t include commands that are part of common app workflow in app settings, such
as changing the brush color in an art app. These commands belong on an app bar or
on the canvas.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Manage application settings and preferences	 CHAPTER 2	 101

■■ Don’t use an entry point in the Settings pane to perform an action directly. Entry
points should open settings flyouts.

■■ Don’t use the Settings pane for navigation. When it closes, users should be in the same
place where they were when they clicked the Settings charm. The top app bar is a
more appropriate place for navigation.

■■ Don’t use the SettingsFlyout classes as all-purpose controls. They are intended only for
settings flyouts launched from entry points in the Settings pane.

When creating your entry points, keep the following in mind:

■■ Group similar or related options together under one entry point. Avoid adding more
than four entry points to your Settings pane.

■■ Display the same entry points regardless of the app context. If some settings are not
relevant in a certain context, disable them in the settings flyout.

■■ Use descriptive, one-word labels for your entry points whenever possible. For example,
for account-related settings, name the entry “Accounts” rather than “Account settings.”
If you want only one entry point for your settings, and the settings don’t lend them-
selves to a descriptive label, use “Options” or “Defaults.”

■■ If an entry point is linking directly to the web instead of a flyout, let the user know
with a visual clue—for example, “Help (online)” or “Web forums” styled as a hyperlink.
Consider grouping multiple links to the web into a flyout with a single entry point. For
example, an “About” entry point could open a flyout with links to your terms of use,
privacy statement, and app support.

■■ Combine less-used settings into a single entry point so that more common settings
each has its own entry point. Put content or links that only contain information in an
“About” entry point.

■■ Don’t duplicate the functionality in the “Permissions” pane. Windows provides this
pane by default, and you can’t modify it.

Adding settings options to the SettingsFlyout control
Now that you have added options to the Settings charm and created settings flyouts that are
shown whenever a user selects a label, you need to add some options to the flyouts to help
users configure your app.

When creating your settings flyout, think about good design. You shouldn’t create a
settings flyout that overwhelms users with many options and makes it hard for them to find
the particular option that they are looking for.

Instead, make sure that your settings flyout isn’t extremely long. Limit the scrolling to a
maximum of twice the screen height. Group the settings, add descriptive names, and don’t
create nested hierarchies of settings.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	102	 CHAPTER 2	 Develop Windows Store apps

Microsoft also created controls that you can use in your settings flyout:

■■ Toggle Switch  Users can set values on or off.

■■ Radio Button  Users can choose one item from a set of up to five mutually exclusive,
related options.

■■ Select Control  Users can choose one item from a set of six or more text-only items.

■■ Text Input Box  Users can enter text. Use the type of text input box that corresponds
to the type of text you get from the user, such as an email or password.

■■ Hyperlink  Users are taken to another page within the app or to an external website.
When a user clicks a hyperlink, the settings flyout is dismissed.

■■ Button  Users can initiate an immediate action without dismissing the current settings
flyout.

The following code shows an example of using these controls:

<div class="win-content">
 <div class="win-settings-section">
 <h3>Toggle switch</h3>
 <p>Use toggle switches to let users set Boolean values.</p>
 <div id="Toggle1" data-win-control="WinJS.UI.ToggleSwitch"
 data-win-options="{title:'Download updates automatically',checked:true}">
 </div>
 <div id="Toggle2" data-win-control="WinJS.UI.ToggleSwitch"
 data-win-options="{title:'Install updates automatically'}">
 </div>
 </div>
 <div class="win-settings-section">
 <h3>Push button</h3>
 <p>With a push button, users initiate an immediate action.</p>
 <label>Button label</label>
 <button type="button" onclick="WinJS.log &&
 WinJS.log('Clear history button pressed', 'samples', 'status')">
 Clear
 </button>
 </div>
 <div class="win-settings-section">
 <h3>Select control</h3>
 <p>Use the select control to allow users to select
 one item from a set of text-only items.</p>
 <label>State</label>
 <select aria-label="State select control">
 <option value="AK">Alaska</option>
 <option value="CA">California</option>
 <option value="CO">Colorado</option>
 <option value="HI">Hawaii</option>
 <option value="ID">Idaho</option>
 <option value="KS">Kansas</option>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Manage application settings and preferences	 CHAPTER 2	 103

 <option value="MT">Montana</option>
 <option value="NE">Nebraska</option>
 <option value="NV">Nevada</option>
 <option value="NM">New Mexico</option>
 <option value="ND">North Dakota</option>
 <option value="OR">Oregon</option>
 <option value="SD">South Dakota</option>
 <option value="TX">Texas</option>
 <option value="UT">Utah</option>
 <option value="WA" selected>Washington</option>
 <option value="WY">Wyoming</option>
 </select>
 </div>
 <div class="win-settings-section">
 <h3>Hyperlink</h3>
 <p>Use a hyperlink when the associated action will
 take the user out of this flyout.</p>
 <a href=http://go.microsoft.com/fwlink/?LinkID=190175
 target="fix_link_too">View privacy statement
 </div>
 <div class="win-settings-section">
 <h3>Text input box</h3>
 <p>Use a text input box to allow users to enter text.
 Set the type of the text input box according to the
 type of text you're capturing from the user (e.g. email or password).</p>
 <label>Email account</label>
 <input type="text" aria-label="Enter email account" />
 <button type="button" onclick="WinJS.log &&
 WinJS.log('Add email account button pressed',
 'samples', 'status')">Add</button>
 </div>
 <div class="win-settings-section">
 <h3>Radio button group</h3>
 <p>Lets users choose one item from a small set of mutually exclusive,
 related options.</p>
 <label>Video quality</label>
 <label><input type="radio" name="video" value="High" checked />High</label>
 <label><input type="radio" name="video" value="Medium" />Medium</label>
 <label><input type="radio" name="video" value="Low" />Low</label>
 </div>
</div>

Figure 2-20 shows what those controls look like when used in a settings flyout.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	104	 CHAPTER 2	 Develop Windows Store apps

FIGURE 2-20  The settings flyout shows basic controls

Your app should immediately respond to changes in the settings; a user shouldn’t have to
push a button to apply the changes.

You can use the JavaScript file of your flyout to attach events to all your setting controls.
By responding to those events, you can then call into your app and apply the new settings. A
simple example consists of a toggle that you attach to:

(function () {
 "use strict";
 var page = WinJS.UI.Pages.define("/html/DefaultSettings.html", {

 ready: function (element, options) {
 document.getElementById('Toggle1').
 addEventListener('change', toggleChanged);
 },
 });
 function toggleChanged(arg) {
 var toggleControl = arg.target.winControl;
 WinJS.Application.updateSettings(toggleControl.checked);
 }
})();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Manage application settings and preferences	 CHAPTER 2	 105

This code defines the JavaScript that runs for DefaultSettings.html. It attaches a handler to
the change event of a toggle. When this event is raised, it calls a custom defined method on
the application:

app.updateSettings = function (arg) {
 WinJS.log && WinJS.log(arg);
}

This method outputs only the new settings value to the log, but you see how to easily
write code to update the UI.

Storing and retrieving settings from the roaming app
data store
Of course, you have to save the changes users make to app settings somewhere. In a
Windows Store app, you have three locations in which you can save data: local, roaming, and
temporary.

Temporary data can be deleted by the operating system at any time. Local data is
persistent between updates and stays on the same device.

When you save settings, consider the roaming app data store. Roaming data is automati-
cally synced between users’ devices. So if you store your app settings in the roaming app data
store, and a user installs your app on another device, the user’s favorite settings are automatically
loaded. Syncing settings between devices creates the uniform experience that Windows Store
apps should offer.

Not all data is suitable to be saved in a roaming app data store. Data that is specific to the
device, such as local paths, shouldn’t be saved to a roaming location.

You can access different data stores through the Windows.Storage.ApplicationData
property. You can use the RoamingSettings property to store and retrieve settings for your app.

You can easily change the toggle control of the previous example to use RoamingSettings:

(function () {
 "use strict";

 var roamingSettings = Windows.Storage.ApplicationData.current.roamingSettings;
 var page = WinJS.UI.Pages.define("/html/DefaultSettings.html", {
 ready: function (element, options) {
 document.getElementById('Toggle1')
 .addEventListener('change', toggleChanged);
 var value = roamingSettings.values["toggleState"];
 document.getElementById("Toggle1").winControl.checked = value;
 }
 });

 function toggleChanged(arg) {
 var toggleControl = arg.target.winControl;
 roamingSettings.values["toggleState"] = toggleControl.checked;
 }
})();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	106	 CHAPTER 2	 Develop Windows Store apps

By using values[propertyname], you can read and write properties to and from the
roaming settings. You can also remove a value from your roaming settings by using
roamingSettings.values.remove(settingName).

Roaming settings sync across devices, so settings sometimes change because they are
updated on other devices. Windows.Store.ApplicationData exposes a datachanged event that
you can attach to listen to changes in your roaming settings:

Windows.Storage.ApplicationData.current.addEventListener("datachanged",
roamingDataChangedHandler);

Inside this handler, you can read the new values that were written to the roaming settings
object and then update your app accordingly.

Remember that there is a maximum amount of data you can store in the roaming settings
(You can check it by using the ApplicationData.RoamingStorageQuota property.) If you add
more data than is allowed, synchronization across devices is paused until you have removed
data.

Other ideas to keep in mind when working with roaming settings include these:

■■ Assuming that there is network connectivity, an app’s roaming state is roamed within
30 minutes on an active machine. It is also roamed immediately when the user logs on
or locks the machine.

■■ Locking the machine is always the best way to force a sync to the cloud. Note that
if the cloud service is aware of only a single device for a user (that is, for any given a
Microsoft account), synchronization with the cloud service happens only once per day.
When the service is aware that the user has multiple machines, it begins synchronizing
within the 30-minute period.

■■ If the app is uninstalled on all machines except one, synchronization reverts to the
longer period.

■■ When saving roaming state, you can write values whenever you like, such as when
those settings change. Don’t worry about grouping your changes; Windows has a
built-in debounce period. This means that if subsequent updates occur over a small
period of time, Windows will combine those changes into one update of the roaming
state to reduce overall network traffic.

■■ If you have a group of settings that must be roamed together, manage it as a composite
setting in your roamingSettings container.

■■ Files you create within the roamingFolder container are not roamed as long as you
have the file open for writing (that is, as long as you have an open stream). For this
reason, it’s a good idea to make sure that all streams are closed when the app is
suspended.

■■ Windows allows each app to have a “high priority” setting that is roamed within
one minute, thereby enabling apps on multiple devices to stay much more closely
in sync. This one setting (which can be a composite setting) must exist in the root
of your roamingSettings container with the name HighPriority: roamingSettings.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Manage application settings and preferences	 CHAPTER 2	 107

values[“HighPriority”]. The setting must also be 8 KB or smaller to maintain the priority.
If you exceed 8 KB, the setting roams with normal priority. (Note that the setting must
be a single or composite setting; a settings container with the same name roams with
normal priority.)

■■ On a trusted PC, general user settings such as the Start page configuration are auto-
matically roamed independently of the apps. They include encrypted credentials saved
by apps in the Credential Locker (if enabled in PC Settings). Apps should never attempt
to roam passwords themselves; they should use the Credential Locker for this

■■ Apps that create secondary tiles can indicate whether such tiles should be copied to a
new device when the app is installed.

■■ When multiple state versions are in use by different versions of an app, Windows
manages each version of the state separately; newer state versions aren’t roamed to
devices with apps that use older state versions. So it is a good idea to be less aggres-
sive in versioning your state because it breaks the roaming connection between apps.

■■ The cloud service retains multiple versions of roaming state as long as multiple ver-
sions are in use by the same Microsoft account. Older versions of the roaming state are
eligible for deletion only when all instances of the app have been updated or unin-
stalled.

■■ When an updated app encounters an older version of roaming state, it should load it
according to the old version but then call setVersionAsync to migrate to the new version.

■■ Avoid using secondary versioning schemes within roaming state that introduce struc-
tural differences without changing the state version through setVersionAsync. Because
the cloud service manages the roaming state by this version number, and because
the last writer always wins, a version of an app that expects to see some extra bit of
data (and saved it there) might find that it has been removed because a slightly older
version of the app didn’t write it.

■■ Even if all apps are uninstalled from a user’s devices, the cloud service retains roaming
state for “a reasonable time” (maybe 30 days). So if users reinstall the app within that
time period, their settings are still intact. Use the clearAsync method to avoid retention
and explicitly clear roaming state from the cloud.

■■ To debug roaming state, check out the Roaming Monitor Tool available in the Visual
Studio Gallery. It provides status information on the current sync state, a Sync Now
button to help with testing, a browser for roaming state, and a file editor. (At the time
of this writing, this tool is available only for Visual Studio 2012 for Windows 8 and has
not been updated for Windows 8.1; it might appear directly in Visual Studio and not as
an extension.)

EXAM TIP

Make sure that you understand how roaming settings work and in which scenarios you
would use them.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	108	 CHAPTER 2	 Develop Windows Store apps

Thought experiment 
Configuring your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are implementing an app for a popular restaurant. The restaurant’s owners
want users to be able to place orders through the app, and the app should keep
track of user preferences and make special offers based on their purchase history.

1.	 Users require an account to log on to the app. How should they manage their
account?

2.	 Should you store the user preferences in the roaming settings?

Objective summary
■■ The Settings charm should be used for all settings that are not part of the user’s

workflow.

■■ Add entry points for all groups of settings in your app. You do so by subscribing to the
onsettings event and populating the application commands with the commands you
want to add to the Settings pane.

■■ For each group of settings, use a SettingsFlyout control that contains the actual
controls that configure your settings.

■■ You can use roaming settings to automatically synchronize settings across user devices.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You want to add an option to configure the color theme of your app. What should you
do?

A.	 Add a button to the app bar that switches color themes. Immediately apply the
change.

B.	 Add a switch button directly to the Settings charm, which frees a user from having
to open a flyout when you have only a couple of options.

C.	 Add a settings flyout in which a user can select a color theme from a list. Add an
apply button so the user can save changes.

D.	 Add a settings flyout in which a user can select a color theme from a list.
Immediately apply the change.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.6: Integrate media features	 CHAPTER 2	 109

2.	 Your app integrates with the file picker, and you want to save the most-used paths for
the user to offer a quick way to get there. Where can you save this data?

A.	 RoamingFolder

B.	 RoamingSettings

C.	 LocalSettings

D.	 LocalFolder

3.	 Your settings flyout is 646 pixels wide and is too small for the content you want to
show. What should you do?

A.	 Use CSS to set the width of the flyout to auto size.

B.	 Set the flyout options to a width of wide.

C.	 Use CSS to set the width of the flyout to 1000px.

D.	 Rearrange your layout to make the content fit the 646 pixels.

Objective 2.6: Integrate media features

Now that apps are more mature, you see them moving from relatively simple data processing
apps to fully featured media apps. Microsoft recognizes this maturity and has added extra
support for all types of media, from images to video and audio.

This section shows you how to use different media features to give your app an extra spike.
You also learn about text-to-speech (TTS), which makes your app more accessible to all kinds
of users.

This objective covers how to:
■■ Support DDS images

■■ Implement video playback

■■ Implement XVP and DXVA

■■ Implement TTS

■■ Implement audio and video playback using HTML5 DRM

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	110	 CHAPTER 2	 Develop Windows Store apps

Supporting DDS images
DirectDraw Surface (DDS) is a file format created by Microsoft for storing image data so that
it can be easily rendered by a graphics processing unit (GPU).

Using DDS files improves the performance of an image-heavy app because it doesn’t
involve the CPU. DDS files can store different types of data; support layering; and support
mipmaps (precalculated, optimized collections of images that accompany a main texture,
intended to increase rendering speed and reduce aliasing artifacts), cube maps (using the six
faces of a cube as a map shape), volume maps (used for two-dimensional [2-D] projections
of three-dimensional [3-D] data sets), and texture arrays. Most of these features are used in
games that rely on DirectX for rendering.

With the release of Windows 8.1, Windows Store apps use DDS files. With WebGL (a
JavaScript application programming interface [API] that renders 3-D and 2-D graphics within
a browser), you can use the DDS file format for large textures with good performance.

The Windows Store samples contain a sample called a block compressed images sample,
which consists of a C++ project and a JavaScript Windows Store app.

Why C++? It is used for converting regular JPEG files to DDS files by adding the
ImageContentTask build customization to the project. When you start working with DDS files
for your own projects, you can copy the C++ project and use it to generate DDS files that
automatically follow the Windows Store instructions (correct block compression format and
alpha settings).

After you have generated DDS files, using them in your Windows Store apps is easy. By
using an HTML5 canvas object, you can first load the images and then draw them on the
canvas.

The following code is taken from the block compressed images sample:

var guitarPath = "BlockCompressedAssets\\guitar-transparent.dds";
var packageLocation = Windows.ApplicationModel.Package.current.installedLocation;
var guitar;

packageLocation.getFileAsync(guitarPath).then(function (file) {

 guitar = new Image();
 guitar.src = window.URL.createObjectURL(file, { oneTimeOnly: true });
 return packageLocation.getFileAsync(guitarPath);

})).then(function (file) {
 var context = document.getElementById("canvas").getContext("2d");
 context.drawImage(guitar, 0, 0);

});

This code first loads the image asynchronously and then gets a reference to the HTML
canvas and draws the image on it. Because you are drawing on a canvas, you can apply all
kinds of animations and other logic required for your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.6: Integrate media features	 CHAPTER 2	 111

MORE INFO  BLOCK COMPRESSED IMAGES SAMPLE

You can find the complete example at http://code.msdn.microsoft.com/windowsapps/
BlockCompressedImages-19830098/. You have to download the C++, JavaScript version
of the sample.

Implementing video playback
Playing video in your Windows Store app is easy. Because Windows Store apps with HTML,
JavaScript, and CSS run in Internet Explorer 11, you can use the advanced techniques that
HTML5 offers you.

The HTML5 tag you want to use is the <video> tag:

<video id="myVideo" src="http://www.mydomain.com/myclip.mp4" controls/>

After specifying the source of your video and the controls attribute, you see the display
shown in Figure 2-21.

FIGURE 2-21  The video tag shows a video of Margie's Travel with controls

You should include the width and height of your video as attributes on your video tag
so that Internet Explorer knows the size of your video before it is loaded and can correctly
calculate the layout of other items.

Your video object has methods, such as play and pause, for basic control of video. But you
can also use more advanced features such as adding subtitles, using multiple audio tracks (in
different languages, for example), and scaling video to the user’s screen.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/BlockCompressedImages-19830098/
http://code.msdn.microsoft.com/windowsapps/BlockCompressedImages-19830098/

ptg14200515

	112	 CHAPTER 2	 Develop Windows Store apps

MORE INFO  HTML MEDIA PLAYBACK SAMPLE

A sample that shows the different things you can do with video in your Windows Store app
can be found at http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-
3bdbe7c9.

Implementing XVP and DXVA
Transcoding video means that you convert one format to another format. The Media
Foundation Transcode Video Processor (XVP) defines standards that you can use to transcode
your videos.

Some of these formats, such as MP3 and MP4, are probably familiar to you. Transcoding
elements can be supported by DirectX Video Acceleration (DXVA), which means that your
GPU is used to help transcode your video.

Using the GPU makes your performance dependent on the device’s hardware. The XVP
added the MrfCrf444 mode, which always runs in software and does not use DXVA hardware
acceleration. What does this mean? The transcoding of your video to MrfCrf444 does not
depend on hardware acceleration—you get the same results across platforms, independent
of the underlying hardware.

MrfCrf444 runs entirely in software, so transcoding might take longer and use more
power. The benefit of using MrfCrf444 is that you don’t need any special hardware because
the converting is entirely done in software.

You can transcode videos by using the Windows.Media.Transcoding namespace. The
following code transforms a video from Mp4 to the new MrfCrf444 format:

// sourceFile and destFile are IStorageFile objects defined elsewhere.
var profile = Windows.Media.MediaProperties.MediaEncodingProfile.createMp4
 (Windows.Media.MediaProperties.VideoEncodingQuality.hd720p);
var transcoder = new Windows.Media.Transcoding.MediaTranscoder();
transcoder.videoProcessingAlgorithm =
 Windows.Media.Transcoding.MediaVideoProcessingAlgorithm.mrfCrf444;
transcoder.prepareFileTranscodeAsync(sourceFile, destFile, profile);

This code starts by creating a new profile specifying that you are dealing with an Mp4 file.
It then creates a new instance of MediaTranscoder and configures it to use the MrfCrf444
profile. The code then starts the transcoding, passing it an existing source file, the name and
location of the destination file you want to create, and the profile you want to use.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9
http://code.msdn.microsoft.com/windowsapps/Media-Playback-Sample-3bdbe7c9

ptg14200515

	 Objective 2.6: Integrate media features	 CHAPTER 2	 113

MORE INFO  TRANSCODING SAMPLE

A sample that shows how to implement transcoding between all types of formats can be
found at http://code.msdn.microsoft.com/windowsapps/media-transcode-sample-f7ba5269.

Implementing TTS
Text To Speech (TTS) was possible before the release of Windows 8.1 only by using an
external Internet service such as Text-To-Speech with Microsoft Translator Service.

Microsoft added the Windows.Media.SpeechSynthesis namespace in Windows 8.1. The
classes in this namespace help you take a string of text and convert it to an audio stream, so
the computer can then read any on-screen text to the user.

TTS can read plain text or a special XML format called Speech Synthesis Markup Language
(SSML). SSML uses special attributes to give instructions to the speech synthesizer, such as
how to read dates or numbers, where to add emphasis, and where to pause.

The following code shows an example of how to read some plain text to the user:

function readText() {
 var audio = new Audio();
 var synth = new Windows.Media.SpeechSynthesis.SpeechSynthesizer();

 synth.synthesizeTextToStreamAsync("Hello Exam Ref").then(function (markersStream) {
 var blob = MSApp.createBlobFromRandomAccessStream(
 markersStream.ContentType,
 markersStream);
 audio.src = URL.createObjectURL(blob, { oneTimeOnly: true });
 audio.play();
 });
}

This example creates a new SpeechSynthesizer class and then creates a temporary object
that contains the audio stream and plays it to the user.

Depending on your language settings, you have a couple of different voices installed (you
can view the voices on your device by searching for text to speech). The Text To Speech
dialog box shown in Figure 2-22 shows the installed languages and the capability to preview
them.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/media-transcode-sample-f7ba5269

ptg14200515

	114	 CHAPTER 2	 Develop Windows Store apps

FIGURE 2-22  The Speech Properties dialog box shows TTS options

You can choose different voices for your application by using the Windows.Media.
SpeechSynthesis.SpeechSynthesizer.allVoices property, which returns an array of voices
available on your device. By setting the SpeechSynthesizer.voice property, you can configure
which voice to use for TTS.

Reading SSML follows the same pattern. Suppose that you have the following piece of
SSML (taken from the Windows Store sample on TTS):

<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
 http://www.w3.org/TR/speech-synthesis/synthesis.xsd" xml:lang="en-US">
 This sentence has marks <mark name="mark1"/>Here and another mark here<mark
 name="mark2"/>
 This is an example of how to speak the word <phoneme alphabet="x-microsoft-ups"
 ph="S1 W AA T . CH AX . M AX . S2 K AA L . IH T">whatchamacallit</phoneme>.
 This is an example of how to use the say-as tag to say a date
 <say-as interpret-as="date:mdy">04/30/2013</say-as>
 This <say-as interpret-as="ordinal"> 4 </say-as> example is how to use the
 ordinal data type
</speak>

Instead of using synthesizeTextToStreamAsync, you use synthesizeSsmlToStreamAsync.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.6: Integrate media features	 CHAPTER 2	 115

Implementing audio and video playback using
HTML5 DRM
Digital Rights Management (DRM) is important when it comes to intellectually protected con-
tent. To use DRM-protected content in your app, use the MediaProtectionManager object,
which is responsible for handling access to protected media content. You can attach it to a
HTML video or audio tag or by using its API.

Start by creating a new MediaProtectionManager object:

var mediaProtectionManager = new Windows.Media.Protection.MediaProtectionManager();

Now you have to configure the media protection system so it can access the protected
content. You can configure it by using a special certificate or GUID that represents the protec-
tion system ID. You can also pass extra data to the protection system by using the properties
property:

mediaProtectionManager.properties["Windows.Media.Protection.MediaProtectionSystemId"] =
 '{F4637010-03C3-42CD-B932-B48ADF3A6A54}';

Attach the MediaProtectionManager instance to your video or audio element like this:

video.msSetMediaProtectionManager(mediaProtectionManager);

The MediaProtectionManager object exposes three events that you can handle when
something goes wrong:

■■ ComponentLoadFailed  Fired when the load of binary data fails

■■ RebootNeeded  Fired when a reboot is needed after the component is renewed

■■ ServiceRequested  Fired when the content protection system encounters an issue
and needs the app’s help

You should subscribe to these events to handle errors in accessing the DRM content. After
taking these steps, you can now point your video or audio element to the source of a DRM-
protected file. MediaProtectionManager gives you access to the content, and the file can be
played on the user’s device.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	116	 CHAPTER 2	 Develop Windows Store apps

Thought experiment
Designing an app that uses video and audio

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are creating an app that will use video and audio, and you are considering all
the possibilities Windows Store apps offer you.

3.	 Is it difficult to implement audio and video in a Windows Store app? How would
you start implementing it?

4.	 What are the advantages of DRM-protected content?

Objective summary
■■ DDS images can be used in Windows 8.1 apps.

■■ Video and audio playback is easy to implement by using video and audio HTML5 tags.

■■ Transcoding media can be done by using the MediaTranscoder class, which supports
different formats that can benefit from hardware acceleration when transcoding.

■■ TTS can be implemented in Windows Store apps by using the SpeechSynthesizer class,
which synthesizes plain text and SSML.

■■ DRM is important when working with video and audio content. You can access DRM-
protected content by using MediaProtectionManager.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You have lots of JPEG files that you want to use in a game you are developing. You
want to use those files as DDS files. What should you do? (Choose all that apply.)

A.	 Use C++ to draw the DDS images to an HTML5 canvas.

B.	 Convert the JPEG files to DDS files by using a JavaScript project.

C.	 Use JavaScript to draw the DDS images to an HTML5 canvas.

D.	 Convert the JPEG files to DDS files by using a C++ project.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.6: Integrate media features	 CHAPTER 2	 117

2.	 You have added a HTML5 video tag to your app. Your app now shows the video, but
doesn’t show play, pause, or other buttons. What should you do?

A.	 Add the buttons you want to your UI and use JavaScript to wire the buttons to
actions on the video element.

B.	 Showing buttons is not possible. The video element is completely self-contained
and can’t be manipulated to avoid piracy issues.

C.	 Add the buttons attribute to the video tag.

D.	 Add the controls attribute to the video tag.

3.	 You have some specialized XML that contains hints to the speech synthesizer on how
to read. Which method should you use to read this XML?

A.	 synthesizeTextToStreamAsync

B.	 synthesizeTextToStream

C.	 synthesizeSsmlToStreamAsync

D.	 synthesizeSsmlToStream

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	118	 CHAPTER 2	 Develop Windows Store apps

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 2.1: Thought experiment
1.	 Some examples include a meeting app in which you can invite people, a task planner

app in which you can collaborate on tasks, and a game in which you want to invite
people to play.

2.	 Although a less-common scenario, you shouldn’t dismiss it from the start. If your app
has contact with some external data source, it can be used to expose contacts. Maybe
you are building an intranet app to list all colleagues or you are connecting to some
social network that you can use to show people to the user.

Objective 2.1: Review
1.	 Correct answer: C

A.	 Incorrect: Your app doesn’t have to be running. Windows launches your app
whenever the user selects it as a contact picker.

B.	 Incorrect: You have to subscribe to the activated event, but your app is launched
by Windows.

C.	 Correct: To show up as a possible source of contacts, you have to declare this in
your manifest. Windows then registers your app upon installation.

D.	 Incorrect: You launch the contact picker only when your app needs contacts and
you want them to be selected from within another app.

2.	 Correct answer: B

A.	 Incorrect: This method is used when your app acts as a contact picker source and
you want to add a selected contact to the basket that gets returned to the app
that is looking for contacts.

B.	 Correct: This shows the contact picker allowing the user to select a single contact.

C.	 Incorrect: This would allow the user to select multiple contacts.

D.	 Incorrect: The pickContactAsync method is correct. The async postfix shows that
this method returns a promise and processes asynchronously.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 2	 119

3.	 Correct answer: C

A.	 Incorrect: This would filter the contacts after the user has left the contact picker.
You want to show only those contacts that have this field already filled in.

B.	 Incorrect: This would filter the contacts after the user has left the contact picker.
You want to show only those contacts that have this field already filled in.

C.	 Correct: By using a selection mode of field, you can specify the required field. In
this case, it is the email field.

D.	 Incorrect: A selection mode of contact shows all contacts. It doesn’t filter on
specific fields.

Objective 2.2: Thought experiment
1.	 By using contracts and charms, apps can integrate without knowing explicit details

about each other. This integration helps to fulfill the Microsoft design principle of “win
as one.”

2.	 Your app gains visibility when a user is using another app and sees that it integrates
with your app. It also makes using your app easier because users can work with it in a
familiar way.

3.	 A desktop application such as Microsoft Outlook could integrate with the contact
picker to select people to whom to send an email or invite for a meeting. Other apps
could benefit from the Share contract. Easily sharing documents, email, and images is
more natural with charm integration.

Objective 2.2: Review
1.	 Correct answer: C

A.	 Incorrect: If sharing is not an essential part of the user’s workflow, you should not
add a share button to the UI.

B.	 Incorrect: The Devices charm is for sending data to another device such as a
printer or TV; it is not for sending email.

C.	 Correct: The Share contract allows you to share data with any other app that can
receive your type of data (such as text).

D.	 Incorrect: The Share contract does not allow printing; the Devices contract
enables printing.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	120	 CHAPTER 2	 Develop Windows Store apps

2.	 Correct answer: B

A.	 Incorrect: The search box is the recommended way to implement search in
Windows 8.1.

B.	 Correct: The SearchBox control allows for a consistent in-app search implementation.

C.	 Incorrect: You should never create your own custom interface for search. Instead
use a SearchBox control

D.	 Incorrect: If searching is required for your app, you shouldn’t handle it outside of
your app.

3.	 Correct answer: A

A.	 Correct: A manifest declaration is required for your app to show up as a share
target.

B.	 Incorrect: All apps that implement the Share contract can act as a share target.
The Mail app is just one of the apps that implement the Share contract.

C.	 Incorrect: This is not required. When you configure the manifest correctly, your
app is registered as a share target on installation.

D.	 Incorrect: When the manifest is not configured, reinstalling the app doesn’t make
a difference.

Objective 2.3: Thought experiment
1.	 SearchBox is for in-app search. SearchPane is used in combination with the Search

charm.

2.	 Since the release of Windows 8.1, SearchBox is the preferred method.

Objective 2.3: Review
1.	 Correct answer: D

A.	 Incorrect: Apps run under the current user account; they can’t be run with extra
privileges as desktop applications can.

B.	 Incorrect: It is true that SearchBox doesn’t require any extra configuration, but
that would require a redesign of the app. Changing the configuration is much
easier.

C.	 Incorrect: This event is required to respond to search queries. It doesn’t fix the
access denied error, however, which occurs because of a wrongly configured
manifest.

D.	 Correct: This fixes the access denied error.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 2	 121

2.	 Correct answers: A, C, D

A.	 Correct: The separator should be added between the query and result suggestions.

B.	 Incorrect: Because the user has already typed “garl,” it is not useful to add a query
suggestion for this.

C.	 Correct: The user can select this option to process a query for the word “garlic.”

D.	 Correct: This is a highly probable search result that the user can select to go
directly to the garlic page.

3.	 Correct answer: D

A.	 Incorrect: Suggestionchosen does not exist. The resultsuggestionchosen event
exists, but is used whenever the user selects a result suggestion from the list.

B.	 Incorrect: The resultsuggestionsrequested event does not exist. Instead, you should
use the suggestionsrequested event to add both query and result suggestions.

C.	 Incorrect: The querysuggestionsrequested event does not exist. Instead, you should
use the suggestionsrequested event to add both query and result suggestions.

D.	 Correct: This event can be used to parse the XML and add both query and result
suggestions.

Objective 2.4: Thought experiment
1.	 Definitely. Whenever users see a recipe they like, they often want to share it with

others. Implementing Share helps the user quickly send an email with the recipe
information (or post it on Twitter or Facebook).

2.	 This might be useful. Imagine that users see a recipe they like on the Internet. By sharing
the webpage to your app, they can quickly copy the recipe to your app—maybe as
plain HTML, or you can implement some kind of parsing.

Objective 2.4: Review
1.	 Correct answers: A, B, C

A.	 Correct: The Share declaration is required to be able to participate in the Share
contract.

B.	 Correct: The datarequested event is raised whenever Windows asks your app for
data to share.

C.	 Correct: A DataPackage object contains the data that your app wants to share
with other apps.

D.	 Incorrect: Because you are sharing only text data, you can create the DataPackage
object directly in the datarequested event.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

2.	 Correct answer: C

A.	 Incorrect: Adding a button to show the Share UI from your app is allowed.

B.	 Incorrect: The DataPackage object needs to be created in the datarequested
event.

C.	 Correct: Calling showShareUI shows the Share UI.

D.	 Incorrect: Applications links are not used for opening charms.

3.	 Correct answer: B

A.	 Incorrect: This event does not exist. Instead, you should listen to the Activated
event and check ActivationKind.

B.	 Correct: The Activated event is raised with an ActivationKind of ShareTarget.

C.	 Incorrect: The datarequested event is fired whenever the user wants your app to
act as a share source.

D.	 Incorrect: Deferrals are used whenever your app needs to prepare lots of data as a
share source and you want to postpone it to the last moment.

Objective 2.5: Thought experiment
1.	 Account management is perfectly suited for the Settings charm. Users often log on

only once and then want the app to remember their account. If they want to sign out
or change account settings, they can open the Settings charm.

2.	 It depends on the amount of data. The roaming settings have a maximum size that can
prevent synchronizing across devices. Because your app already has a back end, you
could probably store the user preferences in the back end.

3.	 Data such as the last page that a user viewed or other app-specific data can be stored
in the roaming settings.

Objective 2.5: Review
1.	 Correct answer: D

A.	 Incorrect: Selecting a color theme is not done on the app bar. Instead it should
be nicely hidden in the Settings charm, where users can probably configure it only
once when they launch your app.

B.	 Incorrect: The Settings charm can contain entry points only to flyouts that contain
settings. It can’t contain settings directly.

C.	 Incorrect: You should not use an apply button. Changes in settings should be
reflected in the app immediately.

D.	 Correct: The recommended way to implement these scenarios is with a flyout in
the Settings charm that immediately applies the user’s changes.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 2	 123

2.	 Correct answer: C

A.	 Incorrect: RoamingFolder should be used for files, not for settings. Local settings
shouldn’t be stored in a roaming app data store.

B.	 Incorrect: Local settings shouldn’t be stored in a roaming app data store. The path
is specific to the current device and might not work on other devices.

C.	 Correct: LocalSettings can be used to store the most-used paths.

D.	 Incorrect: LocalFolder is there for storing files, not for storing settings.

3.	 Correct answer: D

A.	 Incorrect: The Settings charm has a strict design rule that it can be only 346 or
646 pixels. Auto size is definitely not allowed.

B.	 Incorrect: The width is already 646 pixels.

C.	 Incorrect: A size of 1000 pixels is not allowed. The Settings charm can be only 646
pixels maximum.

D.	 Correct: Because the maximum allowed width is 646 pixels, you should arrange
your layout and make sure it fits.

Objective 2.6: Thought experiment
1.	 No. Because Windows Store apps can use the HTML5 elements such as video and au-

dio tags, you can easily start using them in your app.

2.	 DRM-protected content ensures that you can make video and audio available over
the Internet and that only authorized users can access it, thus protecting your content
from piracy.

Objective 2.6: Review
1.	 Correct answers: C, D

A.	 Incorrect: Drawing to the HTML5 canvas should be done from JavaScript.

B.	 Incorrect: Converting images to DDS can be done by a C++ project with the
ImageContentTask build customization.

C.	 Correct: After the images have been converted, you can draw them on a canvas
with JavaScript.

D.	 Correct: Converting images to DDS can be done by a C++ project with the
ImageContentTask build customization.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	124	 CHAPTER 2	 Develop Windows Store apps

2.	 Correct answer: D

A.	 Incorrect: You don’t have to create these buttons manually. If you add the controls
attribute to your video tag, Internet Explorer adds those controls.

B.	 Incorrect: DRM can be used to protect content and still allows you to control the
video playback at the client.

C.	 Incorrect: This attribute does not exist.

D.	 Correct: The controls attribute adds all video playback controls to the video
element.

3.	 Correct answer: C

A.	 Incorrect: The specialized XML is called SSML. The synthesizeTextToStreamAsync
method is used to synthesize text, not SSML.

B.	 Incorrect: The synthesizeTextToStream method does not exist. Only the async
variant exists, but it does not synthesize SSML.

C.	 Correct: This method synthesizes SSML asynchronously.

D.	 Incorrect: There is only an async variant of this method.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 125

C H A P T E R 3

Create the user interface
A huge part of the development of your app is the UI. Making sure that your app is pixel
perfect and a real work of craftsmanship is not an easy undertaking. Fortunately, Microsoft
helps you build a great UI by not only giving guidance about what makes a great design but
also offering you controls that already follow those guidelines.

This chapter focuses on the UI features that Windows Store apps can use. You learn
about controls for in-app and for the app bar. You also learn how to create apps that run
well, both full screen and in a snap mode, in which your app shares screen space with
other apps.

This chapter focuses topics that comprise 20 percent of your exam. Make sure that you
get to know all the different controls and styling options that Windows Store apps can
use. If you experiment with the samples and try out the controls on your own, you will be
fully prepared for the exam.

Objectives in this chapter:
■■ Objective 3.1: Implement WinJS controls

■■ Objective 3.2: Implement HTML layout controls

■■ Objective 3.3: Create layout-aware apps to handle windowing modes

■■ Objective 3.4: Design and implement the app bar

■■ Objective 3.5: Apply CSS styling

Objective 3.1: Implement WinJS controls

When building your apps in JavaScript, CSS, and HTML, you build them on top of Windows
Runtime (WinRT), which lets you interact with the operating system and can be accessed
from JavaScript, C++, and C# apps.

Besides WinRT, the Windows Library for JavaScript (WinJS) offers you additional features
that are specific to JavaScript Windows Store apps. This objective describes the controls that
WinJS offers you. At the end of this objective, you will know the possibilities, be able to use
the controls, and make informed choices about when to use what control.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	126	 CHAPTER 3	 Create the user interface

This objective covers how to:
■■ Use a FlipView control

■■ Use a flyout

■■ Use a Grid layout and a List layout

■■ Use a menu object

■■ Use a WebView control

■■ Use an item container

■■ Use the Repeater control

Using a FlipView control
FlipView is a control that shows a series of items that a user can easily flip through. These
items can be any type of data, including images, static JavaScript Object Notation (JSON)
data, or data that you load from a web service. You can use the FlipView control if you have
items for users to flip through.

Adding a FlipView control to your app is easy. First, make sure that you load the ui.js file
from WinJS:

<script src="//Microsoft.WinJS.2.0/js/ui.js"></script>

This link is included in all templates by default. The ui.js file contains the JavaScript
required for all WinJS controls. Because that file is plain JavaScript, you can look at the
definitions of all controls to see exactly how they work.

You can define a FlipView control in your HTML with the following markup:

<div id="basicFlipView"
 data-win-control="WinJS.UI.FlipView">
</div>

A data attribute is ignored by your browser, so you can use the data attribute to add
metadata to HTML elements that you can then use from JavaScript. The same is true for the
data-win-control attribute. This attribute specifies that you want to add a WinJS control on
top of the div that you defined. A call to WinJS.UI.processAll goes through your HTML and
creates controls for you. This method call is added to the activated event handler of all Visual
Studio project templates.

If you don’t add any Cascading Style Sheets (CSS) to style your FlipView control, it spans
the whole width of your app by default. Of course, a FlipView control without any data is not
that interesting. The easiest way to add some data is to create static JSON test data to load
into your FlipView control.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 127

As you read in Chapter 1, “Design Windows Store apps,” separation of concerns (SoC) is an
important part of building your app. Making sure that you have distinct objects, each having
its own responsibility, is a good way to create a maintainable app.

SoC is also required when getting the data for your app. It is a good practice to create a
separate JavaScript file that contains your data access logic. In this example, the app uses only
some static data, but that data is still defined in a separate file:

(function () {
 "use strict";
 var dataArray = [
 { type: "item", title: "Item1"},
 { type: "item", title: "Item2"},
 { type: "item", title: "Item3"},
 { type: "item", title: "Item4"},
 { type: "item", title: "Item5"}
];

 var dataList = new WinJS.Binding.List(dataArray);

 var publicMembers =
 {
 itemList: dataList
 };
 WinJS.Namespace.define("Data", publicMembers);

})();

This code defines a new namespace called Data and exposes a WinJS.Binding.List that
points to some static JSON data. A List object contains items that can be accessed by index
or by a specific string key. You can search, sort, and filter the data and then bind the result to
your UI.

The List object exposes a dataSource property that can be used by the FlipView control to
bind to the data:

<div id="basicFlipView"
 data-win-control="WinJS.UI.FlipView"
 data-win-options="{itemDataSource : Data.itemList.dataSource}">
</div>

By using the data-win-options attribute, you specify additional options to configure your
WinJS control. In this case, you bind the itemDataSource property of your FlipView control to
the dataSource property of the binding list.

Now when you run your app, you see the screen shown in Figure 3-1.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	128	 CHAPTER 3	 Create the user interface

FIGURE 3-1  The FlipView control shows the second item of the sample data with navigation buttons

The navigation buttons show up only when the user touches or moves the mouse over the
FlipView control. What’s more interesting is the content in the middle: a string representation
of the JSON for the current item. Of course, that isn't what you want, but the FlipView control
does not know how to render your data.

To help the FlipView control, you can create an item template, which is a piece of markup
that is used by WinJS to render the individual items in the FlipView control. Inside the item
template you can use HTML and style it with CSS. The HTML elements can bind to the
properties that you have on each data item.

A very simple item template for the sample data that you just saw can be added to the
HTML page like this:

<div id="ItemTemplate" data-win-control="WinJS.Binding.Template">
 <div>
 <h2 data-win-bind="innerText: title"></h2>
 </div>
</div>

Again, the data-win-control attribute is used to signal to WinJS that this is not an ordinary
div. Your template must have a single root element, which is a div in this case. An h2 element
inside the div is defined that uses the data-win-bind attribute to bind its content to the title
property on your data item.

After creating the item template, you can link it to your FlipView control:

<div id="basicFlipView"
 data-win-control="WinJS.UI.FlipView"
 data-win-options="{ itemDataSource : Data.itemList.dataSource,
 itemTemplate : ItemTemplate }">
</div>

Now the FlipView control looks like Figure 3-2. The JSON string has disappeared; instead,
the title of the item is rendered as an h2 element.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 129

FIGURE 3-2  The FlipView control shows the second item of the sample data with navigation buttons

One simple change you can make with FlipView is to change the orientation:

<div id="basicFlipView"
 data-win-control="WinJS.UI.FlipView"
 data-win-options="{ itemDataSource : Data.itemList.dataSource,
 itemTemplate : ItemTemplate,
 orientation: 'vertical' }">
</div>

After the orientation: ‘vertical’ option is added, the FlipView control doesn’t flip from left
to right; it flips from top to bottom.

The FlipView control raises events whenever a user navigates through it:

■■ onpagecomplete is raised when the FlipView control flips to a page and its renderer
function completes.

■■ onpageselected is raised when the FlipView control flips to a page.

■■ onpagevisibilitychanged occurs when an item becomes invisible or visible.

By subscribing to those events, you can create content outside of the FlipView control that
keeps in sync with your FlipView control, such as a set of radio buttons that shows you which
page is selected.

Although the itemTemplate property allows you to render your items with a nice HTML
layout, you can’t create interactive items. If you want to create them, don’t use an item
template; use a templating function, which is a method that is called for each item in the
FlipView control. It allows you to return completely custom HTML that the FlipView control
will render.

You can set a templating function by using the itemTemplate property of a FlipView control:

var flipView = document.getElementById("basicFlipView").winControl;
flipView.itemTemplate = mytemplate;

A template function takes an itemPromise object. This promise represents the item that
will be loaded and displayed in your FlipView control. When the data is loaded synchronously,
this promise is already finished; with asynchronous data, the promise might not be done yet.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	130	 CHAPTER 3	 Create the user interface

Your template function has to return one of the following two options:

■■ A Document Object Model (DOM) element.

■■ An object containing two properties, element and renderComplete, which is a promise
that finishes when the item is completely rendered. WinJS then updates the element
property with the final DOM element.

The following code replaces the item template that you saw in the previous example with a
templating function:

function mytemplate(itemPromise) {
 return itemPromise.then(function (currentItem) {
 var element = document.createElement("h2");
 element.innerText = currentItem.data.title;
 return element;
 });
}

This code ensures that the itemPromise finishes and then returns an h2 element with the
title of the element. Because you have total control of your items, you can add additional
classes and other attributes to identify the items. By binding to the click event of your
FlipView control, you can then use these classes to determine which item was clicked.
Although it is not a simple scenario to implement, it works well.

MORE INFO  FLIPVIEW SAMPLE

Microsoft published a sample that demonstrates all capabilities of the HTML FlipView con-
trol at http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4.

Using a flyout
Another control that WinJS offers is the flyout, which is a lightweight pop-up that you use to
show a temporary UI to the user. The flyout can be a menu, a confirmation box, or just a pop-
up with more information about an item.

A flyout should be activated by the user. A user can close the flyout by clicking or tapping
outside of it, or by pressing the Escape button.

An example of a flyout is found on the Start screen. When you click the user tile, you see a
flyout (see Figure 3-3).

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/FlipView-control-sample-18e434b4

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 131

FIGURE 3-3  The user tile on the Start screen shows a flyout

A flyout has three parts:

■■ Title  The title is shown at the top of the flyout. Use a title only when needed.

■■ Main content  You can show only information to the user, collect input, or let the user
change settings. Try to include as few controls as possible.

■■ Controls  Controls for submitting changes should not be used. A button should be
used only when the user starts an action (such as logon or save).

A flyout is always anchored to an existing control, so you need at least two controls to
create one. If you create a new blank app, you can add the following markup for a button and
a flyout:

<button class="action" id="showFlyoutButton">Show flyout</button>
<div id="confirmFlyout" data-win-control="WinJS.UI.Flyout"
 aria-label="{Confirm action flyout}">
 <div>An action will happen.</div>
 <button id="confirmButton">Do it!</button>
</div>

In JavaScript, you have to show the flyout when showFlyoutButton is clicked. You also want
to dismiss the flyout when confirmButton is clicked:

document.getElementById("showFlyoutButton")
 .addEventListener("click", showFlyout, false);
document.getElementById("confirmButton")
 .addEventListener("click", confirmOrder, false);

function showFlyout(flyout, anchor, placement) {
 var button = document.getElementById('confirmButton');
 var flyout = document.getElementById('confirmFlyout');

 flyout.winControl.show(button, "bottom");
}
function confirmOrder() {
 document.getElementById("confirmFlyout").winControl.hide();
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	132	 CHAPTER 3	 Create the user interface

Dismissing the flyout when a user clicks it or taps outside of it is handled automatically.
You have to think about the alignment of your flyout and the anchor control. For a user, it
should be immediately clear to which control the flyout belongs.

You can style your flyout to match your app’s design. The default styling is done by the
light or dark theme that your app uses. In addition to those styles, you can change the CSS
styles shown in Table 3-1.

TABLE 3-1  CSS styles for the Flyout control

Property Example

Font-family font-family:’Segoe UI’;

Font-size font-size:9pt;

Color color:rgb(0, 0, 0);

Background-color background-color:rgb(255, 255, 255);

Border border:2px solid rgb(128, 128, 128);

Max width max-width:400px;

You can use a flyout in all parts of your app. For example, you can use a flyout to attach
it to a button on your app bar but also to a piece of text to show some extra information or
settings.

Using a Grid layout and a List layout
Data can come from anywhere: static JSON, the file system, or a web service. But you also
need some way to display this data. One of the controls that you can use in a Windows Store
app is ListView control, which is similar in some ways to FlipView. It uses a binding source and
templates to render its items.

The way those items are rendered is controlled by a Grid layout or a List layout. Figure 3-4
shows an example of both a Grid layout and a List layout showing the same items.

FIGURE 3-4  The List layout on the left and the Grid layout on the right show the same items

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 133

Using a List layout or a Grid layout starts with creating a ListView control. Suppose that
you have the following set of data:

var myData = new WinJS.Binding.List([
 { title: "1", text: "One" },
 { title: "2", text: "Two" },
 { title: "3", text: "Three" },
 { title: "4", text: "Four" },
 { title: "5", text: "Five" },
 { title: "6", text: "Six" },
 { title: "7", text: "Seven" },
 { title: "8", text: "Eight" },
 { title: "9", text: "Nine" },
]);

A template and a ListView control that uses the template to show the data could look like
this:

<div id="myTemplate" data-win-control="WinJS.Binding.Template" style="display: none">
 <div class="item">
 <h2 data-win-bind="innerText: title"></h2>
 <h3 data-win-bind="innerText: text"></h3>
 </div>
</div>

<div id="listView"
 class="win-selectionstylefilled"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource: myData.dataSource,
 itemTemplate: myTemplate,
 layout: { type: WinJS.UI.GridLayout }
 }"></div>

The ListView control takes the data and uses the template to display the data in a Grid
layout. Changing to a List layout is simple: Just change the layout type to WinJS.UI.ListLayout.

Automatically changing between a Grid layout and a List layout is sometimes done when
the available screen space of an app changes because it is snapped or unsnapped. You can
find more details in Objective 3.3, later in this chapter.

The ListView control calculates the size of the first item and uses that size for all additional
items. This calculation method might be a problem if you have items of different sizes. For
this scenario, you have the WinJS.UI.CellSpanningLayout. You define the size of your base
item and then let larger items span multiple cells, both horizontally and vertically. You still
have a Grid layout, but now the items can have different sizes.

EXAM TIP

Although CellSpanningLayout is not mentioned directly in the exam objectives, it pays to
be familiar with it. You can find instructions on how to use it at http://msdn.microsoft.com/
en-us/library/windows/apps/jj657974.aspx. 

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/jj657974.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/jj657974.aspx

ptg14200515

	134	 CHAPTER 3	 Create the user interface

A Grid layout also supports grouping items. You can add group headers and lay out the
items according to their group.

If you take the previous example with ungrouped data, you can change it to the following
code to create groups:

var myUngroupedData = new WinJS.Binding.List([
 { title: "1", text: "One" },
 { title: "2", text: "Two" },
 { title: "3", text: "Three" },
 { title: "4", text: "Four" },
 { title: "5", text: "Five" },
 { title: "6", text: "Six" },
 { title: "7", text: "Seven" },
 { title: "8", text: "Eight" },
 { title: "9", text: "Nine" },
]);

function compareGroups(leftKey, rightKey) {
 return leftKey.charCodeAt(0) - rightKey.charCodeAt(0);
}

function getGroupKey(dataItem) {
 return dataItem.text.toUpperCase().charAt(0);
}

function getGroupData(dataItem) {
 return {
 title: dataItem.text.toUpperCase().charAt(0)
 };
}

var myData = myUngroupedData.createGrouped(getGroupKey, getGroupData, compareGroups);

This code uses the createGrouped method on a list to group the data by its first charac-
ter and sort the data alphabetically. The getGroupKey method returns the first character of
the text property of an item. The getGroupData method returns an object containing a title
property, and the compareGroups method controls the item order.

Now you can add a second template for the headers in your markup:

<div id="headerTemplate" data-win-control="WinJS.Binding.Template"
 style="display: none">
 <div class="simpleHeaderItem">
 <h1 data-win-bind="innerText: title"></h1>
 </div>
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 135

This template can then be used by ListView to render the headers for each group. The
changes are shown in boldface:

<div id="listView"
 class="win-selectionstylefilled"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource: myData.dataSource,
 groupDataSource: myData.groups.dataSource,
 itemTemplate: myTemplate,
 groupHeaderTemplate: select('#headerTemplate'),
 layout: { type: WinJS.UI.GridLayout }
 }"></div>

This ListView control still uses GridLayout, but it now has a groupDataSource and a
groupHeaderTemplate defined. You can view the result in Figure 3-5.

FIGURE 3-5  The grouped items in a Grid layout with a group header

Using a menu object
A flyout can be used as a pop-up to show some contextual information to the user. The
menu is a special type of flyout that inherits from flyout and acts like a typical flyout.
The most important difference is that the menu flyout can contain only objects of the
WinJS.UI.MenuCommand type.

Your menu should be a direct child of the body element in your HTML. A typical menu can
look like this:

<div id="myMenu" data-win-control="WinJS.UI.Menu">
 <button data-win-control="WinJS.UI.MenuCommand"
 data-win-options="{id:'toggleItem',label:'Check me',
 type:'toggle', selected:'true'}"></button>
 <hr data-win-control="WinJS.UI.MenuCommand"
 data-win-options="{id:'separator',type:'separator'}" />
 <button data-win-control="WinJS.UI.MenuCommand"
 data-win-options="{id:'firstItem',label:'First'}"></button>
 <button data-win-control="WinJS.UI.MenuCommand"
 data-win-options="{id:'secondItem',label:'Second'}"></button>
 <button data-win-control="WinJS.UI.MenuCommand"
 data-win-options="{id:'thirdItem',label:'Third'}"></button>
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	136	 CHAPTER 3	 Create the user interface

This menu starts with a command of type toggle, which means a user can click the item
that automatically adds or removes a check mark on the item. The second item is a separator,
and the other items are regular menu options.

As with a normal flyout, you need some JavaScript to show the menu and attach event
handlers to the different options:

document.getElementById("openMenuButton").addEventListener("click", showMenu, false);
document.getElementById("toggleItem").addEventListener("click", toggle, false);

This code uses an openMenuButton HTML element and attaches a showMenu method. It
also attaches a handler to the toggleItem menu option. The handlers can look like this:

function showMenu() {
 var flyout = document.getElementById('myMenu');
 var button = document.getElementById("openMenuButton");

 flyout.winControl.show(button, "bottom");
}

function toggle() {
 var state = document.getElementById("toggleItem").winControl.selected;
}

Of course, you can also add handlers for all the other menu items. You can process an
action to respond to the user’s choice inside those handlers.

The flyout results in the sample menu are shown in Figure 3-6.

FIGURE 3-6  The sample menu with several menu items

You can show menus in many places in your UI. The previous code could be used to attach
a menu to a button in your app bar or some other content in your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 137

A menu can be useful if it is attached to the header of your app, which is mostly a cosmetic
change in which you add a chevron (ˇ) after the header and attach a menu to the click event.
The chevron appears so that users know to click the header.

You can add a header with a chevron with the following HTML:

<header aria-label="Header content" role="banner">
 <button class="win-backbutton" aria-label="Back"></button>
 <div class="titlearea win-type-ellipsis" id="title">
 <button class="titlecontainer">
 <h1>
 Header
 
 </h1>
 </button>
 </div>
</header>

Here you use the code  to display a chevron. In your JavaScript, you can now add
an event handler for when the user clicks the title area:

document.querySelector(".titlearea").addEventListener("click", showMenuAtHeader, false);

The following method shows the menu and aligns it correctly with the header:

function showMenuAtHeader() {
 var flyout = document.getElementById('myMenu').winControl
 var anchor = document.querySelector("header .titlearea");

 flyout.show(anchor, "bottom", "left");
}

This method gives you the result shown in Figure 3-7.

FIGURE 3-7  The sample menu attached to the header

You might consider changing the header when users navigate to another page using this
menu. They then have a visual clue of where they are in your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	138	 CHAPTER 3	 Create the user interface

Using a WebView control
Windows Store apps enable you to load a webpage and use it as part of your app. You could
previously use an i-frame, but it didn’t feature much content isolation or navigation functionality.

Microsoft has improved the situation with its new WebView control, which can render
HTML5 content and use HTML5 functionality (except IndexedDB, the app cache, Geolocation,
and the Clipboard). You can also integrate with the navigation history of the WebView control
to navigate forward and backward.

Another useful feature is the ability to call scripts that are processed in the WebView
control and to return results from the WebView control to your app. The webpage you are
showing can then integrate with your app and complement it.

A WebView control can load content in a couple of different ways. The easiest way is to
load an external URL and show it in your app like this:

<x-ms-webview id="webview" src="http://go.microsoft.com/fwlink/?LinkId=294155"
 style="width: 400px; height: 400px;">
</x-ms-webview>

This code shows the Windows Dev Center page in the WebView control in your app.
You also see that an easy way to pass data to your webpage is by using the query string.
JavaScript code in your webpage can parse the query string and use the parameters you sent.

In addition to loading an external webpage, you can load a piece of HTML directly from
a string. The following code takes a WebView control with an ID of webview and calls the
navigateToString method to show the string as HTML:

var htmlString = "<!DOCTYPE html>" +
 "<html>" +
 "<head><title>Simple HTML page</title></head>" +
 "<body>" +
 "<h1>Hi!</h1>" +
 "<p>This is a simple HTML page.</p>" +
 "</body>" +
 "</html>";
document.getElementById("webview").navigateToString(
 htmlString);

Another way to load an HTML page is to load an HTML file from your application data
folder. Suppose that you have included an HTML file in your app package that you want to
display in a WebView control. The following code takes the HTML file from your package and
copies it to a local folder. It then points the WebView control to the local file:

Windows.Storage.ApplicationData.current.localFolder
 .createFolderAsync("Html", Windows.Storage.CreationCollisionOption.openIfExists)
 .then(function (htmlFolder) {
 Windows.ApplicationModel.Package.current.installedLocation
 .getFileAsync("html\\example.html")
 .then(function (htmlFile) {
 return htmlFile.copyAsync(htmlFolder, "example.html",
 Windows.Storage.CreationCollisionOption.failIfExists);
 });

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 139

 }).done(function (e) {
 document.getElementById("webview").navigate(
 "ms-appdata:///local/Html/example.html");
 });

Because all file input/output (I/O) is done asynchronously, this code depends on the use
of promises to make sure that the next piece of code runs when the asynchronous action
finishes.

The WebView control uses the ms-appdata protocol to point it to a local file. This protocol
is a special format for the URI that tells Windows to look at its own file system instead of a
remote location.

There is one final way to load data. When you don’t have direct access to an HTML file or
an external URL, you can stream the data to the WebView control. Streaming can be useful
when the external URL is encrypted, and you have some code that should first decrypt the
content before showing it in your app.

You can’t stream content from JavaScript. Instead, you should create a WinRT object in C#
or C++. That class inherits from the IUriToStreamResolver interface. The URI that gets passed
to this class has this form:

ms-local-stream://<package name>_<encoded contentIdentifier>/<relativePath>

By parsing this URI, your WinRT object can identify what data the WebView control wants
to load. It can then retrieve this data and perform any required actions on it before streaming
it to the user.

Now that you know how to load data for the WebView control, the next important step is
to communicate with the WebView control and integrate it in your app.

Integrating with the navigation features of a WebView control is easy. The WebView
control exposes two important properties:

■■ canGoBack

■■ canGoForward

These two properties return a Boolean value signaling whether the WebView control can
go a page back (because the user navigated from one page to another) or forward (because
the user navigated back from a page). If any of these properties returns true, you can call one
of the corresponding goBack or goForward methods.

Another very important integration feature is the ability to invoke scripts that are loaded
in a WebView control. You do so by calling the invokeScryptAsync method. This method takes
the name of the script that you want to run and any parameters that you want to pass and
returns an object of type MSWebViewAsyncOperation. By calling start on the async opera-
tion, you invoke this script:

document.getElementById("webview").invokeScriptAsync("myFunction", 42).start();

In this case, you call a method named myFunction and pass it one parameter with a value
of 42.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	140	 CHAPTER 3	 Create the user interface

You can also retrieve data from the WebView control in your app by calling window.
external.notify from within the webpage loaded in your WebView control. You can pass
any argument you want to the notify function. Inside your app, you subscribe to the
MSWebViewScriptNotify event, which gets called whenever the notify method is called from
within the WebView control.

MORE INFO  HTML WEBVIEW CONTROL SAMPLE

An example of how to use the WebView control can be found at http://code.msdn.
microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa.

Using an item container
When displaying groups of items, you have several choices. The FlipView control is there when
you want to enable users to easily flip through a series of items. The ListView control uses the
Grid layout and the List layout to show items to the user. A ListView control also offers a lot of
functionality that you can use.

If you want a simpler solution, use the item container. Items placed inside an item
container automatically support swipe, drag-and-drop, and hover functionality. The following
markup creates two item containers that are selectable:

<div id="item1"
 data-win-control="WinJS.UI.ItemContainer"
 data-win-options="{tapBehavior: 'toggleSelect'}"
 style="width: 300px;">
 <div style="margin: 10px; padding: 10px; background-color: lightgray">
 <div class="win-type-x-large"
 style="margin-bottom: 5px;">
 Title 1
 </div>
 <div>Description 1</div>
 </div>
</div>
<div id="item2"
 data-win-control="WinJS.UI.ItemContainer"
 data-win-options="{tapBehavior: 'toggleSelect'}"
 style="width: 300px;">
 <div style="margin: 10px; padding: 10px; background-color: lightgray">
 <div class="win-type-x-large"
 style="margin-bottom: 5px;">
 Title 2
 </div>
 <div>Description 2</div>
 </div>
</div>

This code gives you the result shown in Figure 3-8.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa
http://code.msdn.microsoft.com/windowsapps/HTML-WebView-control-sample-56e773fa

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 141

FIGURE 3-8  The two item containers with the bottom one selected

Of course, it’s not always ideal to have to create all items by hand. (In the next section, you
will look at the Repeater control that can help you automate.)

As shown in Figure 3-8, an item container can be selected, which is defined by the
selectionDisabled property. By default, this property is false, allowing items to be selected.
You can change it to true to disable selection:

document.getElementById('item1').winControl.selectionDisabled = true;

You can also implement dragging with an item container. There are several events involved
with dragging:

■■ dragstart

■■ dragover

■■ dragenter

■■ dragleave

■■ drop

The following code shows how to implement dragging. The markup is as follows:

<div id="item1"
 data-win-control="WinJS.UI.ItemContainer"
 data-win-options="{draggable: true, selectionDisabled: true}">
 Item
</div>
<div id="dropTarget" style="width:100px;height:100px">
 Drop here!
</div>

Here is the JavaScript:

document.getElementById('item1').addEventListener("dragstart", function (e) {
 e.dataTransfer.effectAllowed = 'copy';
 e.dataTransfer.setData('Text', "Hello World!");
});

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	142	 CHAPTER 3	 Create the user interface

var dropTarget = document.getElementById("dropTarget");
dropTarget.addEventListener("dragover", function (eventObject) {
 eventObject.preventDefault();
});

dropTarget.addEventListener("dragenter", function (eventObject) {
 //Add Border
 WinJS.Utilities.addClass(dropTarget, "drop-ready");
});

dropTarget.addEventListener("dragleave", function (eventObject) {
 WinJS.Utilities.removeClass(dropTarget, "drop-ready");
});

dropTarget.addEventListener("drop", function (eventObject) {
 WinJS.Utilities.removeClass(dropTarget, "drop-ready");

 var itemText = eventObject.dataTransfer.getData('Text');

 document.getElementById("dropTarget").innerText = itemText;
});

This code allows you to drag item1 and drop it on the target div, which changes the
content of the target div to Hello World.

MORE INFO  HTML ITEMCONTAINER CONTROL SAMPLE

An example of how to use the ItemContainer control can be found at http://code.msdn.
microsoft.com/windowsapps/HTML-ItemContainer-Sample-932b2817/.

Using the Repeater control
The Repeater control is somewhat similar to a ListView control. It is more flexible than a
ListView control, but it doesn’t offer advanced features such as control over how data items
are loaded.

What it does offer is an easy way to repeat some markup (being HTML and WinJS controls)
for a list of data. Repeater controls can even be nested to create advanced data binding
scenarios.

A Repeater control works in the same way as the other data binding controls. You first
define the data you want to bind to:

var data = new WinJS.Binding.List(
 [
 { title: "Item 1" },
 { title: "Item 2" },
 { title: "Item 3" },
 { title: "Item 4" }
]);

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/HTML-ItemContainer-Sample-932b2817/
http://code.msdn.microsoft.com/windowsapps/HTML-ItemContainer-Sample-932b2817/

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 143

Then you need a template for each item:

<div id="listTemplate" data-win-control="WinJS.Binding.Template">
 <li data-win-bind="textContent: title">
</div>

Finally, you need the Repeater control:

<ul data-win-control="WinJS.UI.Repeater"
 data-win-options="{data: data, template: select('#listTemplate')}">

Now the Repeater control renders a list of HTML elements showing items 1 to 4.

Similar to the FlipView control, you can also use a templating function to generate your
HTML in JavaScript.

Because you are binding to a List, you can dynamically add and remove items from it,
which causes the Repeater control to update. By using CSS and WinJS animations, you can
create good update effects when items are added and removed.

If you take the previous example, you can add an add and remove button with the
following HTML:

<div>
 <button id="addCmd">Add item</button>
 <button id="removeCmd">Remove item</button>
</div>

To implement adding and removing items, follow these two steps:

1.	 Add event listeners for the buttons.

2.	 Add event listeners to the repeater for the animations.

Because of the data binding functionality implemented in WinJS, it’s easy to add and
remove items to the list, which are then added to the repeater. The following code from the
activated event adds event handlers to the two buttons:

var add = document.getElementById("addCm\d");

add.addEventListener("click", function (ev) {
 if (!animation) {
 animation = true;
 numberOfItems++;
 data.push({ title: "Item " + numberOfItems });
 }
});

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	144	 CHAPTER 3	 Create the user interface

var remove = document.getElementById("removeCmd");
remove.addEventListener("click", function (ev) {
 if (!animation && numberOfItems > 0) {
 animation = true;
 numberOfItems--;

 data.pop();
 }
});

These two event handlers set a local variable animation to true, update the number of
items, and then update the binding list that contains the actual data.

Without doing anything else, you can now add and remove items to the repeater.
However, Windows Store apps should use animations to provide the fast and fluent interface.

The following code registers itself for the iteminserted event on the repeater to make sure
that the correct animation is used:

var repeaterElement = document.getElementById("repeater");
var repeater = repeaterElement.winControl;
repeater.addEventListener("iteminserted", function (ev) {
 var a = WinJS.UI.Animation.createAddToListAnimation(ev.affectedElement);
 a.execute().then(function () {
 animation = false;
 });;
});

The animation is processed and returns a promise that finishes when the animation is
done. By setting animation to false, new items can be added or removed from the repeater.

Removing an item follows the same pattern:

repeater.addEventListener("itemremoved", function (ev) {
 var affectedElement = ev.affectedElement;
 repeaterElement.appendChild(affectedElement);
 var a = WinJS.UI.Animation.createDeleteFromListAnimation(affectedElement);

 this.affectedElement = affectedElement;
 var that = this;

 // Return a promise to the Repeater so that I can dispose the item after we have
animated it
 // and removed it from the DOM
 ev.setPromise(a.execute().then(function () {
 repeaterElement.removeChild(that.affectedElement);
 animation = false;
 }));
});

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Implement WinJS controls	 CHAPTER 3	 145

Here you create the correct animation and then store a reference to the affected item to
make sure that you can remove the item from the repeater after the animation finishes. If you
don’t do this, the item is animated, doesn’t show in the UI, but isn’t removed from memory.

Adding animations is very easy and helps you create a better app.

MORE INFO  HTML REPEATER CONTROL SAMPLE

An example of how to use the Repeater control can be found at http://code.msdn.microsoft.
com/windowsapps/HTML-Repeater-control-da22d278.

Thought experiment 
Designing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Look at the Weather app that is installed by Windows and make a list of the controls
that you recognize in the app.

Objective summary
■■ The FlipView control can be used to show items to a user one at a time. The user can

easily flip through the different items.

■■ Flyouts can be used to show a pop-up to the user that offers extra information or asks
the user for input or confirmation.

■■ When using a ListView control, you can use both Grid and List layouts to show items to
the user.

■■ The menu object is a special type of flyout that uses menu commands.

■■ A WebView control can be used to load HTML content in your app. This data can be
external or come from a string, a local file, or a stream. You can invoke scripts on the
webpage and listen for notifications from the webpage.

■■ Using the ItemContainer control is an easy way to create items that support selection
and dragging.

■■ The Repeater control can be used to render HTML content for a list of items.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/HTML-Repeater-control-da22d278
http://code.msdn.microsoft.com/windowsapps/HTML-Repeater-control-da22d278

ptg14200515

	146	 CHAPTER 3	 Create the user interface

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You have added a FlipView control to your app and you want the user to be able to
interact with the items you are showing in your FlipView control. What should you do?

A.	 Use an itemTemplate property and bind to the events of the HTML elements that
get rendered.

B.	 Use a WinJS binding List as a data source.

C.	 Bind to the oniteminvoked event of the ListView control.

D.	 Use a templating function and add event handlers through JavaScript.

2.	 You want to group data in a List. Which methods do you have to create? (Choose all
that apply.)

A.	 A method that goes through all data to create groups.

B.	 A method that returns the group key.

C.	 A method that compares individual items.

D.	 A method that returns descriptive data for each group.

3.	 You want to call a JavaScript method on a webpage that is loaded in a WebView
control. Which method should you use?

A.	 IUriToStreamResolver

B.	 window.external.notify

C.	 MSWebViewScriptNotify

D.	 invokeScriptAsync

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 147

Objective 3.2: Implement HTML layout controls

Your app will be used on a multitude of devices, including large monitors with touch screens,
regular PCs with a keyboard and mouse, and different types of tablets. Making sure that your
app runs well on all those different devices is the subject of this objective. By using a combi-
nation of CSS3 and WinJS controls, you can create great apps that work well on all devices.

This objective covers how to:
■■ Implement layout controls to structure your layout

■■ Implement templates and bindings

■■ Support scrolling and zooming with CSS3

■■ Manage text flow and presentation, including overflow

Implementing layout controls to structure your layout
After you have an idea for your app, start with laying out the basic structure of your app. As
discussed in Chapter 1, using the default Visual Studio project templates can be a great way
to start defining your layout.

However, you’re not finished after you pick a project template. Your app has specific needs:
For example, a section of a page might need a specific layout or you are developing a custom
control.

When developing your app, you have four layout types to choose from: Flexible Box, Grid,
Multi-column, and Regions.

Flexible Box (FlexBox) layout
A Flexible Box (FlexBox) layout is intended for laying out complex scenarios in which the
relative size and position of elements stays the same on different screen sizes.

FlexBox layouts are ideal for apps that use digital print media, such as newspapers or
magazines.

Start with the following HTML:

<div class="myFlexBox myFirstFlexBox">
 <div>1</div>
 <div>2</div>
 <div>3</div>
</div>

<div class="myFlexBox mySecondFlexBox">
 <div>1</div>
 <div>2</div>
 <div>3</div>
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	148	 CHAPTER 3	 Create the user interface

You can add a FlexBox layout to the two containing divs with this CSS:

.myFirstFlexBox {
 flex-direction: row;
}

.mySecondFlexBox {
 flex-direction: column;
}

.myFlexBox {
 width: 200px;
 height: 100px;
 border: 2px solid white;
 display: -ms-flexbox;
}
 .myFlexBox div {
 background-color: red;
 width: 50px;
 height: 25px;
 text-align: center;
 color: white;
 }
 .myFlexBox div:first-child {
 background-color: green;
 }

 .myFlexBox div:last-child {
 background-color: blue;
 }

You specify that you want to use a FlexBox layout by using the display: -ms-flexbox
property. The first div uses a flex-direction: row; the second one uses a flex-direction: column.
You can view the results in Figure 3-9.

FIGURE 3-9  The two divs with a FlexBox layout; the top one shows a row direction, and the bottom one
shows a column direction

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 149

You can configure your FlexBox layout with additional properties such as -ms-flex-align.
This property has one of the following values: start, end, center, stretch, or baseline. These
values specify the alignment of your child elements perpendicular to the direction of your
FlexBox layout. You can center items in your FlexBox or place them at the top or bottom of
the containing element.

Another property is -ms-flex-pack, which can be set to start, end, or justify. Because the
elements you place in your FlexBox layout can have remaining white space, you have to
decide what do with it. For example, if you choose justify, the white space is evenly distributed
between all elements.

Because a FlexBox layout is meant to distribute its child items, -ms-flex-wrap is an
important option. By default, the FlexBox layout puts all items in one row or column,
depending on the direction. By using the -ms-flex-wrap property, you can specify that the
FlexBox layout should wrap (or wrap-reverse) the items it contains.

You can also control the size of the items inside the FlexBox layout. Instead of specify-
ing a hard-coded height or width, you can configure how items should resize themselves
inside the FlexBox layout. Use the following syntax: -ms-flex: <positive-flex> <negative-flex>
<preferred-size>.

For example, using -ms-flex: 2; on one of the three items in the previous example makes
that item twice as large as the other two items. Your FlexBox layout automatically uses any
additional space while keeping the relative sizes of its child elements.

Grid layout
A CSS3–based Grid layout allows you to define rows and columns and assign items to the cells
that you create. As with the FlexBox layout, you start by configuring the display property and
setting it to -ms-grid:

#myGrid {
 display: -ms-grid;
 background: orange;
}

You can add columns and rows to your grid. All cells can have a fixed size, but it’s more
interesting to define some columns and rows that use the available screen size to allow for
more content.

When defining column and row sizes, use the following units:

■■ standard length unit  A percentage of the object’s width (for columns) or height (for
rows)

■■ auto keyword  Indicates that the width of the column or height of the row is sized
based on the items inside of it

■■ min-content keyword  Indicates that the minimum width or height of any child
elements is used as the width or height

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	150	 CHAPTER 3	 Create the user interface

■■ max-content keyword  Indicates the maximum width or height of any child
elements used as the width or height

■■ minmax(a, b) keyword  Indicates the width or height between a and b, as available
space allows

■■ fraction unit (fr)  Indicates that the available space should be divided among the
columns or rows according to their fraction values

Look at the following example:

#myGrid {
 display: -ms-grid;
 background: orange;
 -ms-grid-columns: auto 100px 1fr 2fr;
 -ms-grid-rows: 50px 25px auto;
}

This example defines four columns and three rows. The first column autosizes; the second
one is always 100 pixels (px). The last two columns occupy the remaining space with a factor
of 1:2, which means that column 3 is 1/3, and column 4 is 2/3. The rows are 50px, 20px, and
autosize.

After defining the rows and columns of the grid, you can start adding items by specifying
to which row and column an item belongs:

#item1 {
 border: yellow solid 1px;
 -ms-grid-row: 1;
 -ms-grid-column: 1;
}

This example puts an item in row 1, column 1. You can also align items in their cells. You
can use both -ms-grid-column-align and -ms-grid-row-align with a value of center, end, start,
or stretch.

If you assign multiple items to the same cell, these items are stacked with the last item
added on top. To configure it, use the z-index property. Where x and y position an item
horizontally and vertically, z defines how far away an item is. Items with a greater z-index are
positioned on top of items with a smaller z-index.

If you are dealing with larger items, they can span multiple cells with the -ms-grid-column-
span and -ms-grid-row-span properties. For example, a -ms-grid-column-span value of 2
enables an item to occupy two adjacent columns. The same is true for -ms-grid-row-span; a
value higher than 1 lets the item span multiple rows.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 151

The following markup and CSS demonstrate the properties you can set on a Grid layout:

<div id="myGrid">
 <div id="item1">Item 1</div>
 <div id="item2">Item 2</div>
 <div id="item3">Item 3</div>
 <div id="item4">Item 4</div>
 <div id="item5">Item 5</div>
</div>
#myGrid {
 display: -ms-grid;
 background: gray;
 border: blue;
 -ms-grid-columns: auto 1fr 2fr;
 -ms-grid-rows: 200px auto;
}
 #myGrid div {
 background: lightgray;
 border: red solid 1px;
 }

#item1 {
 background: maroon;
 -ms-grid-row: 1;
 -ms-grid-column: 1;
}

#item2 {
 -ms-grid-row: 1;
 -ms-grid-column: 2;
}

#item3 {
 -ms-grid-row: 1;
 -ms-grid-column: 3;
}

#item4 {
 -ms-grid-row: 2;
 -ms-grid-column: 1;
}

#item5 {
 -ms-grid-row: 2;
 -ms-grid-column: 2;
 -ms-grid-column-span: 2;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	152	 CHAPTER 3	 Create the user interface

The result is shown in Figure 3-10. All items are assigned to a Grid cell, and Item 5
spans two columns. The first column is autosized, and the second and third column fill
the additional space with a ratio of 1:2. The first row has a static height; the second row is
autosized.

FIGURE 3-10  The Grid with three columns and two rows, showing five items

Multi-column layout
A Multi-column layout doesn’t use a fixed amount of columns; it allows columns to be added
based on screen size. Items can flow to other columns, and these columns can have a gap and
a rule between them.

Suppose that you have a large amount of text and you want to show this text in columns
so that the text automatically overflows to the next column. The following CSS creates a
Multi-column layout with a gap between the columns and a white ruler:

#multicolumn {
 columns: auto 12em;
 column-gap: 1em;
 column-rule-width: 1em;
 column-rule-style: solid;
 column-rule-color: white;
}

Using this layout on some lorem ipsum text gives you the result shown in Figure 3-11.

FIGURE 3-11  The example of a Multi-column layout

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 153

This example uses the columns: auto 12em; property to create a variable number of
columns with a size of 12em.

It also uses the column gap and ruler options to configure the size and color between the
columns. The previous example creates white gaps with the following CSS:

 column-gap: 1em;
 column-rule-width: 1em;
 column-rule-style: solid;
 column-rule-color: white;

You can influence when a break is inserted by using the break-before, break-inside, and
break-after properties with a value of always, auto, avoid, empty string (same as auto), inherit,
left, right, page, column, avoid-page, and avoid-column.

You can also let an item span multiple columns. Maybe you have a title for an article or an
image that should span more than one column. You do so by specifying column-span: all on
an item (you can’t specify an exact number of columns to span).

When you let Internet Explorer (IE) automatically create columns and add breaks, one
column might contain more text then another column. To evenly spread your text over all the
columns, you can use the column-fill: balance property.

MORE INFO  SAMPLE MULTI-COLUMN LAYOUT

Microsoft released a sample showing how to use CSS to create a Multi-column layout.
Although not specific to Windows Store apps, you can use the sample to get a better
understanding of how to use these concepts in your app. You can find the sample at
http://code.msdn.microsoft.com/ie/Multi-column-layout-4f467ffd.

Regions layout
The final layout option is the Regions layout, which lets you specify elements as containers
and then take an existing HTML file and spread its content over your containers. The Regions
layout allows you to create a very specific layout in which you position your containers and
then stream an HTML document through them.

The source HTML document is loaded through a hidden iframe, which you can add to your
markup like this:

<iframe id="flow-data-source" src="content-source.html"></iframe>

The content-source.html file can include an HTML page as complex as you want. For this
sample, a simple HTML file is used with the following content:

<div style="color:white">Content goes here 1.</div>
<div style="color:white">Content goes here 2.</div>
<div style="color:white">Content goes here 3.</div>
<div style="color:white">Content goes here 4.</div>
<div style="color:white">Content goes here 5.</div>
<div style="color:white">Content goes here 6.</div>

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/ie/Multi-column-layout-4f467ffd

ptg14200515

	154	 CHAPTER 3	 Create the user interface

Now that you have loaded the data into an iframe, use CSS to create the flow data source:

#flow-data-source {
 -ms-flow-into: flow1;
}

You can add containers to your markup to flow the content of the source HTML file into.
div elements are usually used as a container:

<div class="flow1-container"></div>
<div class="flow1-container"></div>
<div class="flow1-container"></div>

You can use CSS to flow the content of the iframe through the three div elements:

#flow-data-source {
 -ms-flow-into: flow1;
}
.flow1-container {
 -ms-flow-from: flow1;
 border: 1px solid red;
 width:100px;
 height:100px;
}

That is all you need to know about the Regions layout. You specify a data source with a
flow into and containers with a flow from property. Of course, you can make the Regions
layout as complex as you want. By using the Regions layout inside a Grid layout, you can
assign containers to different cells and have the content of your HTML source document flow
through them.

Implementing templates and bindings
Data binding is an essential feature for easily showing data on-screen and responding to user
actions that change your data.

One property that is important for data binding is WinJS.Binding.optimizeBindingRefer-
ences. If you search for this property in the WinJS library, you see that it is always initialized
on application instantiation.

You can bind data to any JSON object. Suppose that you have the following span element:

You can use some JavaScript to bind the innerText property of this span to a value:

var message = { message: "Hello World!" };
var messageSpan = document.getElementById("messageSpan");
WinJS.Binding.processAll(messageSpan, message);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 155

The attribute that specifies the binding configuration is the data-win-bind property. Here
you can specify a property (innerText, in this case) and the name of a property that comes
from the object that you bind to your element.

WinJS.Binding.processAll searches through your HTML for the data-win-bind attribute and
processes the binding configuration for all elements it finds.

By default, data binding is one-way only; changes don’t automatically update the UI. To
facilitate two-way data binding, WinJS added the WinJS.Binding.as method. This method
takes your object and returns an observable object that you can then use to automatically
update the UI:

var message = { message: "Hello World!" };
var messageSpan = document.getElementById("messageSpan");
WinJS.Binding.processAll(messageSpan, message);
var bindingSource = WinJS.Binding.as(message);

document.getElementById("updateDataButton").addEventListener("click", function () {
 bindingSource.message = "Bye World!";

});

EXAM TIP

Make sure that you understand that data binding is one-way by default and you need to
add two–way data binding by using WinJS.Binding.as.

If you add a button with an ID of updateDataButton to your UI, you can click it to update
the message property of your bindingSource. Doing so automatically updates the value of the
span element.

You can imagine scenarios in which you have a central object with some data that is bound
to multiple objects on your screen. If the user changes something, or an external notification
comes in, your app updates the object, and your UI automatically updates.

Many frameworks can help you with data binding (KnockoutJS, Angular, and Durandal, for
example). However, for basic data-binding scenarios, WinJS has all the functionality you need.

Previous sections discussed templates, and you used them several times. You used templates
in combination with binding data to a ListView control or FlipView control. A template describes
the markup that you want to use for each item that gets generated through data binding.

Templates are added as regular divs to your markup. When WinJS initializes, it processes all
templates and removes them from the DOM. You mark a div as being a template by using the
data-win-control attribute with a value of WinJS.Binding.Template:

<div id="templateDiv" data-win-control="WinJS.Binding.Template"></div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	156	 CHAPTER 3	 Create the user interface

To change the previous example of rendering a simple message to use templating, you can
use the following HTML:

<div id="templateDiv" data-win-control="WinJS.Binding.Template">
 <div>

 </div>
</div>
<div id="templateTargetDiv"></div>

Now you can use JavaScript to render the template and place the result in
templateTargetDiv:

var message = { message: "Hello World!" };

var templateElement = document.getElementById("templateDiv");
var renderElement = document.getElementById("templateTargetDiv");
renderElement.innerHTML = "";

var templateControl = templateElement.winControl;

templateElement.winControl.render(message, renderElement);

You are not required to create a target div for the rendering operation. The render method
returns a promise that will get a newly created div as a parameter that you can then add to
the DOM.

By using reusable templates and data binding, you can easily separate your UI from the
data it shows. Instead of retrieving DOM elements and manually setting their properties
(which is error-prone and hard to maintain), you use a declarative syntax that results in a
more maintainable code.

Supporting scrolling and zooming with CSS3
Your app probably has multiple pages with navigation functionality to move from page to
page. However, sometimes you have a single page in which the user can also scroll and zoom.
Maybe you have an image or some other content that doesn’t fit directly on-screen and you
want the user to navigate through your page.

Scrolling, or panning, is a motion used to slide through some content. Especially with
actions like these, you have to think about touch gestures. Users are used to swiping or sliding
through an app by using one or more fingers, and you should support it in your apps.

Enabling panning for an area is done through CSS. Suppose that you have container
element that is hosting an image as a child:

<div class="Container Horizontal">

</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 157

The following CSS first restricts the size of the container and then defines the different
panning options:

.Container {
 width: 480px;
 height: 270px;
}

.None {
 overflow: hidden;
}

.Horizontal {
 overflow-x: auto;
 overflow-y: hidden;
}

.Vertical {
 overflow-x: hidden;
 overflow-y: auto;
}

.Unrailed {
 overflow: auto;
 -ms-scroll-rails: none;
}

.Railed {
 overflow: auto;
 -ms-scroll-rails: railed;
}

The previous HTML fragment defines the Horizontal class. The result is shown in Figure 3-12.

FIGURE 3-12  The image element in a container with horizontal panning

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	158	 CHAPTER 3	 Create the user interface

By switching the CSS class, you can implement vertical panning, unrailed (free to move in
any direction), or railed (locked to an axis).

The previous code sample allows a user to pan freely through your content. But maybe
that isn't what you want. For example, if you have a couple of items that you want the user to
pan through one item at a time, you can’t use the free mode that you saw before. It would
enable a user to stop panning in the middle of an item instead of panning one item at a time.

To help your users pan one item at a time, you can implement snapping. With the
-ms-scroll-snap-type property, you can use one of the following snap types:

■■ None  Panning and scrolling are unaffected by any defined snap points.

■■ Proximity  When panning comes near a snap point, the item is snapped to land
exactly on the snap point.

■■ Mandatory  Content always lands on a snap point.

Just like panning, zooming is also implemented through CSS. The following CSS allows the
user to zoom in and out of an element:

.zoomElement {
 overflow: auto;
 -ms-content-zooming: zoom;
 -ms-scroll-rails: none;
 -ms-content-zoom-limit-min: 50%;
 -ms-content-zoom-limit-max: 500%;
}

Zooming is enabled by using the -ms-content-zooming property. You also have to specify
a minimum and maximum zoom level. A minimum that is smaller than 100 percent allows a
user to zoom out, but it leaves empty room in your container element.

You can combine both zooming and panning in one view, which allows a user to zoom in
and out and navigate through your element.

When panning and zooming, it’s also very natural to use touch gestures. You can control
the way a region can be manipulated through touch by using the touch-action CSS property.
This property can have one of the following values:

■■ Auto, Initial value  Indicates that the Windows Store app using JavaScript determines
the permitted touch behaviors for the element.

■■ None  The element doesn’t permit default touch behaviors.

■■ Pan-x  The element permits touch-driven panning on the horizontal axis. The touch
pan is performed on the nearest ancestor with horizontally scrollable content.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 159

■■ Pan-y  The element permits touch-driven panning on the vertical axis. The touch pan
is performed on the nearest ancestor with vertically scrollable content.

■■ Pinch-zoom  The element permits pinch-zooming. The pinch-zoom is performed on
the nearest ancestor with zoomable content.

■■ Manipulation  The element permits touch-driven panning and pinch-zooming. This is
the shorthand equivalent of “pan-x pan-y pinch-zoom”.

■■ Cross-slide-x  The element permits cross-sliding along the horizontal axis.

■■ Cross-slide-y  The element permits cross-sliding along the vertical axis.

Make sure to test these actions and align them to the default behavior that users are
accustomed to.

MORE INFO  HTML SCROLLING, PANNING, AND ZOOMING SAMPLE

Microsoft released a sample that shows how to implement scrolling, zooming, and
panning. You can find the sample at http://code.msdn.microsoft.com/windowsapps/
scrolling-panning-and-47d70d4c/.

Managing text flow and presentation, including overflow
Your app will probably contain text. Depending on the type of app you build, text might even
be the most important aspect of your UI.

Making sure that your text is nicely presented on a multitude of devices is therefore very
important. The CSS files for Windows Store apps already define standard font styles using the
Segoe UI font family. When using the Visual Studio project templates, the WinJS style sheet is
referenced and provides the correct font definitions for your app.

Maybe your brand has a particular font that you want to reflect in your app. You can add
custom fonts by using the @font-face CSS rule. By including a TTF file in your app package,
you can reference it and create a font face like this:

@font-face {
 src: url('/images/fonts/MyFont.ttf') format('truetype');
 font-family: MyFont;
 font-style: normal;
 font-weight: 500;
 font-stretch: normal;
 font-variant: normal;
}

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/scrolling-panning-and-47d70d4c/
http://code.msdn.microsoft.com/windowsapps/scrolling-panning-and-47d70d4c/

ptg14200515

	160	 CHAPTER 3	 Create the user interface

MORE INFO  CSS TYPOGRAPHY JAVASCRIPT SAMPLE

For more information about typography, see the sample at http://code.msdn.microsoft.
com/windowsapps/typography-JS-sample-e2df9eb4.

Another important aspect of presenting text is dealing with overflow. Maybe the content
you are trying to present fits nicely on your device, but that doesn’t mean all devices have a
large enough screen space. Or maybe you can’t anticipate the content that users will add and
that you need to display.

One way to deal with variations is to use an ellipsis (…). When text is too long for its
container, shorten the text and add an ellipsis to the end, signaling the user that there is more
content.

CSS has a text-overflow property that you can set to ellipsis to automatically generate this
effect. WinJS defines the following class that you can apply to your elements:

.win-type-ellipsis {
 overflow: hidden;
 text-overflow: ellipsis;
 white-space: nowrap;
}

This CSS property works only on single-line content, however. If you have multiple lines
and you want to add an ellipsis to the last line, you need some custom JavaScript to do this.

Thought experiment 
Laying out your content

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You have been asked to prepare a presentation for a customer who is looking for
suggestions for building a Windows 8 app. The app should be used by internal
employees while they are at the office or on the road on multiple devices. They visit
restaurants to perform quality checks, which include taking notes and pictures.
They are now using a standard desktop application at the office and printed forms
when at customer sites.

Look through this chapter and describe the key points you can make to convince
your customer that a Windows 8 app would be useful.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/typography-JS-sample-e2df9eb4
http://code.msdn.microsoft.com/windowsapps/typography-JS-sample-e2df9eb4

ptg14200515

	 Objective 3.2: Implement HTML layout controls	 CHAPTER 3	 161

Objective summary
■■ You can use FlexBox, Grid, Multi-column, or Regions layouts.

■■ Data binding is essential for showing data on the screen. Templates can be used to
create reusable pieces of markup that can bind to data and render on-screen.

■■ Panning can be implemented by using the CSS overflow property. By using
-ms-scroll-snap-type of Proximity or Mandatory, you can implement snapping.

■■ Zooming is implemented by using the - ms-content-zooming: zoom property with a
minimum and maximum zoom level.

■■ WinJS style sheets use the Segoe UI font family by default. You can add your own
custom fonts by using CSS font-face.

■■ Text overflow can be controlled by using the win-type-ellipsis class.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are developing an app for a news magazine, and the editors create a standard
HTML page that contains all the content. The app should display the articles and mix
them with appropriate advertisements. Which layout should you choose?

A.	 Flexible Box layout

B.	 Grid layout

C.	 Multi-column layout

D.	 Regions layout

2.	 You are using a Grid layout in which a user can dynamically move items from one cell
to another. However, sometimes a user drops an item on a cell with an existing item,
and the dropped item seems to disappear. What should you do?

A.	 Add a z-index property to the dropped item with a value larger than the original
item.

B.	 Add a z-index property to the dropped item with a value smaller than the original
item.

C.	 Nothing. You can’t have multiple items in one cell in a Grid layout.

D.	 Add the column-span: 2 property to the target cell.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	162	 CHAPTER 3	 Create the user interface

3.	 You are showing a grid with items on it to the user. Users can pan around the grid.
Users should see only complete cells at any time. What should you do?

A.	 Add the -ms-scroll-snap-type property with a value of Proximity.

B.	 Add the -ms-scroll-snap-type property with a value of Mandatory.

C.	 Add the -ms-scroll-snap-type property with a value of None.

D.	 Add the -ms-scroll-snap-type property with a value of Automatic.

Objective 3.3: Create layout-aware apps to handle
windowing modes

Although Windows Store apps are normally run in full screen, it isn’t the only available
windowing mode. Apps can also be viewed side by side to allow multitasking, so your app can
run in different sizes that you need to respond to.

Deciding which widths you support and adapting to changes in windowing mode through
CSS and code are the subjects of this objective.

This objective covers how to:
■■ Use CSS3 media queries to adapt to different devices

■■ Respond to changes in orientation

■■ Adapt to new windowing modes by using the ViewManagement namespace

■■ Manage settings for an apps view

Using CSS3 media queries to adapt to different devices
When you create your app, you have to work with several different screen sizes. The App
Manifest Designer shown in Figure 3-13 shows a Minimum Width property that you can set.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Create layout-aware apps to handle windowing modes	 CHAPTER 3	 163

FIGURE 3-13  The App Manifest Designer shows the values for the Minimum Width property

By default, this value is not set, so your app can be used in all possible windowing modes.
When you set this value to 320px, a user can use your app in all sizes that are larger than
320px. This means that a user running a display of 1024px wide can snap your app to one-
third of the screen. When your app doesn’t have any real value to offer in such a small area,
you should set the minimum width to 500px.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	164	 CHAPTER 3	 Create the user interface

Testing your app in different resolutions can be difficult when you don’t have a lot of
devices to test on. Fortunately, you can use the simulator that you can launch from Visual
Studio to test your app in different resolutions. Figure 3-14 shows the simulator running an
app in snapped mode.

FIGURE 3-14  The simulator running two apps in snapped mode with a resolution of 1024 x 768

You can adapt your app by using CSS media queries. A media query is a special CSS
selector in which you can check device properties. For example, some websites use CSS media
queries to offer a specialized layout for printing.

CSS media queries allow you to query for the dimensions of your device. Look at the
following CSS:

@media (max-width:499px) {
 …
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Create layout-aware apps to handle windowing modes	 CHAPTER 3	 165

All CSS inside the @media block apply only for a width that is smaller than 500px, so you
can specify multiple sets of CSS rules that apply to different resolutions.

Windows Store apps always use the full height of your device; the width can vary. Your app
should adapt to a width of at least 500px. If it makes sense for your app, you can also add a
CSS media query for a width of 320px.

You can keep all the CSS for different resolutions in one file or split them in multiple files
and load them conditionally like this:

 <link href="/css/small.css" rel="stylesheet" media="(max-width: 320px)" />

When designing your app layout, you need to take into account the different snapped
window modes that you will support. By using layout controls discussed in the previous
objective, such as the Grid layout, you can create a very flexible layout.

When working with the Grid layout, items are positioned through CSS, not according to
their location in the HTML document. By changing the CSS when a new media query applies,
you can change the order and visibility of items.

EXAM TIP

Designing a flexible layout and adapting to different windowing modes is an important
part of building apps (and of the exam). Microsoft released a walkthrough of creating a
flexible layout at http://msdn.microsoft.com/en-us/library/windows/apps/jj150600.aspx.
You should study this example before you take the exam.

Responding to changes in orientation
When they use tablet devices, users don’t always use your app in landscape mode. Changing
the orientation by rotating the screen is supported in Windows Store apps.

To test this behavior, you need a device with an actual sensor; using the simulator doesn’t
work. To check for changes in orientation, use a class called SimpleOrientationSensor. You
get an instance of this class by calling Windows.Devices.Sensors.SimpleOrientationSensor.
getDefault(). The object returned by this method call exposes the OrientationChanged event.
By subscribing to this event, you can respond to changes in orientation.

var orientationSensor = Windows.Devices.Sensors.SimpleOrientationSensor.getDefault();
orientationSensor.addEventListener("orientationchanged", onOrientationChanged);
function onOrientationChanged(e) {
….
}

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/jj150600.aspx

ptg14200515

	166	 CHAPTER 3	 Create the user interface

The argument that gets passed to your event handler receives an argument of type
SimpleOrientationSensorOrientationChangedEventArg. This object has a property for the
current orientation of type SimpleOrientation enumeration that can be one of the following
values:

■■ notRotated

■■ rotated90DegreesCounterclockwise

■■ rotated180DegreesCounterclockwise

■■ rotated270DegreesCounterclockwise

■■ faceup

■■ facedown

Remember that your app might receive an orientationchanged event while it is not visible.
Responses to those events might change things unexpectedly for users who return to your app.

Instead of blindly subscribing to the orientationchanged event, you can add and remove
your event handler, depending on the visibility of your app, like this:

function visibilityChangeHandler() {
 if (document.getElementById("scenario1Open").disabled) {
 if (document.msVisibilityState === "visible") {
 sensor.addEventListener("orientationchanged", onDataChanged);
 } else {
 sensor.removeEventListener("orientationchanged", onDataChanged);
 }
 }
}

You can attach this event handler to the visibilitychange event on your document:

document.addEventListener("visibilitychange", visibilityChangeHandler, false);

Instead of waiting for a change in orientation to happen so you can handle the event,
you can also ask the SimpleOrientationSensor for the current orientation by calling
sensor.getCurrentOrientation().

There is another way to respond to changes in orientation. Just as you can use media
queries for handling changes in the width of your window, you can also use media queries for
changes in orientation:

@media screen and (orientation: landscape) and (max-width: 1024px) {
}

@media screen and (orientation: portrait) and (min-width: 500px) {
}

These two queries respond both to changes in the width and the orientation. You can also
create a query that responds only to orientation changes.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Create layout-aware apps to handle windowing modes	 CHAPTER 3	 167

Adapting to new windowing modes by using the
ViewManagement namespace
The Windows.UI.ViewManagement namespace gives you access to classes that can help you
respond to changes in windowing modes. These changes might occur because your app gets
snapped or because the user loads the on-screen keyboard that hides the bottom part of
your app.

You can get information for the current view by calling Windows.UI.ViewManagement.
ApplicationView.getForCurrentView(), which gives you an object of type ApplicationView that
you can then query for details on the current view.

This class exposes the following properties:

■■ AdjacentToLeftDisplayEdge  Indicates whether the current window (app view) is
snapped and adjacent to the left edge of the screen

■■ AdjacentToRightDisplayEdge  Indicates whether the current window (app view) is
adjacent to the right edge of the screen

■■ Id  Gets the ID of the window (app view)

■■ IsFullScreen  Indicates whether the window (app view) fills the entire screen

■■ IsOnLockScreen  Indicates whether the window (app view) is on the Windows lock
screen

■■ IsScreenCaptureEnabled  Gets or sets whether screen capture is enabled for the
window (app view)

■■ Orientation  Gets the current orientation (landscape or portrait) of the window (app
view) with respect to the display

■■ TerminateAppOnFinalViewClose  Indicates whether the app terminates when the last
window is closed

■■ Title  Gets or sets the displayed title of the window

■■ Value  Indicates the state of the current window (app view)

The orientation property can return a value of landscape or portrait. The isFullScreen value
returns false when the app is snapped to the left or right part of the screen. By checking adja-
centToLeftDisplayEdge or adjacentToRightDisplayEdge, you can see whether the app is on the
left or right side of the user’s screen. That way, you can change the layout of your page (by
aligning elements at the right or left side of your app, for example).

Windows.UI.ViewManagement also offers you access to the InputPane class, which raises
notifications when the on-screen input is shown and when it hides:

var inputPane = Windows.UI.ViewManagement.InputPane.getForCurrentView();
inputPane.addEventListener("hiding", function () {
});
inputPane.addEventListener("showing", function () {
});

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	168	 CHAPTER 3	 Create the user interface

Managing settings for an apps view
The Windows.Ui.ViewManagement namespace provides classes and enumerations for
managing settings of an application view. As discussed in the previous section, some classes
in ViewManagement allow you to get information on the user’s configuration; others allow
you to change settings.

Windows are defined as app views, and an app view is the displayed portion of a Windows
Store app. A user can have up to four different app views displayed on the screen. Those
views fill the screen from top to bottom and are distributed from left to right without overlap.

Knowing whether your app is running full screen or snapped to the left or right side of the
screen can be important for deciding what functionality or data you want to show on the screen.
You get data by calling Windows.UI.ViewManagement.ApplicationView.getForCurrentView().

You can query your current app view for its location like this:

var currentAppView = Windows.UI.ViewManagement.ApplicationView.getForCurrentView();
var isFullScreen = currentAppView.isFullScreen;
var isAdjacentToLeftDisplayEdge = currentAppView.adjacentToLeftDisplayEdge;
var isAdjacentToRightDisplayEdge = currentAppView.adjacentToRightDisplayEdge;

By reading the orientation property, you can see whether your app is running in portrait or
landscape mode:

 var winOrientation = Windows.UI.ViewManagement.ApplicationView.getForCurrentView().
orientation;
 if (winOrientation === Windows.UI.ViewManagement.ApplicationViewOrientation.
landscape) {
 } else if (winOrientation === Windows.UI.ViewManagement.
ApplicationViewOrientation.portrait) {
 }

You can get information on accessibility settings:

var accessibilitySettings = new Windows.UI.ViewManagement.AccessibilitySettings();
output.innerHTML = "High Contrast: " + accessibilitySettings.highContrast + "
" +
 "High Contrast Scheme: " + accessibilitySettings.highContrastScheme;

This code retrieves the current accessibility settings a user has defined for the whole
system. The highContrast variable returns true if the user has enabled high contrast. The
scheme property returns the name of the color scheme that is being used.

Another important capability that ViewManagement offers is projection. A typical example
of projection is PowerPoint—when you present, you can configure PowerPoint to show your
slides on one display while showing your presentation notes on another display.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Create layout-aware apps to handle windowing modes	 CHAPTER 3	 169

Windows Store apps support projection with ProjectionManager. You can use it to see
whether a second display (a secondary monitor or a projection screen, for example) is available:

ViewManagement.ProjectionManager.projectionDisplayAvailable

When projecting to another screen, you first need some content to display. The easiest
way to do get it is to load an HTML file that is part of your package. This HTML file can
reference CSS and JavaScript files that will be loaded with it:

 var view = MSApp.createNewView("ms-appx:///html/secondaryView.html");

Now that you have a reference to an app view, you can start projecting it:

ViewManagement.ProjectionManager.startProjectingAsync(
 view.viewId,
 ViewManagement.ApplicationView.getForCurrentView().id
);

You can also stop the projection:

ViewManagement.ProjectionManager.stopProjectingAsync(
 view.viewId,
 ViewManagement.ApplicationView.getForCurrentView().id
);

When projecting to another display, you have to offer the user the option to swap the
primary and secondary display. You can do this by calling swapDisplaysForViewsAsync:

ViewManagement.ProjectionManager.swapDisplaysForViewsAsync(

 ViewManagement.ApplicationView.getForCurrentView().id,

 MSApp.getViewOpener().viewId);

The first parameter is the ID of the projected app view; the second parameter points to
the view that opened the current app view. By swapping them, you change the projected and
main screen.

MORE INFO  PROJECTION SAMPLE

A complete example that shows how to start and stop projection and how to swap
displays can be found at http://code.msdn.microsoft.com/windowsapps/Projection-sample-
526b3c1d.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Projection-sample-526b3c1d
http://code.msdn.microsoft.com/windowsapps/Projection-sample-526b3c1d

ptg14200515

	170	 CHAPTER 3	 Create the user interface

Thought experiment 
Adapting to change

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are working on a ToDo app that uses a hub template with different categories
and individual lists. Because you just learned about all the different windowing
modes, you are thinking about what they could mean for your app.

1.	 Which snapped modes do you want to support? What are you going to show?

2.	 Which technology should you use to change your UI?

Objective summary
■■ CSS3 media queries can be used to adapt your app to different windowing modes

when it gets snapped. You can use your app manifest to configure the sizes your app
supports.

■■ You can respond to changes in orientation by using media queries or the
SimpleOrientationSensor class.

■■ The ViewManagement namespace gives you access to the current ApplicationView
object. This object has information about the orientation, size, and alignment of your
app window.

■■ ViewManagement allows you to project a secondary view to a second display.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are using media queries to adapt your app to different windowing layouts. Which
dimensions can you support? (Choose all that apply.)

A.	 200px

B.	 320px

C.	 500px

D.	 1024px

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.4: Design and implement the app bar	 CHAPTER 3	 171

2.	 You want to change the functionality of your app when a user changes the orientation
of the device. How can you do this? (Choose all that apply.)

A.	 Use a media query with a selector of orientation.

B.	 Use the SimpleOrientationSensor class to be notified of changes in orientation.

C.	 Listen for the visibilitychange event.

D.	 Listen to the orientationchanged event on the ApplicationView object.

3.	 You want to make sure that your app can be used with a size of only 500px or larger.
What should you do?

A.	 Add a media query that blacks out the screen when the app gets smaller.

B.	 Listen to the window resized event and cancel the event when the app gets too
small.

C.	 Configure the app manifest for a minimum size of 500px.

D.	 Add media queries for only the supported window sizes.

Objective 3.4: Design and implement the app bar

Windows Store apps have some clear design guidelines regarding the layout and placement
of your elements. One important control in your apps is the app bar, which is used for placing
commands that are local to the current page or for your whole app. It helps users easily find
the commands they are looking for.

This objective covers how to:
■■ Determine what to put on the app bar based on app requirements

■■ Style and position app bar items

■■ Design the placement of controls on the app bar

■■ Handle AppBar events

Determining what to put on the app bar based on app
requirements
The design guidelines for Windows Store apps lead you to a clean, well-designed app without
distractions of the main goal of your app. However, completely ignoring commands does not
work.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	172	 CHAPTER 3	 Create the user interface

Users need commands for navigation or for specific actions in your app. In Figure 3-15, the
Weather app shows both the bottom and the top app bars.

FIGURE 3-15  The app bars in the Weather app

The top bar is used for navigation among various sections of your app. You can use it to
offer users quick access to the home screen and other parts of your app.

The bottom app bar contains commands that invoke actions in your app. The difference
between commands on the left and right of the bottom app bar is about their applicability to
the current page. Commands available in all pages are placed on the right; commands useful
only in the current context are placed on the left.

This grouping helps users become familiar with your app. Users can expect global commands
to always be in the same location at the right side of your app bar. When they look for specific
commands, they have to look only at the left part of the app bar.

You can further help users by making sure the app bar automatically appears when a user
selects an item that has associated actions. This happens on your Start screen when you select
a tile: The app bar opens and shows commands to uninstall the app or configure its tile.

Microsoft guidelines state that you shouldn’t put critical commands on the app bar (for
example, the Take A Picture command in a camera app). This command should be added to
the apps page so users can easily access it.

You also shouldn’t put commands that are related to settings and configuration in your
app bar. The function of letting users log on or change account or global app settings should
be in the Settings charm.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.4: Design and implement the app bar	 CHAPTER 3	 173

By using a Menu flyout, you can place commands such as copy, paste, and cut in a menu
that directly relates to selected text or items. Those commands also shouldn’t be placed on
the app bar.

Styling and positioning app bar items
You create an app bar by using the WinJS.UI.AppBar control. Add a div set to this control, and
an empty app bar is then added to your app.

A simple app bar with one button can look like this:

<div id="myAppBar" data-win-control="WinJS.UI.AppBar">
 <button data-win-control="WinJS.UI.AppBarCommand" data-win-options=
 "{id:'cmdAdd',label:'Add',icon:'add',section:'global',tooltip:'Add item'}">
 </button>
</div>

This code creates an app bar with one button, as shown in Figure 3-16.

A lot of the styling is handled for you by the AppBar and AppBarCommand controls.
Because you added a button with an Add icon, you see a nice round button with a + icon. Using
these default icons gives a consistent interface that is immediately recognizable by a user.

You can add multiple types of commands to an app bar:

■■ Button

■■ Toggle

■■ Flyout

■■ Separator

■■ Content

FIGURE 3-16  The simple app bar with an Add button

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	174	 CHAPTER 3	 Create the user interface

A button exists of a label, a tooltip, and an icon. There is a long list of available icons for
styling buttons (see the following note). You can also add your own icons by using a 40px x
40px PNG file with a transparent background.

MORE INFO  AVAILABLE ICONS FOR APP BAR COMMANDS

The WinJS library defines a long list of icons that you can use in your app. You can find this
list at http://msdn.microsoft.com/en-us/library/windows/apps/hh770557.aspx.

To add a toggle, use the following markup:

<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'cmdToggle',
 type:'toggle',
 label:'Toggle',
 icon:'audio',
 section:'global',
 tooltip:'Toggle'}"></button>

This is also an HTML button, but now you use a type of toggle to create a button that a
user can press and release to toggle some action.

You can also add a flyout to a button on the app bar. First, define the flyout in markup
outside of the app bar:

<div id="exampleFlyout" data-win-control="WinJS.UI.Flyout" aria-label="{Example
flyout}">
 <div>This is an example AppBarCommand of type 'flyout'.</div>
 <button id="exampleFlyoutButton">Example flyout</button>
</div>

Add a button of type flyout to your app bar and link it to your flyout:

<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'flyoutButton',
 type:'flyout',
 label:'Flyout',
 icon:'openpane',
 section: 'global',
 flyout:select('#exampleFlyout')}"></button>

By using the content app bar command, you can add a div that you can fill with custom
content like this:

<div data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id: 'textfield',
 type: 'content',
 label:'Text field',
 section: 'selection' }">
 <input type="text" value="Text" />
</div>

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/hh770557.aspx

ptg14200515

	 Objective 3.4: Design and implement the app bar	 CHAPTER 3	 175

This code adds a text box to your app bar. You can add all HTML elements that you want,
but remember that an app bar is not meant for complicated commands. If you want to add
custom content to your app bar, consider your design and make sure it is really what you
want.

Finally, the separator is used to group items together and visually separate those groups.
To add a separator, use an HTML hr element:

<hr data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'separator',
type:'separator',
section:'global'}" />

By combining these different command types, you have many app bar choices for users.

Designing the placement of controls on the app bar
As discussed in the previous section, commands can be placed and positioned on the left or
right side of an app bar by using the section property on a command.

Section can have a default value of global or selection. Global, which positions commands
on the right side of the app bar, is meant for commands that always show on all pages in an
app. The following code shows a toggle that is placed in the global section of the app bar:

<button data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{id:'cmdToggle',
 type:'toggle',
 label:'Toggle',
 icon:'audio',
 section:'global',
 tooltip:'Toggle'}"></button>

Selection is meant for commands that are placed on the left side of your app bar. Those
commands have specific meaning in the current user’s context. For example, the following
code shows how to place a text field on the selection part of the app bar:

<div data-win-control="WinJS.UI.AppBarCommand"
 data-win-options="{ id: 'textfield',
 type: 'content',
 label:'Text field',
 section: 'selection' }">
 <input type="text" value="Text" />
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	176	 CHAPTER 3	 Create the user interface

In addition to selection and global, you can also use a custom layout, which allows you to
use your own HTML to create the layout for your app bar. You can add HTML and WinJS con-
trols to a custom section of your app bar. You create such a section by using content like this:

<div data-win-control="WinJS.UI.AppBarCommand" data-win-options="{ type: 'content' }">
 <p>
 You can include a wide variety of HTML inside of a 'content' AppBarCommand,

 including HTML and some WinJS controls.
 </p>
</div>

EXAM TIP

When you are asked on the exam to position items on the app bar, make sure that you
read the requirements carefully. Look for information that suggests whether the command
should be globally available or is linked to items on the current page.

Handling AppBar events
You can easily attach handlers for the commands you place on your app bar. You can get an
instance of the app bar by using the winControl property. By calling getCommandById on
your app bar, you can then get access to the individual commands and attach event handlers:

var appBar = document.getElementById("createAppBar").winControl;
appBar.getCommandById("cmdAdd").addEventListener("click", doClickAdd, false);

The app bar also raises events. You can listen to one of these events:

■■ onafterhide occurs immediately after the AppBar is hidden.

■■ onaftershow occurs after the AppBar is shown.

■■ onbeforehide occurs before the AppBar is hidden.

■■ onbeforeshow occurs before a hidden AppBar is shown.

The following code sample shows how to attach to these events:

var appBar = document.getElementById('myAppBar').winControl;
appBar.addEventListener('afterhide', function () {
 WinJS.log
 && WinJS.log("after hide");
});

appBar.addEventListener('aftershow', function () {
 WinJS.log
 && WinJS.log("after show");
});

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.4: Design and implement the app bar	 CHAPTER 3	 177

appBar.addEventListener('beforehide', function () {
 WinJS.log
 && WinJS.log("before hide");
});

appBar.addEventListener('beforeshow', function () {
 WinJS.log
 && WinJS.log("before show");
});

You can control app bar showing and hiding programmatically. You can show the app bar
by calling this:

 document.getElementById('idofappbar').winControl.show();

By using the sticky property, you can control whether the app bar is automatically closed
whenever the user clicks outside of it:

var appBar = document.getElementById('myAppBar').winControl;
appBar.sticky = true;
appBar.show();

Thought experiment 
Adding some commands

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Open the Weather app on your Windows 8 device. Navigate through the app and
open the app bar for each page.

1.	 What’s the difference between the commands on the left side and the
commands on the right side of your app bar?

2.	 Is the app consistent on every page?

Objective summary
■■ The app bar is used in Windows Store apps to provide a common location for placing

commands. Commands can be both global or for the current context.

■■ You can use a button, flyout, content, separator, or toggle command. You can use
predefined styles and icons when creating commands.

■■ Contextual commands should be placed on the left side of your app bar; global
commands should be on the right. By using a separator, you can group commands.
You should avoid overloading the app bar with commands.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	178	 CHAPTER 3	 Create the user interface

■■ You can attach event handlers for individual commands on the app bar and to the app
bar itself for when it is shown and hidden.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are designing a ToDo App. When the user selects a specific item, you want to show
a command on the app bar for completing the item. Where should you position this
command?

A.	 On the left side of the app bar

B.	 On the right side of the app bar

C.	 In the middle of the app bar

D.	 In a custom section of the app bar

2.	 You want to add a flyout to your app bar. What should you do? (Choose all that apply.)

A.	 Create a button with a data-win-control of WinJS.UI.AppBarCommand.

B.	 Add a div with a data-win-control of WinJS.UI.Flyout.

C.	 Create a div with a data-win-control of WinJS.UI.AppBar.

D.	 Add a div with a data-win-control of WinJS.UI.AppBarCommand.

3.	 You want to make sure that the app bar stays visible when a user selects another item
on your page. What should you do?

A.	 Listen for the beforehide event and cancel the event in the event handler.

B.	 Set the sticky property of your app bar to true.

C.	 Listen for the afterhide event and cancel the event in the event handler.

D.	 Set the sticky property of your app bar to false.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.5: Apply CSS styling	 CHAPTER 3	 179

Objective 3.5: Apply CSS styling

Windows Store apps written with HTML, CSS, and JavaScript run in Internet Explorer 11, which
enables you to use all CSS techniques that Internet Explorer 11 supports. You can style your
apps just as you would with a regular website.

Most of the content of this objective has been discussed in other parts of the book. In this
objective, you learn about gradients in detail; other content is a quick recap and a reference
to other sections in the book.

This objective covers how to:
■■ Implement gradients

■■ Implement Grid layouts

■■ Implement zooming

■■ Implement scroll snapping

■■ Implement media queries

Implementing gradients
CSS3 gradients let you display a smooth transition from one color to another without having
to specify all the details about the colors in-between. The gradient, which is generated by
Internet Explorer 11, creates a very smooth transition from the first color to the second.

You can use two types of gradients:

■■ Linear

■■ Radial

A linear gradient goes from one point to another: left/right, up/down, or diagonally. A
radial gradient is defined by its center and expands in a circular path.

To create a linear gradient, you have to define a minimum of two colors:

#grad {
 background: linear-gradient(red, blue);
 width: 100px;
 height: 100px;
}

This code results in the div shown in Figure 3-17.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	180	 CHAPTER 3	 Create the user interface

FIGURE 3-17  The div with a linear gradient from red to blue

You can change the direction of your linear gradient by adding a direction property like this:

background: linear-gradient(to bottom right, red , blue);

You can use any of the predefined values such as to bottom, to top, to right, to left, to
bottom right, and so on.

If those predefined directions are not what you’re looking for, you can specify an angle.
The angle is specified as an angle between a horizontal line and the gradient line, going
counterclockwise. In other words, 0deg creates a bottom-to-top gradient, whereas 90deg
generates a left-to-right gradient:

background: linear-gradient(180deg, red, blue);

You can use as many colors as you want:

background: linear-gradient(red, green, blue);

Instead of using predefined colors such as red, green, or white, you can also use the rgba
function to specify the exact components of all colors. This function also allows you to specify
a value from 0 (fully transparent) to 1 (completely solid):

background: linear-gradient(to right, rgba(255,0,0,0), rgba(255,0,0,1));

A radial gradient is created by using the following syntax:

#grad {
 background: radial-gradient(red, green);
 width: 100px;
 height: 100px;
}

This code creates the gradient shown in Figure 3-18.

FIGURE 3-18  The div with a radial gradient from red to green

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.5: Apply CSS styling	 CHAPTER 3	 181

This gradient is an ellipse and has its center in the middle of the containing div. You can set
the shape to a circle:

background: radial-gradient(circle, red, yellow, green);

Implementing Grid layouts
Grid layouts are discussed in Objective 3.2. A CSS3–based Grid layout uses rows and columns
that define cells. You can place items in those cells or let them span multiple cells.

The following code shows a complete example:

<div id="myGrid">
 <div id="item1">Item 1</div>
 <div id="item2">Item 2</div>
 <div id="item3">Item 3</div>
 <div id="item4">Item 4</div>
 <div id="item5">Item 5</div>
</div>
#myGrid {
 display: -ms-grid;
 background: gray;
 border: blue;
 -ms-grid-columns: auto 1fr 2fr;
 -ms-grid-rows: 200px auto;
}
 #myGrid div {
 background: lightgray;
 border: red solid 1px;
 }

#item1 {
 background: maroon;
 -ms-grid-row: 1;
 -ms-grid-column: 1;
}

#item2 {
 -ms-grid-row: 1;
 -ms-grid-column: 2;
}

#item3 {
 -ms-grid-row: 1;
 -ms-grid-column: 3;
}

#item4 {
 -ms-grid-row: 2;
 -ms-grid-column: 1;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	182	 CHAPTER 3	 Create the user interface

#item5 {
 -ms-grid-row: 2;
 -ms-grid-column: 2;
 -ms-grid-column-span: 2;
}

Implementing zooming
Zooming, which is discussed in Objective 3.2, is performed by using the -ms-content-zooming:
zoom CSS property like this:

.zoomElement {
 overflow: auto;
 -ms-content-zooming: zoom;
 -ms-scroll-rails: none;
 -ms-content-zoom-limit-min: 100%;
 -ms-content-zoom-limit-max: 500%;

Specify a minimum and maximum zoom limit, and make sure that the content is set to
overflow so it stays within its container.

Implementing scroll snapping
Scroll snapping is important when implementing scrolling and panning (it is discussed in
detail in Objective 3.2).

By using the -ms-scroll-snap-type property with a value of proximity or mandatory, you
can force content to snap to a specific position when a user is panning or scrolling through it.

An example of a mandatory snapping is shown here:

.MandatorySnapInterval {
 -ms-scroll-snap-type: mandatory;
 -ms-scroll-snap-points-x: snapInterval(0%, 100%);
}

Proximity snapping can be done with the following code:

.ProximitySnapList {
 -ms-scroll-snap-type: proximity;
 -ms-scroll-snap-points-x: snapList(100%, 200%, 300%, 400%, 500%);
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.5: Apply CSS styling	 CHAPTER 3	 183

Implementing media queries
Using CSS media queries to change your CSS for different screen sizes is discussed in
Objective 3.3. You use a media query like this:

@media (max-width:499px) {
 …
}

The CSS in this block applies only when your app is less than 500px wide. You can use it
to create different CSS settings when your app is snapped or when it is on devices with a low
resolution.

EXAM TIP

Media queries are very important for creating apps that run on a variety of devices. Make
sure that you understand how they work and that you have some practical experience.

Thought experiment 
Using CSS

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

All effects mentioned in this objective use CSS. However, you can also create those
effects by using JavaScript and HTML.

1.	 Explain why you want to use CSS for those effects.

2.	 Put the CSS techniques in this objective in order, from most likely to use in your
app to less likely to use in your app.

Objective summary
■■ A gradient can be linear or radial. By defining multiple colors, the browser creates a

smooth transition from one color to the next.

■■ Grid layouts are perfect for creating flexible layouts that can easily adapt to different
sizes. You define a grid with rows and columns and then place items into cells.

■■ Zooming can be done by using the -ms-content-zooming: zoom; property with a
minimum and maximum zoom level.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	184	 CHAPTER 3	 Create the user interface

■■ Scroll snapping allows you to restrict a user to scrolling a specific amount at a time
(mandatory snapping) or by snapping to a certain position when a user gets close
(proximity snapping).

■■ Media queries are used to respond to changes in screen size and apply different CSS
rules, depending on the dimensions.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You want to create a gradient from top to bottom that goes from transparent white to
orange to red. Which syntax should you use?

A.	 background: linear-gradient(rgba(0,0,0,0), rgba(255, 165, 0,0.5),red);

B.	 background: linear-gradient(to top, rgba(0,0,0,0), rgba(255, 165, 0,0.5),red);

C.	 background: linear-gradient(to bottom, white, orange, red);

D.	 background: linear-gradient(to bottom, rgba(0,0,0,0), rgba(255, 165, 0,0.5),red);

2.	 You have Grid layout with four columns and five rows. The header should be placed
horizontally from left to right across all columns. Which property should you use?

A.	 -ms-grid-columns: auto;

B.	 -ms-grid-column-span: 4;

C.	 -ms-grid-row-span: 5;

D.	 z-index: 4;

3.	 You want to enable zooming on an image you have on your page. What should you
do? (Choose all that apply.)

A.	 Set the image in a container div.

B.	 Apply the -ms-content-zooming: zoom property to the div.

C.	 Apply the -ms-content-zooming: zoom property to the image.

D.	 Configure the -ms-content-zoom-limit-min and -ms-content-zoom-limit-max
properties.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 3	 185

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 3.1: Thought experiment
The Weather app uses a Repeater control, a ListView control, and flyouts, as well as the more
basic controls such as images, buttons, and text elements.

Objective 3.1: Review
1.	 Correct answer: D

A.	 Incorrect: An itemTemplate property can’t be used for interactive items.

B.	 Incorrect: The type of data source doesn’t influence the way a user interacts with
the items.

C.	 Incorrect: This event doesn’t exist.

D.	 Correct: With a templating function, you can use JavaScript to add additional
event handlers.

2.	 Correct answers: B, C, D

A.	 Incorrect: The List object has a method for creating groups for the data it has.

B.	 Correct: This is used to determine the group to which an item belongs.

C.	 Correct: This is used to order items.

D.	 Correct: This is used to create data such as the group title that can then be used
when rendering the groups.

3.	 Correct answer: D

A.	 Incorrect: This interface is used when creating a WinRT object for streaming data
to a WebView control.

B.	 Incorrect: This is used to send data from the webpage in the WebView control to
the app.

C.	 Incorrect: This is the event that is raised when a webpage sends data to the app.

D.	 Correct: This method is used to invoke a script on the webpage loaded in the
WebView control.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	186	 CHAPTER 3	 Create the user interface

Objective 3.2: Thought experiment
Windows Store apps can run on a multitude of devices. You can easily create a flexible layout
by using a Grid, FlexBox, Multi-column, or Regions layout.

You can use templates and bindings to show data about restaurants and other activities
the employee has to do.

Images can be easily incorporated in the app; with CSS3, you can implement image
scrolling and zooming.

Objective 3.2: Review
1.	 Correct answer: D

A.	 Incorrect: Mixing regular content and an HTML document is most easily done
by using a Regions layout. FlexBox is used for layouts in which the relative size of
items is important.

B.	 Incorrect: Although a Grid layout is very flexible, it would require a lot of manual
work to mix the HTML and custom content.

C.	 Incorrect: A Multi-column layout is used to flow content automatically to multiple
columns and configure page and item breaks. It doesn’t mix content from different
sources.

D.	 Correct: Mixing of regular content and an HTML document is most easily done by
using a Regions layout.

2.	 Correct answer: A

A.	 Correct: This places the newly dropped item on top of the other item.

B.	 Incorrect: A smaller value doesn’t work because it would place the item below the
already existing item.

C.	 Incorrect: You can have multiple items in one cell and use the z-index to arrange
them.

D.	 Incorrect: This property should be added to an item to let it span multiple cells. In
this case, items fit into one cell.

3.	 Correct answer: B

A.	 Incorrect: Proximity is used for snapping to a position when a user gets close to it.
It doesn’t force the user to pan one item at a time.

B.	 Correct: Mandatory allows you to make sure that a user can pan one item at a
time.

C.	 Incorrect: A value of None allows the user to pan around freely.

D.	 Incorrect: A value of Automatic does not exist.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 3	 187

Objective 3.3: Thought experiment
1.	 You can support both 320px- and 500px-wide screens. In the 320px mode, you can

view only the categories in a list view or a single ToDo list.

2.	 Media queries are very well suited for this.

Objective 3.3: Review
1.	 Correct answers: B, C

A.	 Incorrect: The smallest size is 320px.

B.	 Correct: 320px is a supported size for apps.

C.	 Correct: 500px is a supported size for apps.

D.	 Incorrect: 1024px isn’t a size you have to explicitly support. Everything larger than
500px can be used.

2.	 Correct answers: B, C

A.	 Incorrect: With a media query, you can change only CSS rules; you can’t change
functionality.

B.	 Correct: This allows you to respond to orientation changes in JavaScript.

C.	 Correct: You have to use this event to make sure that nothing is changing when
your app is not visible.

D.	 Incorrect: This event doesn’t exist.

3.	 Correct answer: C

A.	 Incorrect: Although possible, it is definitely not an optimal solution. By configuring
the manifest, an app closes when it gets smaller than 500px.

B.	 Incorrect: This event can’t be canceled.

C.	 Correct: This makes sure that a user can’t resize your app to less than 500px.

D.	 Incorrect: Adding media queries for specific sizes doesn’t limit the app to those
sizes; it limits only the sizes that CSS rules apply to.

Objective 3.4: Thought experiment
1.	 Commands on the left side are specific to the page you are on; commands on the right

side are global.

2.	 Not completely. Some pages have different global commands than other pages.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Objective 3.4: Review
1.	 Correct answer: A

A.	 Correct: Commands on the left side are for contextual commands.

B.	 Incorrect: Commands on the right side are for global commands. The commands
available when an item is selected are not globally available.

C.	 Incorrect: You shouldn’t align items to the middle of the app bar.

D.	 Incorrect: A command associated with a selected item should be on the left side.
Using a completely custom layout is not required for this scenario.

2.	 Correct answers: A, B, C

A.	 Correct: This button activates the flyout.

B.	 Correct: The HTML for the flyout should be in a div on the page.

C.	 Correct: The app bar is a div with a WinJS.UI.AppBar WinJS control.

D.	 Incorrect: A flyout should be opened from a button.

3.	 Correct answer: B

A.	 Incorrect: You can’t cancel this event.

B.	 Correct: Setting sticky to true ensures that the app bar isn’t easily dismissed.

C.	 Incorrect: You can’t cancel this event.

D.	 Incorrect: A value of false for sticky is the default. You should set it to true for this
scenario.

Objective 3.5: Thought experiment
1.	 Browsers are optimized for using CSS. They can run native code when applying CSS

rules and even use hardware acceleration.

2.	 Grid layout, media queries, scroll snapping, zooming, gradients.

Objective 3.5: Review
1.	 Correct answer: D

A.	 Incorrect: This line misses the correct direction setting.

B.	 Incorrect: The direction should be from top to bottom, not bottom to top.

C.	 Incorrect: This misses the alpha settings that require using the rgba function.

D.	 Correct: This has both the correct direction and alpha settings.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 3	 189

2.	 Correct answer: B

A.	 Incorrect: This creates a grid with one column that is autosized.

B.	 Correct: Column span lets one item span across multiple columns.

C.	 Incorrect: You need a column, not a row span.

D.	 Incorrect: A z-index is used to place items on top of each other.

3.	 Correct answers: A, B, D

A.	 Correct: An element needs a container to zoom in on it.

B.	 Correct: The div should have the zoom property.

C.	 Incorrect: The div, not the image, should have the zoom property.

D.	 Correct: A minimum and maximum zoom limit should be specified.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 191

C H A P T E R 4

Program user interaction
User participation is the most important part of your app. Your app can be built on a great
idea with a beautiful user interface, but it won’t become the next big hit if it can’t be easily
used by users.

This chapter is all about user interaction. You start by learning how to allow users to use
touch and a keyboard and mouse to interact with your app. By using gestures and support-
ing different input styles, you can ensure that users feel comfortable when using your app.

The chapter discusses using navigation in an app, including how to create an app that
makes it easy to find what users need and how to create a page structure that can be easily
maintained and extended.

Finally, you learn how to get users to interact with your app when they are not directly
using it. Using a tile that shows regular updates and invites users to launch your app and
using toast notifications that keep users informed of changes in your app help to ensure
that they come back.

This chapter focuses on 20 percent of the exam. Make sure that you understand how
to use touch, how to create pages for your navigation, and how to use tiles and toasts
to inform users of updates. Try to experiment with the ideas from this chapter and the
Microsoft samples to make sure you understand these subjects.

Objectives in this chapter:
■■ Objective 4.1: Manage input devices

■■ Objective 4.2: Design and implement navigation in an app

■■ Objective 4.3: Create and manage tiles

■■ Objective 4.4: Notify users by using toast

Objective 4.1: Manage input devices

A Windows Store app offers you a unique possibility to create an app to run on a diverse set
of devices. Users can use touch, a mouse and keyboard, and a stylus to work with your app.

When users start using multiple apps, they begin to expect certain behavior. Windows
has built-in gestures that they can use, and your app needs to support them. In this objec-
tive, you see the types of input your app can receive and how you can support them.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	192	 CHAPTER 4	 Program user interaction

This objective covers how to:
■■ Capture gesture library events

■■ Create custom gesture recognizers

■■ Listen to mouse events or touch gestures

■■ Manage stylus input and inking

■■ Handle drag-and-drop events

Capturing gesture library events
A Windows Store app runs on devices with a mouse and keyboard, touch devices, and devices
that use a stylus. All these input styles are well supported in Windows Store apps. It is your
job to ensure that your app uses those input devices to reach the largest audience possible.

These actions, which are called gestures, can be performed by a finger, fingers, pen/stylus,
mouse, and so on. For example, invoking a command with a single finger touch is equivalent
to clicking it with the mouse or a stylus, or selecting it and pressing Enter on a keyboard.

In a Windows Store app, all forms of input are referred to as pointer input. By unifying
input mechanisms, you can create apps to handle all types of input. Pointers contain extra
data based on the device that created it, such as the mouse button that created the click
event or the number of fingers that created a swipe.

On a higher level, Windows offers you gestures that can arise from any input source. By
using gestures, you don’t have to focus on raw pointer data.

The basic gestures that Windows 8 relies on are shown in Table 4-1.

TABLE 4-1  Gestures in Windows 8

Name Type Description

Tap Static gesture One finger touches the screen and lifts up.

Press and hold Static gesture One finger touches the screen and stays in place.

Slide Manipulation gesture One or more fingers touch the screen and move in the same
direction.

Swipe Manipulation gesture One or more fingers touch the screen and move a short
distance in the same direction.

Turn Manipulation gesture Two or more fingers touch the screen and move in a
clockwise or counterclockwise arc.

Pinch Manipulation gesture Two or more fingers touch the screen and move closer
together.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Manage input devices	 CHAPTER 4	 193

Fortunately, WinJS controls already implement support for mouse, keyboard, touch, and
stylus input. When using those controls, you automatically benefit from the work done by
Microsoft to support all types of users.

For example, the semantic zoom control (discussed in the next objective) supports differ-
ent kinds of inputs to allow zooming and panning through its content. The control processes
pointer and gesture data so you can use it without thinking about those events.

If you want more control, start using the gesture events, which include MSGestureTap and
MSGestureHold; and sequences of gestures such as MSGestureStart, MSGestureChange, and
MSGestureEnd.

At the lowest level is the pointer data, which includes unified pointer events such as
pointerdown, pointermove, and so on. You can parse user input directly and respond
differently to different types of input.

Subscribing to gesture events is easy. The following example uses two divs—the first div
can be manipulated, and the second one is for logging:

<div id="targetContainer" style="width: 100px; height: 100px; border: 1px solid blue"">
</div>
<div id="log" style="overflow:auto;width:100px;height:100px;border:1px solid red;">
</div>

In JavaScript, you can listen for the gesture events with the following code (you can
register the event handlers in the onactivated event handler):

var divElement = document.getElementById("targetContainer");
divElement.addEventListener("MSGestureTap", function () {
 log("tap");
});
divElement.addEventListener("MSGestureHold", function (e) {
 log("hold");
});
divElement.addEventListener("MSGestureStart", function () {
 log("start");
});
divElement.addEventListener("MSGestureChange", function (e) {
 log("change");
});
divElement.addEventListener("MSGestureEnd", function () {
 log("end");
});
divElement.addEventListener("MSInertiaStart", function () {
 log("start");
});

The log method logs the message to the div:

function log(message) {
 var log = document.getElementById("log");
 log.innerHTML += message + "
";
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	194	 CHAPTER 4	 Program user interaction

The last step is to hook up the pointer events to an MSGesture object:

var gestureObject = new MSGesture();
gestureObject.target = divElement;
divElement.gestureObject = gestureObject;
divElement.addEventListener("pointerdown", function (e) {
 e.target.gestureObject.addPointer(e.pointerId);
}, true);

When you run this application, you see that tapping, holding, and moving with a mouse or
your finger fires gesture events that are logged to the div.

Of course, just logging the events isn’t very interesting. If you use the following code for
the gesture change event, you can move the div around:

divElement.addEventListener("MSGestureChange", function (e) {
 var elt = e.target;
 var m = new MSCSSMatrix(elt.style.msTransform);

 elt.style.msTransform = m.translate(e.translationX, e.translationY);
});

The event argument that gets passed to the event handler contains a lot of data, such as
translation, velocity, rotation, time, and scale. All those values are used to determine the type
of gesture a user is making. Touching the screen, moving within a certain time threshold, and
releasing is a tap. Touching the screen, moving beyond the time threshold, and releasing is a
hold.

In this example, the movement is created by using an MSCSSMatrix object. Matrices are
mathematical objects used for describing translations, rotations, and scaling. By creating
more-complex matrices, you can create complex animations with gestures.

Why have you used regular JavaScript events such as click until now? The run time
automatically translates pointer events into plain HTML events, which affects performance
in a minor way. So it is best to use the pointer and gesture events when developing custom
controls with specific gestures.

EXAM TIP

Make sure that you understand why you can use regular HTML events in Windows Store
apps by translating pointer events into HTML events. However, when implementing
performance-sensitive code, avoid using the HTML events by processing the pointer events
yourself.

Testing gestures is the easiest when done on a touch-enabled device. However, for quick
testing or when you don’t have a touch device you can also use the simulator that’s part of
Visual Studio. On the right side of the simulator are multiple buttons (see Figure 4-1). The first
few buttons can be used for simulating touch, pinching, and rotation. Other buttons can be
used to change the screen resolution, location data, and network capabilities.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Manage input devices	 CHAPTER 4	 195

FIGURE 4-1  The buttons for the Visual Studio simulator running a Windows Store app

By using the simulator, you can easily test applications on a regular device. You launch the
simulator from Visual Studio. To run your Windows Store app in the simulator, select Simulator
from the list next to the Start Debugging button on the debugger toolbar (see Figure 4-2).

FIGURE 4-2  Selecting the Visual Studio simulator to run a Windows Store app

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	196	 CHAPTER 4	 Program user interaction

Creating custom gesture recognizers
Gestures such as swipe, rotate, pinch, and stretch don’t exist as one single action. Instead, a
user starts a gesture, processes some actions, and finishes. Recognizing those gestures and
making sense of what a user is trying to do is the task of a gesture recognizer.

This object can be found at Windows.UI.Input.GestureRecognizer. You can listen for
pointer events, feed them to the gesture recognizer, and then process the events that the
gesture recognizer raises.

You can create and configure a gesture recognizer like this:

var gr = new Windows.UI.Input.GestureRecognizer();
gr.showGestureFeedback = false;
gr.gestureSettings =
 Windows.UI.Input.GestureSettings.tap |
 Windows.UI.Input.GestureSettings.doubleTap |
 Windows.UI.Input.GestureSettings.rightTap |
 Windows.UI.Input.GestureSettings.hold |
 Windows.UI.Input.GestureSettings.holdWithMouse;

With the gestureSettings property, you define the types of gestures you want to recognize.
In addition to the gestureSettings property, you can use other properties for specific settings
such as crossSlideThresholds, crossSlideExact, and crossSlideHorizontally. You can listen for
the following types of gestures:

■■ None

■■ Tap

■■ DoubleTap

■■ Hold

■■ HoldWithMouse

■■ RightTap

■■ Drag

■■ ManipulationTranslateX

■■ ManipulationTranslateY

■■ ManipulationTranslateRailsX

■■ ManipulationTranslateRailsY

■■ ManipulationRotate

■■ ManipulationScale

■■ ManipulationTranslateInertia

■■ ManipulationRotateInertia

■■ ManipulationScaleInertia

■■ CrossSlide

■■ ManipulationMultipleFingerPanning

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Manage input devices	 CHAPTER 4	 197

You can create your own gestures by listening to combinations of these gesture types.
After configuring your gesture recognizer, you can then add event handlers:

gr.addEventListener('manipulationstarted', function (e) { });
gr.addEventListener('manipulationupdated', function (e) { });
gr.addEventListener('manipulationcompleted', function (e) { });
gr.addEventListener('tapped', function (e) { });
gr.addEventListener('righttapped', function (e) {});

These events are called whenever the gesture recognizer translates the pointer events you
feed it into a specific gesture.

To supply the gesture recognizer with pointer events, subscribe to the pointer events on
your element and pass them to the gesture recognizer like this:

var target = document.getElementById("targetContainer");

target.addEventListener('pointerdown', function (evt) {
 var pp = evt.getCurrentPoint(target);
 gr.processDownEvent(pp);
}, false);
target.addEventListener('pointermove', function (evt) {
 var pps = evt.getIntermediatePoints(target);
 gr.processMoveEvents(pps);
}, false);
target.addEventListener('pointerup', function (evt) {
 var pp = evt.getCurrentPoint(target);
 gr.processUpEvent(pp);
}, false);
target.addEventListener('pointercancel', function (evt) {
 var pp = evt.getCurrentPoint(target);
 gr.processUpEvent(pp);
}, false);
target.addEventListener('wheel', function (evt) {
 var pp = evt.getCurrentPoint(target);
 gr.processMouseWheelEvent(pp, evt.shiftKey, evt.ctrlKey);
}, false);

This code extracts the correct data from the pointer event and calls the matching method
on the gesture recognizer.

Remember that creating all the gesture recognizers upfront doesn’t scale well when
you have many gesture objects. Instead, you can create objects dynamically, starting on
pointerdown and destroying them on MSGestureEnd.

MORE INFO  INPUT GESTURES AND MANIPULATIONS WITH GESTURERECOGNIZER

Microsoft created a sample application that demonstrates how to use a gesture recognizer.
You can find the sample at http://code.msdn.microsoft.com/windowsapps/Manipulations-
and-gestures-362b6b59.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Manipulationsand-gestures-362b6b59
http://code.msdn.microsoft.com/windowsapps/Manipulationsand-gestures-362b6b59

ptg14200515

	198	 CHAPTER 4	 Program user interaction

Listening to mouse events or touch gestures
Because of the way Windows translates pointer data into gestures and finally into regular
HTML Document Object Model (DOM) events, you don’t have to do very specific things to
make your app usable by a mouse when it is already optimized for touch.

As Microsoft states, you should design the app touch first because when everything works
with touch, a mouse also works. You can listen for pointer or gesture events, or just use the
built-in controls that are optimized for different input styles.

Look for the use of a mouse wheel; when you have an element, attach a handler for the
mouse wheel like this:

element.addEventListener("wheel", onMouseWheel, false);

Inside your event handler, set the pointerId to 1 and pass it to the pointerdown event
handler:

function onMouseWheel(e) {
 e.pointerId = 1;
 onPointerDown(e);
}

Now you can use the mouse wheel to manipulate your object by zooming or rotating it in
combination with keyboard presses.

When working with pointer events, you can check the pointerType property to see
whether the input was generated by touch, mouse, or pen actions:

elm.addEventListener("pointerdown", handleDown, false);
function handleDown(evt) {
 if (evt.pointerType == "mouse") {
 // Do something for mouse input only
 } else {
 // Do something for non-mouse input
 }
}

Managing stylus input and inking
Besides using a mouse, keyboard, and touch input, users can also use a stylus. Because of
the pointer– and gesture–based input mechanisms, you don’t have to do anything special to
enable users to use a stylus for regular input such as clicking or holding items.

One scenario in which users use a stylus is when inking. An HTML canvas element makes it
easy to listen to raw pointer events and use the stylus to draw on the canvas. But inking goes
a step farther: Ink is a data structure that maintains the actual input data such as pressure,
angle, and velocity, so ink remembers how an image was drawn (so you can apply techniques
such as handwriting recognition).

Inking starts with creating an instance of the Windows.UI.Input.Inking.InkManager class and
an input element. By listening to pointerdown, pointermove, and pointerup events, you can
pass those events to InkManager, which then creates InkStroke objects that you can render.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Manage input devices	 CHAPTER 4	 199

MORE INFO  INKING SAMPLES

The Windows software development kit (SDK) contains two inking samples. One features
a complete application with handwriting recognition; the other is a simplified version that
focuses on just processing the inking. The Input: Simplified ink sample can be found at
http://code.msdn.microsoft.com/windowsapps/Input-simplified-ink-sample-11614bbf. The
Input Ink sample can be found at http://code.msdn.microsoft.com/windowsapps/Ink-App-
sample-61abaec3.

Handling drag-and-drop events
When implementing dragging, it is easiest to use the built-in controls that WinJS offers you.
The ListView control has support for dragging since WinJS 2.0; and ItemContainer (used in
ListView) also supports dragging. Drag-and-drop support is implemented on the standard
HTML5 drag-and-drop capabilities.

Follow these steps to implement dragging with the ListView control:

1.	 Set itemsDraggable to true on ListView.

2.	 Handle the itemdragstart event and configure the data you want to transfer.

3.	 Handle the dragover event on the target and signal that you accept the drop.

4.	 Handle the drop event on the target and transfer the data.

Implementing dragging and dropping looks like the code that follows. If you have an
element ListView and dropTarget, you can add the required event handlers. The first one is
dragstart:

listView.addEventListener("itemdragstart", function (eventObject) {
 eventObject.detail.dataTransfer.setData("Text", JSON.stringify(eventObject.detail.
dragInfo.getIndices()));
});

This event handler configures the data you want to transfer. In this case, it uses the index
of the item that you will drag. In addition to itemdragstart, you can use itemdragend:

listView.addEventListener("itemdragend", function (eventObject) {
 dragging = false;
});

That’s all you have to do for the source of the drag transfer. The drop target needs to be
configured to allow drops by using the event.preventDefault method:

var dropTarget = element.querySelector("#myDropTarget");
dropTarget.addEventListener("dragover", function (eventObject) {
 if (dragging) {
 // Allow HTML5 drops
 eventObject.preventDefault();
 }
});

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Input-simplified-ink-sample-11614bbf
http://code.msdn.microsoft.com/windowsapps/Ink-Appsample-61abaec3
http://code.msdn.microsoft.com/windowsapps/Ink-Appsample-61abaec3

ptg14200515

	200	 CHAPTER 4	 Program user interaction

By using dragenter and dragleave, you can respond to the draggable item entering and
leaving your drop target:

dropTarget.addEventListener("dragenter", function (eventObject) {
 if (dragging) {
 WinJS.Utilities.addClass(dropTarget, "drop-ready");
 }
});
dropTarget.addEventListener("dragleave", function (eventObject) {
 WinJS.Utilities.removeClass(dropTarget, "drop-ready");
});

Finally, there is the drop event handler, which is the handler that processes the actual drag-
ging operation by removing the item from the source and adding it to the target or by some
other operation. In this case, the index of the item is retrieved, and a message is displayed:

dropTarget.addEventListener("drop", function (eventObject) {
 // Get indicies -> keys of items that were dropped
 WinJS.Utilities.removeClass(dropTarget, "drop-ready");
 if(dragging) {
 var indexSelected = JSON.parse(eventObject.dataTransfer.getData("Text"));
 if (Array.isArray(indexSelected) && typeof indexSelected[0] === "number") {
 var listview = document.querySelector("#listView").winControl;
 var ds = listview.itemDataSource;

 ds.itemFromIndex(indexSelected[0]).then(function (item) {
 WinJS.log && WinJS.log("You dropped the item at index " + item.index +
", "
 + item.data.title, "sample", "status");
 });
 }
 }
});

MORE INFO  LISTVIEW DRAG-AND-DROP SAMPLE

The Windows SDK contains a sample that shows different ways to implement drag with a
ListView control. The previous code was taken from scenario 2 in this sample. You can find
the complete sample at http://code.msdn.microsoft.com/windowsapps/HTML-ListView-
reorder-and-ffd280d9.

Because the dragstart and dragend events are defined by the HTML5 specification, you
can also use them on an ItemContainer control. Enabling ItemContainer as a drag source is
easy:

myItemContainer.addEventListener("dragstart", function (eventObject) {
 var dragData = {
| sourceId: myDragContent.id,
 data: myItemTitle.innerText,
 imgSrc: myImg.src
 };
 eventObject.dataTransfer.setData("Text", JSON.stringify(dragData));
 });

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/HTML-ListViewreorder-and-ffd280d9
http://code.msdn.microsoft.com/windowsapps/HTML-ListViewreorder-and-ffd280d9

ptg14200515

	 Objective 4.1: Manage input devices	 CHAPTER 4	 201

ListView also supports some specialized events such as itemdragenter and itemdragdrop.
These events get more data passed to them than the default drag-and-drop events. For ex-
ample, the event argument passed to itemdragdrop tells you the specific index where a user
wants to drop an item through the event.detail.insertAfterIndex property. Nothing prevents
you from using the drag-and-drop HTML5 elements, especially when you implement drag-
ging between standard HTML controls and a ListView control. But these special events are
useful when you implement dragging between WinJS controls.

Thought experiment 
Managing input

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are creating a ToDo app to manage lists of tasks and share them with others.
You are wondering about the different types of inputs and which ones you should
support.

Answer the following questions:

1.	 What types of input can you expect?

2.	 Should you differentiate between input devices?

Objective summary
■■ All input in Windows Store apps is mapped to raw pointer data, which contains specific

info about the type of device (such as a mouse, keyboard, touch, or stylus) that created
the input.

■■ Gestures use the pointer data to create complex input actions such as panning,
holding, and tapping.

■■ A gesture recognizer can be configured to convert pointer data to specific custom
gestures for use in your app.

■■ Because of the way Windows merges different input devices into pointer data, you can
design your app touch first and (as a result) support other input devices.

■■ If required, you can differentiate pointer input by the device that created it and can
then respond appropriately.

■■ Inking is implemented by ink data structures that not only contain the final image but
also contain all actions used to create it. These structures can be used to implement
complex processing such as handwriting recognition.

■■ Dragging is implemented by using the standard HTML5 events. WinJS controls such as
ListView implement dragging out of the box.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	202	 CHAPTER 4	 Program user interaction

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 What are the standard Windows 8 gestures? (Choose all that apply.)

A.	 Tap

B.	 Double-tap

C.	 Press and hold

D.	 Slide

E.	 Swipe

F.	 Turn

G.	 Pinch

2.	 You are listening for the MSGestureTap event, but no events are firing. What have you
forgotten?

A.	 You need to subscribe to the click event and convert it into a gesture.

B.	 You need to initialize a gesture recognizer to recognize tap gestures.

C.	 You should listen for the MSGestureChange event and check its type property for
tapping gestures.

D.	 You need to listen for the pointerdown event and send it to the MSGesture object.

3.	 You want to configure ListView as a drag source. Which events should you handle?
(Choose all that apply.)

A.	 itemdragstart

B.	 itemdragend

C.	 dragover

D.	 dragenter

E.	 dragleave

F.	 drop

Objective 4.2: Design and implement navigation in an app

Your app probably has more than one page; most apps contain multiple pages and offer
users a way to navigate between those pages. This objective discusses how to implement
navigation so it meets your app’s requirement.

You also learn about semantic zoom, an authentically digital way to let a user navigate
through a group of content. Finally, you see how to load HTML fragments into your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Design and implement navigation in an app	 CHAPTER 4	 203

This objective covers how to:
■■ Handle navigation events, check navigation properties, and call navigation

functions by using the WinJS.Navigation namespace

■■ Design navigation to meet app requirements

■■ Use semantic zoom

■■ Load HTML fragments

Handling navigation events, checking navigation
properties, and calling navigation functions by using the
WinJS.Navigation namespace
A typical web application exists of different HTML files and uses hyperlinks to navigate
between pages. Each page defines its own set of JavaScript and CSS files and is completely
isolated from other pages. By keeping track of session data on the web server or using
HTML5 features such as local storage, you can transfer state from one page to another.

Moving from page to page also means that the browser shows a white page at the
beginning of loading a new page. After the HTML and CSS are parsed, the new content
shows.

You are used to loading data on navigation when browsing the web. Web developers try
to make page loading as fast as possible, but sometimes you just have to wait.

One of the Microsoft design principles discussed in Chapter 1 is that an app should be
fast and fluid. So Windows Store apps use a different approach from traditional webpages,
which is more like the asynchronous JavaScript and XML (AJAX) approach that modern web
applications use.

Instead of loading a completely new page when a user navigates, load all content upfront
and use JavaScript to update the DOM instantaneously. This pattern is called a single-page
application (SPA). You start with a single HTML page and then use JavaScript to load new
content and show it on your start page.

This architecture is not something explicitly required when a Windows Store app is built.
You can implement navigation any way you want, and you are not required to use the WinJS
controls that implement page navigation. However, using those controls saves you a lot of
work and helps you create a fast and fluid app.

Creating an SPA requires two important elements:

■■ A component to keep track of navigation history

■■ A component to load HTML pages with CSS and JavaScript

The first is offered to you by WinJS.Navigation, which is part of the WinJS library and
implements a basic navigation stack. It keeps track of a list of URIs and exposes properties such

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	204	 CHAPTER 4	 Program user interaction

as canGoBack, canGoForward, and state. You can manipulate the stack by calling methods
such as forward, back, and navigate.

Whenever you go from one URI to another, the Navigation class raises events that you can
listen to. By itself, the Navigation class implements only half of the navigation framework. If
no one listens to the events that the Navigation class raises, nothing else happens.

The PageControlNavigator class can help in this situation. It listens to navigation events and
updates the DOM accordingly by adding and removing items. The PageControlNavigator class is
not a part of WinJS; it is created by the project templates in Visual Studio, and its code is included
in your app. Having the code allows you to customize the PageControlNavigator class according
to your requirements and is the missing link between WinJS.Navigation and custom pages.

You can see all those elements in action when you create a new project based on
the Navigation App template, which creates default.html, default.js, and default.css files
just as the Blank template does. The template also adds navigator.js, which contains
PageControlNavigator, and adds your first page with a corresponding CSS and JavaScript file
called home.

Your default.html file contains the following markup in its body tag:

<div id="contenthost" data-win-control="Application.PageControlNavigator"
data-win-options="{home: '/pages/home/home.html'}"></div>

This control hosts the app content. When loading, it navigates to your home.html page.
Your home page uses the home.js file with the following content:

(function () {
 "use strict";

 WinJS.UI.Pages.define("/pages/home/home.html", {
 // This function is called whenever a user navigates to this page. It
 // populates the page elements with the app's data.
 ready: function (element, options) {
 // TODO: Initialize the page here.
 }
 });
})();

The WinJS.UI.Pages.define method is used to create a new Page. The URI used here should
be an exact match of the one you use on your PageControlNavigator object.

A WinJS.UI.Page defines a couple of methods that you can override:

■■ Init  Called before elements from the page control have been created.

■■ Processed  The Page control automatically calls WinJS.UI.processAll. When that’s
complete, the processed method runs.

■■ Ready  Called after the page has been added to the DOM.

■■ Error  Called if an error occurs in loading or rendering the page.

■■ Unload  Called when navigation has left the page. By default, WinJS automatically
disposes of controls on a page when that page is unloaded.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Design and implement navigation in an app	 CHAPTER 4	 205

■■ UpdateLayout  Called in response to the window.onresize event, which signals
changes between various view states.

The default templates implement the ready method, which is the method you use most
often. However, you can use the other methods in your Page objects if required.

The home.html file contains the following markup:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <title>homePage</title>

 <!-- WinJS references -->
 <link href="//Microsoft.WinJS.2.0/css/ui-dark.css" rel="stylesheet" />
 <script src="//Microsoft.WinJS.2.0/js/base.js"></script>
 <script src="//Microsoft.WinJS.2.0/js/ui.js"></script>

 <link href="/css/default.css" rel="stylesheet" />
 <link href="/pages/home/home.css" rel="stylesheet" />
 <script src="/pages/home/home.js"></script>
</head>
<body>
 <!-- The content that will be loaded and displayed. -->
 <div class="fragment homepage">
 <header aria-label="Header content" role="banner">
 <button data-win-control="WinJS.UI.BackButton"></button>
 <h1 class="titlearea win-type-ellipsis">
 Welcome to NavigationSample!
 </h1>
 </header>
 <section aria-label="Main content" role="main">
 <p>Content goes here.</p>
 </section>
 </div>
</body>
</html>

References to the WinJS CSS and JavaScript files are there only so you can view the page
outside of the containing div in the default html file. JavaScript and CSS files that are already
loaded are not loaded again.

The markup defines a header with a WinJS.UI.BackButton. This button subscribes to
the WinJS.Navigation events and makes sure that it shows up only when you can actually
navigate back to something.

The default.js file contains the basic code to navigate to the first page and saves the history
whenever an app is suspended:

nav.history = app.sessionState.history || {};
nav.history.current.initialPlaceholder = true;
nav.navigate(nav.location || Application.navigator.home, nav.state);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	206	 CHAPTER 4	 Program user interaction

This code is used in promises to make sure the application stays responsive. It navigates
to the page saved in your history or the home page that you defined in the markup and then
passes along any state.

You just learned the basics of navigation in WinJS apps. By using the PageControlNavigator,
WinJS.Navigation, and the Page objects, you can easily implement an SPA design in which you
can split your application into separate pages that are automatically loaded into your default.
html file.

Navigating to a page is nothing more than calling WinJS.Navigation.navigate and passing
the correct URI. You can also call WinJS.Navigation.back and WinJS.Navigation.forward to
move backward or forward in the navigation stack. Calling these methods raises the correct
events, making PageControlNavigator load your Page objects.

EXAM TIP

Because all project templates except the Blank template implement navigation, you
should definitely study those samples to become familiar with the way navigation works
in Windows Store apps. All Windows SDK samples also use navigation to show different
scenarios, so you have plenty of examples to learn from.

Designing navigation to meet app requirements
The first chapter of this book showed you how to choose the correct project templates to
start your app. Each project template has its own different navigation styles.

The Blank template doesn’t implement any navigation at all, whereas the Hub and Grid
templates use navigation to enable movement between an overview, groups, and individual
items.

Tapping a group header invokes a WinJS.Navigation.navigate method that sends you to
the correct group. Tapping an item directly takes you to a details page in which you can use
the back button to navigate to the previous page.

If those navigation styles don’t suit your particular app, you can choose a Flat style that
has no hierarchy. In Internet Explorer, you can move between different tabs that you have
opened, for example. You can implement such a style by calling WinJS.Navigation.navigate
and then navigating directly to a specific page. Because there is no hierarchy, users don’t
expect a back button to return to their previous location.

When designing your navigation strategy, remember that because you are using a single-
page architecture, CSS and JavaScript files are loaded after you a reach a page and are then
kept in the app’s scope. Having all JavaScript objects kept in scope means that you might
have conflicts with JavaScript variables and functions that are used on different pages but are
loaded side by side into your app. Using namespaces and classes to encapsulate JavaScript
elements is very important to create a maintainable app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Design and implement navigation in an app	 CHAPTER 4	 207

The same is true when it comes to CSS. If a page loads a CSS file, those styles are then
applied everywhere in your app. You can avoid this problem by scoping items correctly. The
dark and light CSS files in WinJS already do this for you. All styles that are conflicting between
those files are applied scoped under a dark or light selector: win-ui-light and win-ui-dark,
respectively. Apply those classes to the top-level elements on your pages to ensure that you
can mix both dark and light CSS files in one app without creating conflicts.

If you have conflicting CSS rules on different pages, you should also scope them to a
specific selector so each page can choose which rules to use.

Another important aspect is performance. The PageControlNavigator class removes
Page objects from the DOM completely whenever you navigate to another URI, which frees
memory and makes sure that all data is unloaded upon navigation.

However, if a user navigates through a set of data and often returns to the same page, the
same page has to be loaded over and over again. Fortunately, you can change it to suit your
particular app needs because PageControlNavigator is part of the project. Maybe you want
to keep the HTML in memory and process the data binding only on child items, or you might
need to keep the complete overview page with all data in memory and only show and hide it.
The scenario you choose depends on your app; be aware of the possibilities.

Using semantic zoom
Semantic zoom is a control implemented in WinJS that enables a user to easily switch be-
tween different views of the same data. Semantic zoom is not like zooming in and out to
view the same data but on a different scale. Instead, semantic zoom embraces the concept of
being authentically digital. In the digital world, you can achieve unique scenarios that aren’t
possible in the real world.

For example, when you look at a forecast in the weather app, you see a detailed view of
the next few days (see Figure 4-3).

FIGURE 4-3  The weather app shows a detailed forecast for the next few days

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	208	 CHAPTER 4	 Program user interaction

What do you expect when you zoom out of this view? A real-world experience would show
all elements on the screen smaller so additional days could fit. But that’s not what the weather
app does. When you zoom out from an individual day, you see what’s shown in Figure 4-4.

FIGURE 4-4  The zoomed-out view of the forecast for the next few days

Semantic zoom adds extra functionality to your application by letting users zoom out to
get a different view of your data.

EXAM TIP

Semantic zoom is more than just zooming out and seeing a larger part of some content.
Semantic zoom shows content on multiple logical levels.

By tapping one of the items, the user zooms in again and views the details of that item.
When zooming out, you can group items, show headers and categories, or use some other

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Design and implement navigation in an app	 CHAPTER 4	 209

layout to give a different view of the data. For example, when viewing a report with data, you
could zoom out to switch to a chart showing a condensed version of the data.

Semantic zoom is easily implemented with the SemanticZoom control. This control allows
users to switch between two different views of the data by using familiar gestures such as
pinch and stretch, using Ctrl+scroll wheel, or pressing Ctrl+plus (+) or Ctrl+minus (-).

A SemanticZoom control contains two controls: one for the zoomed-in view and one
for the zoomed-out view. These controls need to implement the IZoomableView interface.
Currently, ListView is the only WinJS control that implements this interface.

To use ListView in a SemanticZoom control, you need an IListDataSource with grouped
data such as a WinJS.Binding.List. If you have this data available, you can then add a
SemanticZoom control like this:

<div id="semanticZoomDiv" data-win-control="WinJS.UI.SemanticZoom">
 <!-- The zoomed-in view. -->
 <div id="zoomedInListView"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource: myData.groupedItemsList.dataSource,
 itemTemplate: select('#mediumListIconTextTemplate'),
 groupHeaderTemplate: select('#headerTemplate'),
 groupDataSource: myData.groupedItemsList.groups.dataSource,
 selectionMode: 'none',
 tapBehavior: 'none',
 swipeBehavior: 'none' }"></div>
 <!--- The zoomed-out view. -->
 <div id="zoomedOutListView"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource: myData.groupedItemsList.groups.dataSource,
 itemTemplate: select('#semanticZoomTemplate'),
 selectionMode: 'none',
 tapBehavior: 'invoke',
 swipeBehavior: 'none' }"></div>
</div>

Two WinJS.UI.ListViews are defined: one has an ID of zoomedInListView, and the other has
an ID of zoomedOutListView. They use the same data source, but with different templates
and options.

The SemanticZoom control exposes one event: onzoomchanged, which is raised whenever
the control zooms in or out. You can subscribe to this event if you want to be notified when
the user changes views.

The SemanticZoom control also has a couple of important properties, such as enableButton
(true if you want to show the zoom-out button inside of the control), locked (to enable or
disable zooming), zoomedOut (true if the control is currently zoomed out), and zoomFactor.
ZoomFactor is used to determine the amount of scaling done when going from one view to
another. Lower values make the effect more visible.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	210	 CHAPTER 4	 Program user interaction

MORE INFO  COMPLETE SEMANTICZOOM CONTROL SAMPLE

A working example of the SemanticZoom control with two ListView controls can be found
at http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1/.

ListView is the only WinJS control that implements IZoomableView, but you can implement
this interface yourself. The IZoomableView interface defines the following methods:

■■ beginZoom  Initiates semantic zoom on the custom control

■■ configureForZoom  Initializes the semantic zoom state for the custom control

■■ endZoom  Terminates semantic zoom on the zoomed-in or zoomed-out child of the
custom control

■■ getCurrentItem  Retrieves the current item of the zoomed-in or zoomed-out child of
the custom control

■■ getPanAxis  Retrieves the panning axis of the zoomed-in or zoomed-out child of the
custom control

■■ handlePointer  Manages pointer input for the custom control

■■ positionItem  Positions the specified item within the viewport of the child control
when panning or zooming begins

■■ setCurrentItem  Selects the item closest to the specified screen coordinates

Define a property named zoomableView on your control and let that property return an
object that implements all the methods in the IZoomableView interface.

Methods such as getPanAxis can return only a value of horizontally or vertically. Methods
such as setCurrentItem get a pair of coordinates (x,y) and have to map them to an item on the
screen. The beginZoom and endZoom methods switch from one view to another.

Although not an easy undertaking, implementing custom controls to use with Semantic-
Zoom, such as calendars or graphs, can improve the usability of your app and give users a
unique insight into your data.

MORE INFO  CUSTOM CONTROL WITH SEMANTICZOOM SAMPLE

You can find a sample of implementing a custom control for SemanticZoom in the
Windows SDK at http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-
4749edab/.

Loading HTML fragments
The navigation elements you looked at in this objective are based on Pages that get loaded
into the DOM. If you want more control over how the HTML is loaded, you can use the WinJS.
UI.Fragments namespace.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/ListView-grouping-and-6d032cc1/
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab/
http://code.msdn.microsoft.com/windowsapps/SemanticZoom-for-custom-4749edab/

ptg14200515

	 Objective 4.2: Design and implement navigation in an app	 CHAPTER 4	 211

WinJS.UI.Fragments.renderCopy takes an URI pointing to an HTML file and copies the
rendered content into an element you specify:

WinJS.UI.Fragments.renderCopy("/html/myfragment.html",
 this.basicFragmentLoadDiv)
 .done(
 function () {
 // success
 },
 function (error) {
 // error
 }
);

This code automatically sets basicFragmentLoadDiv to the rendered HTML. If you want to
process the HTML before sending it to the DOM (or without even sending it to the DOM), you
can use a done function that takes the fragment as an argument:

WinJS.UI.Fragments.renderCopy("/html/myfragment.html")
 .done(function (fragment) { });

When the fragment you load contains WinJS controls, call WinJS.
UI.processAll(targetElement), which converts all regular HTML elements that have a
data-win-control attribute into WinJS controls. The Windows SDK sample shows how to do
this with the following code:

fragmentsWithControls: function () {
 var that = this;
 this.fragmentsWithControlsDiv.innerHTML = "";
 // Read fragment from the HTML file and load it into the div. Note
 // WinJS.UI.Fragments.renderCopy() returns a promise which we attach a done() call
 // in order to perform additional processing or handle errors that may have
 // occurred during the renderCopy() action.
 // Passing the DOM element as the second argument will get renderCopy to parent
 // the fragment to that DOM element automatically.
 WinJS.UI.Fragments.renderCopy("/html/3_FragmentsWithControls_Fragment.html",
 this.fragmentsWithControlsDiv)
 .done(function() {
 // After the fragment is loaded into the target element,
 // WinJS.UI.processAll() needs to be called to activate the
 // controls and process options records.
 WinJS.UI.processAll(that.fragmentsWithControlsDiv);
 WinJS.log && WinJS.log("successfully loaded fragment", "sample", "status");
 },

 function(error) {
 WinJS.log && WinJS.log("error loading fragment: " + error, "sample",
"error");
 }
);
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	212	 CHAPTER 4	 Program user interaction

The reference to that.fragmentsWithControlsDiv comes from the first line in the
fragmentsWithControls method:

var that = this;

Capturing the this parameter is required to make sure that you still reference it when your
promise returns. When the div is passed to processAll, WinJS initializes any controls that are
inside your HTML fragment.

JavaScript and CSS files that are referenced from the fragment are automatically loaded.
CSS rules are then applied to your HTML, and you can call JavaScript methods that are de-
fined in the loaded JavaScript.

MORE INFO  LOADING HTML FRAGMENTS SAMPLE

The Windows SDK contains an example that shows different ways to load an HTML fragment.
You can find it at http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07.

Thought experiment 
Navigating through your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are asked to give a presentation to your colleagues on how navigation in a
Windows Store app works.

Answer the following questions:

1.	 Why is the single-page architecture important?

2.	 What is the relationship between WinJS.Navigation, PageControlNavigator, and
WinJS.Page?

3.	 Is semantic zoom a form of navigation? When should you use it?

Objective summary
■■ Windows Store apps can follow a single-page architecture.

■■ WinJS.Navigation keeps a navigation history and has methods such as navigate,
forward, and back that raise navigation events.

■■ PageControlNavigator is created as a part of the default project templates and listens
for the navigation events that WinJS.Navigation raises. It then processes the actual
navigation by loading the Page and placing it in the DOM.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Fragments-91f66b07

ptg14200515

	 Objective 4.2: Design and implement navigation in an app	 CHAPTER 4	 213

■■ WinJS.Page objects can be used to define separate HTML documents with JavaScript
and CSS files that can be loaded through navigation.

■■ The SemanticZoom control allows you to easily implement semantic zoom with a
ListView or with a custom control by implementing IZoomableView.

■■ You can load HTML fragments by using the WinJS.UI.Fragments namespace.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You want to navigate one page back. Which class should you use?

A.	 WinJS.Navigation

B.	 PageControlNavigator

C.	 WinJS.UI.Pages

D.	 WinJS.UI.BackButton

2.	 You want to implement semantic zoom on a set of data. Which steps should you take?
(Choose all that apply.)

A.	 Add a WinJS.UI.SemanticZoom control.

B.	 Add two WinJS.UI.ListView objects with templates.

C.	 Implement IZoomableView on your data.

D.	 Group your data.

3.	 You use the light theme on one page and the dark theme on another page in your
app. However, when a user navigates through your app, the two styles seem to conflict.
What should you do?

A.	 Change default.html to default-light.html and add a default.dark.html. Use them to
reference the correct theme and to load any pages.

B.	 Use WinJS.UI.fragments to load HTML without any CSS data.

C.	 Use the win-ui-light and win-ui-dark CSS classes to scope the CSS styles to the
correct pages.

D.	 Change the PageControlNavigator object to remove all link elements when
navigating between pages.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	214	 CHAPTER 4	 Program user interaction

Objective 4.3: Create and manage tiles

When you look at the Start screen of your Windows 8 device, one thing immediately catches
your eye: tiles. Each app is represented by a tile, and tiles are not just icons! Tiles are alive
with content. Tiles show updates and other important information in the user’s Start screen
without having to run the app.

Having a great tile gets your users’ attention and ensures that they return to your app. This
objective discusses everything you can do with tiles.

This objective covers how to:
■■ Create and update tiles and tile contents

■■ Create and update badges (the TileUpdateManager class)

■■ Respond to notification requests

■■ Choose an appropriate tile update schedule based on app requirements

Creating and updating tiles and tile contents
Windows Store apps use various sizes and types for their tiles, which come in small, medium,
wide, and large sizes. A tile can be static, or it can be a live tile receiving notifications from
your app or from some external web service.

Users can configure the size of the tile, which should always support a small and medium
width. If your app supports live tiles, you can also choose to use the large and wide options.
Users can also disable and enable notifications on a live tile.

When your app is installed from the store, it begins with a default static tile. You define this
tile in the app manifest. When you start sending notifications, the tile gets updated and can
show all kinds of content.

The App Manifest Designer shown in Figure 4-5 shows how to configure tile sizes.

By adding assets for the 70 x 70 (small), 150 x 150 (medium), 310 x 150 (wide), and 310
× 310 large) settings, you configure which tile sizes your app supports (the 30 x 30 setting
shown in Figure 4-5 is used for icons used in Windows Explorer. It is not used for tile sizes).
Windows uses the images you supply as the default image for your tile until it starts receiving
notifications.

Figure 4-6 shows the four tile sizes you can use in your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create and manage tiles	 CHAPTER 4	 215

FIGURE 4-5  The App Manifest Designer shows tile settings and assets for selection

FIGURE 4-6  The four different tile sizes: small, medium, wide, and large

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	216	 CHAPTER 4	 Program user interaction

Tiles become interesting when you start updating them. You can choose from predefined
XML templates and populate them with custom data to create a live tile.

EXAM TIP

Tiles don’t have a free format. When you design a tile during the exam, make sure that you
use one of the predefined layouts.

Those XML templates have support for all tile sizes and support combinations of text and
images. An example of a wide tile template with an image and text is this:

<tile>
 <visual version="2">
 <binding template="TileWide310x150ImageAndText01" fallback="TileWideImageAndTe
xt01">
 <image id="1" src=""/>
 <text id="1"></text>
 </binding>
 </visual>
</tile>

MORE INFO  TILE TEMPLATES

You can find a list of tile templates at http://msdn.microsoft.com/en-us/library/windows/
apps/hh761491.aspx. Here you find examples and the XML for all templates defined by
Windows.

By using this template, you can add content for the image and text, and then use it as a
new tile template. The following code shows you how to do this from JavaScript:

var notifications = Windows.UI.Notifications;

var template = notifications.TileTemplateType.tileWide310x150ImageAndText01;
var tileXml = notifications.TileUpdateManager.getTemplateContent(template);

var tileTextAttributes = tileXml.getElementsByTagName("text");
tileTextAttributes[0].appendChild(tileXml.createTextNode("Hello World!"));

var tileImageAttributes = tileXml.getElementsByTagName("image");
tileImageAttributes[0].setAttribute("src", "ms-appx:///images/myimage.png");
tileImageAttributes[0].setAttribute("alt", "red graphic");

var tileNotification = new notifications.TileNotification(tileXml);

var currentTime = new Date();
tileNotification.expirationTime = new Date(currentTime.getTime() + 600 * 1000);

notifications.TileUpdateManager.createTileUpdaterForApplication()
 .update(tileNotification);

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761491.aspx

ptg14200515

	 Objective 4.3: Create and manage tiles	 CHAPTER 4	 217

This code uses the Windows.UI.Notification namespace to start updating the apps tile.
All XML templates are defined by Windows; you don’t have to create them yourself. Instead,
you can use the TileTemplateType enumeration to get the names of the existing templates
and then pass this name to TileUpdateManager.getTemplateContent to get the XML for the
template.

Now that you have the XML, you have to update the attributes for the image and the text.
Because you know the schema up front, you can query for the correct items and update them.

The next step is to create a TileNotification based on your XML and set an expiration time
on your notification. The result can then be used to update the tile.

In this example, a tile update for a 310 x 150 tile is created, but you can’t be sure that
a user specified that tile size for the Start screen. When sending updates, you should send
updates for all the sizes that your app supports. An exception is the 70 x 70 tile; it is a shrunk
version of the 150 x 150 that doesn’t support live tile updates.

You can send multiple sizes at once by retrieving the XML for the additional items and
then appending this XML to your result. That way, you send the content for different tile sizes
in one update to Windows:

var squareTemplate = notifications.TileTemplateType.tileSquare150x150Text04;
var squareTileXml = notifications.TileUpdateManager.getTemplateContent(squareTemplate);
var squareTileTextAttributes = squareTileXml.getElementsByTagName("text");
squareTileTextAttributes[0].appendChild(squareTileXml.createTextNode("Hello World! "));
var node = tileXml.importNode(
 squareTileXml.getElementsByTagName("binding").item(0), true);
tileXml.getElementsByTagName("visual").item(0).appendChild(node);

This code creates a new small XML template and then appends the XML to the overall result.

When required, you can also clear the content of your tile:

 Windows.UI.Notifications.TileUpdateManager.createTileUpdaterForApplication().clear();

This command reverts to the original tile asset that you specified in your app manifest.

MORE INFO  WINDOWS SDK TILE SAMPLE

The Windows SDK contains a sample of working with tiles. You can find it at http://code.
msdn.microsoft.com/windowsapps/app-tiles-and-badges-sample-5fc49148.

Although working with the XML templates directly can be difficult, you can use the
NotificationsExtensions library in your code. This is a C# library that creates a wrapper around
the XML templates so you can use them more easily. This library is used in the Windows SDK
samples, so you can use it in your own code. You need to add a reference to your project that
points the library. After that, you can use the following code:

var tileContent = NotificationsExtensions.TileContent.TileContentFactory.
 createTileSquare310x310Text09();
tileContent.textHeadingWrap.text = "Hello World!";

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/app-tiles-and-badges-sample-5fc49148
http://code.msdn.microsoft.com/windowsapps/app-tiles-and-badges-sample-5fc49148

ptg14200515

	218	 CHAPTER 4	 Program user interaction

Instead of working directly with XML and locating the correct elements, the
NotificationsExtensions library allows you to create a new tile and use properties to set its
content. Although this information is not a part of the exam, knowing about it can be very
useful.

Windows supports secondary tiles, which can be pinned to the Start screen by users, but
they deep-link into your applications. For example, the People app has a regular tile, but you
can also create secondary tiles that go straight to a person.

Creating a secondary tile is done with the Windows.UI.StartScreen.SecondaryTile class. This
class expects a title, arguments that are passed to your app when the user activates your app
through the secondary tile, the default logo, and the tile size:

var tile = new Windows.UI.StartScreen.SecondaryTile("tile_id",
 "Title",
 "activiation arguments for this tile",
 square150x150Logo,
 Windows.UI.StartScreen.TileSize.Square150x150);

Now you can further configure your tile with additional sizes and then show a confirmation
dialog box to users, asking whether they want to pin the tile to the Start screen. Without user
consent, you can never add a secondary tile. You normally show this dialog box when the
user presses a button on the app bar or somewhere in your layout. Make sure to position the
dialog box correctly so it displays near the button:

var selectionRect = document.getElementById("pinButton").getBoundingClientRect();
tile.requestCreateForSelectionAsync({
 x: selectionRect.left,
 y: selectionRect.top,
 width: selectionRect.width,
 height: selectionRect.height
 },
 Windows.UI.Popups.Placement.below).
 done(function (isCreated) {
 if (isCreated) {
 // success
 } else {
 // error
 }
});

Unpinning a secondary tile is done by specifying the ID you used when creating it:

var tileToDelete = new Windows.UI.StartScreen.SecondaryTile("tile_id ");

tileToDelete.requestDeleteAsync();

This code shows a flyout to the user requesting permission to remove the secondary tile.
As with requesting permissions to create a tile, you also need to position the delete flyout
correctly.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create and manage tiles	 CHAPTER 4	 219

Now that there is a secondary tile, the user launches the app by using this tile and expects
to end up in the right place. You now use the activation arguments that you specified when
creating the tile. When your app launches, check for those arguments in the activated event
and take action on them:

function activated(eventObject) {
 if (eventObject.detail.kind ===
 Windows.ApplicationModel.Activation.ActivationKind.launch) {
 if (eventObject.detail.arguments !== "") {
 // arguments contains the arguments that you specified when creating the
 // secondary tile. You can parse them here and show the correct page in
 // your app to the user.
 }));
 } else {
 // default behavior of loading the start page
 }
 }
 }

MORE INFO  SECONDARY TILE SAMPLE

You can find an example showing how to create and use secondary tiles at http://code.
msdn.microsoft.com/windowsapps/secondary-tiles-sample-edf2a178/.

Creating and updating badges (the TileUpdateManager
class)
Figure 4-7 shows the Windows SDK Tiles JS sample tile pinned to the Start screen. In the
bottom-right corner, you see the number 5. This number is called a badge.

FIGURE 4-7  The Tiles JS sample showing the title, name, and a badge update

A badge is a number or a glyph used to indicate the app’s status in some way (for example,
the number of unread email messages or an alarm that is set). A badge is not part of the XML
templates that you saw in the previous sections; it is an overlay on your tile that is updated
through its own application programming interface (API).

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/secondary-tiles-sample-edf2a178/
http://code.msdn.microsoft.com/windowsapps/secondary-tiles-sample-edf2a178/

ptg14200515

	220	 CHAPTER 4	 Program user interaction

To create a number badge, use the following code:

var notifications = Windows.UI.Notifications;
var badgeType = notifications.BadgeTemplateType.badgeNumber;
var badgeXml = notifications.BadgeUpdateManager.getTemplateContent(badgeType);
var badgeAttributes = badgeXml.getElementsByTagName("badge");
badgeAttributes[0].setAttribute("value", "42");
var badgeNotification = new notifications.BadgeNotification(badgeXml);
notifications.BadgeUpdateManager
 .createBadgeUpdaterForApplication().update(badgeNotification);

Specify which type of badge you want to create: number or glyph. In this case, you create
a number badge. Like tiles, badges use an XML schema that you retrieve and then update.
By using BadgeUpdateManager, you can then send your new badge notification to the Start
screen.

To create a glyph badge, use the following code:

var badgeType = notifications.BadgeTemplateType.badgeGlyph;
var badgeXml = notifications.BadgeUpdateManager.getTemplateContent(badgeType);
var badgeAttributes = badgeXml.getElementsByTagName("badge");
badgeAttributes[0].setAttribute("value", "newMessage");
var badgeNotification = new notifications.BadgeNotification(badgeXml);
notifications.BadgeUpdateManager
 .createBadgeUpdaterForApplication().update(badgeNotification);

The available badge glyphs are described in Table 4-2.

TABLE 4-2  Badge glyphs

Status Glyph XML

none No badge shown <badge value=”none”/>

activity <badge value=”activity”/>

alarm <badge value=”alarm”/>

alert <badge value=”alert”/>

available <badge value=”available”/>

away <badge value=”away”/>

busy <badge value=”busy”/>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create and manage tiles	 CHAPTER 4	 221

Status Glyph XML

newMessage <badge value=”newMessage”/>

paused <badge value=”paused”/>

playing <badge value=”playing”/>

unavailable <badge value=”unavailable”/>

error <badge value=”error”/>

attention <badge value=”attention”/>

Responding to notification requests
Notifications are created by your app when the user processes some piece of code. Until now,
you have used a local notification.

You have four different options when working with both tile and badge updates: local,
scheduled, periodic, and push. You can choose one or combine multiple options that best suit
your app.

Scheduled notifications
A scheduled notification is created inside your app when the user runs it. Instead of creating a
notification that takes effect immediately, you can schedule a notification for a specific time.
Calendar appointments or any feature events that you want to appear at a specific date and
time are good examples.

Start with the code you saw previously to create a new tile update:

var notifications = Windows.UI.Notifications;
 var template = notifications.TileTemplateType.tileWide310x150ImageAndText01;
 var tileXml = notifications.TileUpdateManager.getTemplateContent(template);
 var tileTextAttributes = tileXml.getElementsByTagName("text");
 tileTextAttributes[0].appendChild(tileXml.createTextNode("Hello World! My very own tile
notification"));
 var tileImageAttributes = tileXml.getElementsByTagName("image");
 tileImageAttributes[0].setAttribute("src", "ms-appx:///images/myimage.png");
 tileImageAttributes[0].setAttribute("alt", "red graphic");

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	222	 CHAPTER 4	 Program user interaction

This code creates a tile of 310 x 150 with text and an image, and sets the appropriate
attributes.

Now you can specify a schedule for when the tile update should appear:

var currentTime = new Date();
var startTime = new Date(currentTime.getTime() + 3 * 1000);
var scheduledTile = new Windows.UI.Notifications.
 ScheduledTileNotification(tileXml, startTime);
scheduledTile.id = "Future_Tile";
var tileUpdater = Windows.UI.Notifications.
 TileUpdateManager.createTileUpdaterForApplication();
tileUpdater.addToSchedule(scheduledTile);

This code creates a start time that is three seconds in the future. After those three seconds
have passed, your tile updates.

You can give your notifications an ID so you can later identify them and possibly remove
them from the schedule by calling the following:

var scheduledTiles = Notifications.TileUpdateManager.
 createTileUpdaterForApplication().getScheduledTileNotifications();

This code returns a list of scheduled notifications that you can inspect. By looping through
them, you can inspect properties such as ID, content, and delivery time. You can remove an
item from the schedule by calling this:

Notifications.TileUpdateManager.
 createTileUpdaterForApplication().removeFromSchedule(item);

Periodic notifications
Local and scheduled notifications are based on data your app has locally. Your app can decide
to add a notification, either immediately or sometime in the future.

But what if your app doesn’t have the data for an update? If your app is connected to a
back end, the back end could keep track of all data and know when an update should be
scheduled.

When using periodic notifications, you configure your app to look at a URI at a specified
interval. That URI is hosted somewhere by you (in Microsoft Azure, for example) and sends
the same XML templates you saw before to your app. While testing your notifications, you
can use a local HTTP server hosted in Internet Information Services (IIS), for example, that
returns your data.

Suppose that your XML template is located at http://yourdomain.com/tile.xml. Now you
can create code to poll your website and see whether any updates are available:

var notifications = Windows.UI.Notifications;
var recurrence = notifications.PeriodicUpdateRecurrence.hour;
var url = new Windows.Foundation.Uri("http://yourdomain.com/tile.xml");
notifications.TileUpdateManager.createTileUpdaterForApplication().
 startPeriodicUpdate(url, recurrence);

From the Library of Ida Schander

www.hellodigi.ir

http://yourdomain.com/tile.xml

ptg14200515

	 Objective 4.3: Create and manage tiles	 CHAPTER 4	 223

This code polls your URL once per hour and processes any available updates. You can also
specify multiple URIs to poll and create a queue of tile updates that Windows cycles through.

All you have to do is enable queuing the first time the user runs your app:

notifications.TileUpdateManager.createTileUpdaterForApplication().
 enableNotificationQueue(true);

This code enables the queue. Any updates that you now add to the TileUpdateManager
are added to the queue. It works for local, scheduled, polled, and pushed notifications.

By default, the queue follows a first-in, first-out (FIFO) approach: The oldest update is
removed when a new update comes in. But maybe that’s not what you want. If you have a
couple of tile updates that belong to different categories (for example, your user’s high score
and the overall high score), make sure that you don’t get duplicate values (two tiles—one with
the old user’s high score and one with the new high score).

You can overwrite the FIFO behavior by using tags:

tileNotification.tag = "userHighScore";

Now when a new update comes in with the same tag, the old update with that tag is
removed.

When using the enableNotificationQueue method, the queue is enabled for all tile sizes.
You can enable the queue for specific sizes by calling a method that specifies the size, such as
enableNotificationQueueForSquare150x150, enableNotificationQueueForWide310x150, and
enableNotificationQueueForSquare310x310.

MORE INFO  SCHEDULED NOTIFICATIONS SAMPLE

The Windows SDK contains a sample that shows you how to schedule notifications at
http://code.msdn.microsoft.com/windowsapps/scheduled-notifications-da477093.

Push notifications
Poll notifications originate from the client, who regularly checks your web service for updates.
The polling request might return with no updates or an update might be already waiting
quite some time before the client polls for changes.

Although polling is easy to implement, it’s clear why using it isn’t an ideal situation. A better
approach is to use a push notification, in which the server notifies the client when there is
a new update, resulting in almost immediate updates and in fewer useless requests, saving
bandwidth and resources.

Windows Store apps can use the Notification Client Platform (NCP) to request support
for push notifications. The NCP then asks the Windows Push Notification Services (WNS) to
create a notification channel. This process returns a URI that you can pass to your web service
to establish push communication between your app and your service.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/scheduled-notifications-da477093

ptg14200515

	224	 CHAPTER 4	 Program user interaction

Before you can send notifications, you have to register your app with the Windows
Store Dashboard, which gives you a set of credentials that your cloud service can use to
authenticate with WNS and make sure it has access to send notifications to your app.

Implementing push notifications requires you to have server-side code to send the actual
notifications.

An alternative to using the NCP is SignalR, which is a .NET-based framework with both
client and server components that use HTML5 WebSockets to create real-time communication
between a client and a server. SignalR is very easy to use from JavaScript and allows you to
write real-time apps with relatively ease. SignalR is outside the scope of the exam, but it’s very
interesting. If you want to know more, you can start at http://www.asp.net/signalr.

MORE INFO  PUSH NOTIFICATIONS SAMPLE

You can find a detailed example showing you how to perform the client-side steps to
enable push notifications at http://code.msdn.microsoft.com/windowsapps/push-and-
periodic-de225603/.

Choosing an appropriate tile update schedule based on
app requirements
Now that you have seen the different options for updating your tile and badge, it is easier to
choose the correct option for your app.

Table 4-3 lists the different delivery methods that you can use.

TABLE 4-3  Delivery methods and their uses

Delivery Method Use With Description

Local Tile, badge, toast A set of API calls that sends notifications while your app is
running, directly updating the tile or badge, or sending a
toast notification

Scheduled Tile, toast A set of API calls that schedules a notification in advance
to update at the precise time you specify

Periodic Tile, badge Notifications that update tiles and badges regularly at
a fixed time interval by polling a cloud service for new
content

Push Tile, badge, toast,
raw

Notifications sent from a cloud server, even if the app isn’t
running

Local, scheduled, and push notifications run at their own time. When using periodic
notifications, however, you have to specify the time interval for the app to poll the service.

From the Library of Ida Schander

www.hellodigi.ir

http://www.asp.net/signalr
http://code.msdn.microsoft.com/windowsapps/push-andperiodic-de225603/
http://code.msdn.microsoft.com/windowsapps/push-andperiodic-de225603/

ptg14200515

	 Objective 4.3: Create and manage tiles	 CHAPTER 4	 225

Microsoft clearly states that you should poll no more than once every 30 minutes. If your
content is more time-sensitive than 30 minutes, switch to push notifications. It is just as im-
portant to remove content that is out of date, especially when your service is unreachable.

You can choose between the following five update frequencies:

■■ Half hour

■■ Hour

■■ Six hours

■■ Twelve hours

■■ Daily

You might start by immediately choosing the half hour update mechanism so that your
content is always as up to date as possible. However, polling places load both on your client
and service, and your client uses battery power each time it polls the service. Your service has
to process all requests coming from all devices running your app. This schedule needs to be a
balance between resource usage and customer requirements. Think about your specific situa-
tion and make an informed decision on what is acceptable for your app.

EXAM TIP

An update frequency of 30 minutes might sound attractive, but is not always the best
schedule. Make sure that you understand the requirements posed in the exam question
before choosing a frequency.

Thought experiment 
Using tiles

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are building your ToDo app and are thinking about possible scenarios for using
tiles, badges, and notifications.

List a scenario for each of the following:

1.	 A primary small, medium, large, and wide tile

2.	 Secondary tiles

3.	 Notifications

4.	 Badges

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	226	 CHAPTER 4	 Program user interaction

Objective summary
■■ Users can place a tile that represents your app on their Start screen. Tiles can have

different sizes and layouts that you can configure.

■■ You use the Windows.UI.Notifications namespace to access TileUpdateManager and
TileNotification.

■■ Notifications can be local, scheduled, periodic, or push.

■■ Secondary tiles can be used to give users direct access to a specific page in your app.
You can also specify notifications for secondary apps.

■■ Badges, which are shown on tiles, can be a number or a glyph giving specific
information to the user.

■■ The schedule you use to update your tiles has to be a balance between resource usage
and customer requirements.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You have created a secondary tile. When users click the tile, they’re taken to the Start
page of your app instead of to the specific page they linked to. How can you fix this?

A.	 Attach a custom event handler to each secondary tile that Windows runs when the
user activates the tile.

B.	 Listen for the activated event and see whether the ActivationKind is secondaryTile.

C.	 When creating a tile, attach a secondaryTile launch event to it.

D.	 Listen for the activated event and see whether arguments were supplied.

2.	 You want to show the number of open tasks together with a task icon on your tiles
badge. Which badge template should you use?

A.	 None; this is not possible

B.	 badgeGlyph

C.	 badgeNumber

D.	 badgeNumberGlyph

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Notify users by using toast	 CHAPTER 4	 227

3.	 Your tile needs to show breaking news. Which delivery method should you use?

A.	 Local

B.	 Scheduled

C.	 Periodic

D.	 Push

Objective 4.4: Notify users by using toast

Tiles and notifications are a great way to put you prominently on the user’s Start screen,
as you learned in the preceding objective. But does that always mean that a user sees your
updates and opens your app?

Toast notifications take the whole notification idea one step farther. A toast pops up on
the users’ screens no matter where they are at that moment: on the Start screen, in another
app, or on the desktop.

A toast is an invitation to a user to open your app. Toasts are similar to tiles and should be
used in combination with tiles and badges. A user can dismiss a toast (or not even see it), so
you shouldn’t use it for critical functionality.

If used correctly, however, toasts can ensure that users return to your app. This objective
shows you what is possible with toast notifications.

This objective covers how to:
■■ Enable an app for toast notifications

■■ Populate toast notifications with images and text by using ToastUpdateManager

■■ Play sounds with toast notifications

■■ Respond to toast events

■■ Control toast duration

■■ Configure and use Microsoft Azure Mobile Services for push notifications

Enabling an app for toast notifications
Because toast notifications can be shown on the Start screen, desktop, and in other apps, a
user should explicitly allow showing toasts. Just as with other integration features that your
Windows Store app uses, you enable toasts by using the app manifest.

Figure 4-8 shows the App Manifest Designer with the option to enable toast notifications.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	228	 CHAPTER 4	 Program user interaction

FIGURE 4-8  Enabling toast notifications

When you enable this option, a user can configure your app to allow or disallow the use of
toasts by going to Notifications in the PC settings, as shown in Figure 4-9.

Enabling toast capability in your app manifest is the first step of implementing toasts.

You can also configure your app to be shown on the lock screen. When a user places your
app on the lock screen, toasts are also shown on the lock screen.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Notify users by using toast	 CHAPTER 4	 229

FIGURE 4-9  The Notifications settings, where a user can configure notifications for your app

Populating toast notifications with images and text by
using ToastUpdateManager
Similar to tiles, toasts are based on XML templates that define the layout of the toast. Using
the same XML templates in all apps creates a uniform experience for the user and makes it
easier to recognize a toast.

Toasts have two types of XML templates:

■■ Toasts with one or multiple lines of text

■■ Toasts with a combination of an image and text

As you do with tiles, start by loading the correct XML template:

var notifications = Windows.UI.Notifications;
var template = notifications.ToastTemplateType.toastImageAndText01;
var toastXml = notifications.ToastNotificationManager.getTemplateContent(template);

This template uses both an image and some text. Now that you have the XML, you can set
the text and image:

var toastTextElements = toastXml.getElementsByTagName("text");
toastTextElements[0].appendChild(toastXml.createTextNode("Hello World!"));

var toastImageElements = toastXml.getElementsByTagName("image");
toastImageElements[0].setAttribute("src", "ms-appx:///images/logo.scale-100.png");
toastImageElements[0].setAttribute("alt", "logo");

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	230	 CHAPTER 4	 Program user interaction

As you do with secondary tiles, you have to specify arguments that respond to the user
activating your app from the toast. Users expect to open the app in the context of the toast
they just saw:

toastXml.selectSingleNode("/toast").setAttribute("launch",
 '{"type":"toast","param1":"12345","param2":"67890"}');

Finally, you can show the toast:

var toast = new notifications.ToastNotification(toastXml);
var toastNotifier = notifications.ToastNotificationManager.createToastNotifier();
toastNotifier.show(toast);

Those are the requirements to show a toast notification with a default duration and no
sounds.

This toast generates the following XML:

<toast launch="{'type':'toast','param1':'12345','param2':'67890'}">
 <visual>
 <binding template="ToastImageAndText01">
 <image id="1" src="ms-appx:///images/logo.scale-100.png" alt="logo" />
 <text id="1">Hello World!</text>
 </binding>
 </visual>
</toast>

MORE INFO  TOAST TEMPLATE CATALOG

You can find the XML for all the toast templates at http://msdn.microsoft.com/en-us/
library/windows/apps/hh761494.aspx.

As you do with tiles, you can manipulate the XML directly or use the
NotificationsExtensions library from C# to configure your toasts.

Playing sounds with toast notifications
To really get a user’s attention, you can play a sound when your toast notification appears.
Windows defines a list of sounds that you can use (this list can’t be extended). You can use
nonlooping sounds such as IM, Mail SMS, or Reminder. You can also use a looping sound,
which requires that your toast duration is set to long (see the section “Controlling toast
duration,” later in this chapter). Looping sounds are an alarm or incoming call.

Short nonlooping sounds signal that something has happened, whereas looping sounds
really try to get the users’ attention because someone is waiting for the user.

Audio is specified in the XML template as a separate node. By default, the XML templates
don’t contain the audio element, so you have to add it.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/windows/apps/hh761494.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh761494.aspx

ptg14200515

	 Objective 4.4: Notify users by using toast	 CHAPTER 4	 231

The following code shows an example of attaching an audio tag to a toast XML template:

var template = Windows.UI.Notifications.ToastTemplateType.toastImageAndText01;
var toastXml =
 Windows.UI.Notifications.ToastNotificationManager.getTemplateContent(template);
var toastNode = toastXml.selectSingleNode("/toast");

var toastAudioElements = toastXml.getElementsByTagName("audio");
toastAudioElements[0].setAttribute("src", "ms-winsoundevent:Notification.IM");
toastAudioElements[0].setAttribute("loop", "false");
toastNode.appendChild(toastAudioElements);

The audio element is created as a completely new element, initialized with a sound and
set to nonlooping. You add it to the toast XML so you can configure additional options and
create a toast from it.

If you want a looping sound, set the loop attribute to true:

toastAudioElements[0].setAttribute("loop", "true");

If you want to disable sounds, you can set the silent attribute to true:

toastAudioElements[0].setAttribute("silent", "true");

Responding to toast events
When a toast appears, a couple of things can happen. First, a user can click your toast to
activate your app. A user can also choose to dismiss the toast, or the toast might time out.

You can respond to those events and take appropriate actions. Ensuring that your app can
be activated from your toast is the most important step.

When creating your toast, specify the arguments that you want to receive whenever the
user activates your app from the toast like this:

toastXml.selectSingleNode("/toast").setAttribute("launch",
 '{"type":"toast","param1":"12345","param2":"67890"}');

Inside your activated event, you can check to see whether arguments are present:

app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 var launchString = args.detail.arguments;
 if (launchString)
 {
 var toastArgs = JSON.parse(launchString);
 // Use the arguments to show the correct page to the user
 }

 args.setPromise(WinJS.UI.processAll());
 }
};

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	232	 CHAPTER 4	 Program user interaction

If a user doesn’t activate your app through the toast, a dismissed event is raised with an
argument, telling you why the toast was dismissed. You subscribe to this event on the toast
object that’s returned from the ToastNotification constructor:

var toast = new notifications.ToastNotification(toastXml);
toast.addEventListener("dismissed", function (e) {
 switch (e.reason) {
 case notifications.ToastDismissalReason.applicationHidden:
 break;
 case notifications.ToastDismissalReason.userCanceled:
 break;
 case notifications.ToastDismissalReason.timedOut:
 break;
 }

The applicationHidden event is raised whenever your own application explicitly hides a
toast notification:

toastNotifier.hide(notification);

Controlling toast duration
Toast notifications come in two durations:

■■ The standard toast takes seven seconds and can play a brief sound.

■■ The long-duration toast takes 25 seconds and can optionally play a looping sound.

Standard toasts, which are the default, quickly grab the attention of your users. If users
miss the toast, no harm is done.

Long-duration toasts really get the users’ attention. For example, an incoming phone
call means that another person is waiting for your user to answer, so you should use a
long-duration toast.

To configure a toast as long-duration, set the duration attribute on the toast XML element:

var template = notifications.ToastTemplateType.toastImageAndText01;
var toastXml = notifications.ToastNotificationManager.getTemplateContent(template);
var toastNode = toastXml.selectSingleNode("/toast");
toastNode.setAttribute("duration", "long");

Configuring and using Microsoft Azure Mobile Services for
push notifications
Microsoft Azure Mobile Services is a back end for apps hosted on Microsoft Azure for you by
Microsoft. It’s easy to get started. You can use Mobile Services for push notifications and as
a general back end for your whole app. In this objective, you learn about push notifications;
Chapter 5, “Manage security and data,” discusses using Mobile Services as a back end.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Notify users by using toast	 CHAPTER 4	 233

As you saw in Objective 4.3, push notifications require a bit of setup. First, you create a
Mobile Service. After registering your app in the store, you can get the required credentials to
link your Mobile Service and app for push notifications.

With Mobile Services, you can respond to user actions and run a script (at the time of this
writing, it can be JavaScript or C#, although the latter is only in preview). This script can then
send a push notification.

EXAM TIP

Microsoft Azure Mobile Services was added as an exam requirement for the new Windows
8.1 exam as of November 2013. Make sure you get some hands-on experience with Mobile
Services before taking the exam.

Creating a Mobile Service is easy. If you don’t have an Azure account, you can create a free
trial to experiment. Figure 4-10 shows a newly created Azure Mobile Service with the appli-
cation credentials set to the credentials of your app (you can get these credentials from the
Windows Dev Center).

FIGURE 4-10  Microsoft Azure Mobile Services configured for push notifications on a Windows Store app

To send out push notifications, you can add some script to the Mobile Service to respond
to the actions. Those scripts can be added through the Azure Management Portal. When

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	234	 CHAPTER 4	 Program user interaction

selecting your mobile service you can navigate to the specific table and then add scripts that
run whenever data is modified in the table. You can see this in Figure 4-11.

FIGURE 4-11  The Microsoft Azure portal showing the Script section on a Mobile Services table

For example, the following script runs whenever a new record is inserted in the Mobile
Services table and sends out a push notification:

function insert(item, user, request) {
var payload = '<?xml version="1.0" encoding="utf-8"?><toast><visual>' +
 '<binding template="ToastText01"> <text id="1">' +
 item.text + '</text></binding></visual></toast>';

request.execute({
 success: function() {
 push.wns.send(null,payload, 'wns/toast', {
 success: function(pushResponse) {
 console.log("Sent push:", pushResponse);
 request.respond();
 },
 error: function (pushResponse) {
 console.log("Error Sending push:", pushResponse);
 request.respond(500, { error: pushResponse });
 }
 });
 }
 });
}

That’s all you have to do for the server side of your app. For the client side, you have to
connect your app to the mobile service and open a channel:

var client = new WindowsAzure.MobileServiceClient(
 "https://myservice.azure-mobile.net/",
 "secret key"
);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Notify users by using toast	 CHAPTER 4	 235

Windows.Networking.PushNotifications
 .PushNotificationChannelManager
 .createPushNotificationChannelForApplicationAsync()
 .then(function (channel) {
 client.push.registerNative(channel.uri);
 }, function (error) {
 var message = "Registration failed: " + error.message;
 var dialog = new Windows.UI.Popups.MessageDialog(message);
 dialog.showAsync();
 });

That’s all you have to do. When the app is first launched, it opens the channel and registers
itself for toast notifications.

MORE INFO  STEP-BY-STEP ENABLING PUSH NOTIFICATIONS SAMPLE

The Microsoft Azure documentation contains a walkthrough on how to get started
with push notifications in Mobile Services at http://www.windowsazure.com/en-us/
documentation/articles/mobile-services-javascript-backend-windows-store-javascript-
get-started-push/.

Thought experiment 
Using some toast

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are working on a ToDo app in which multiple people will collaborate on lists of
tasks that they can finish or assign to someone else. Describe the scenarios in which
you would use toast notifications for this app.

Objective summary
■■ Toast notifications need to be enabled in the app manifest.

■■ Toasts are based on XML templates that you fill with data. ToastNotificationManager is
used to get those XML templates and send out toast notifications.

■■ You can use short nonlooping sounds and looping sounds with your toast notification.

■■ You can attach arguments to your toasts that you can parse in the activated event of
your app. You can also listen for the dismissed event when the user doesn’t click your
toast.

■■ A toast notification can have a standard duration of 7 seconds or a longer duration of
25 seconds.

■■ Microsoft Azure Mobile Services are great back end for an app and feature built-in
capabilities for push notifications.

From the Library of Ida Schander

www.hellodigi.ir

http://www.windowsazure.com/en-us/documentation/articles/mobile-services-javascript-backend-windows-store-javascriptget-started-push/
http://www.windowsazure.com/en-us/documentation/articles/mobile-services-javascript-backend-windows-store-javascriptget-started-push/
http://www.windowsazure.com/en-us/documentation/articles/mobile-services-javascript-backend-windows-store-javascriptget-started-push/

ptg14200515

	236	 CHAPTER 4	 Program user interaction

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are showing toast notifications to the user, but you have trouble determining
which toast a user clicks when your app is launched. What should you do?

A.	 Attach a launch attribute to your toast XML with a string containing your argu-
ments.

B.	 Give the toast a unique ID and retrieve the ID when your app is launched.

C.	 Attach a unique launch event to each toast you create.

D.	 Use the NotificationsExtensions library to have more control over your toast.

2.	 You want to play a looping alarm sound with your toast, and you already have an au-
dio element called toastAudioElements. Which steps should you take to configure your
sound? (Choose all that apply.)

A.	 toastAudioElements[0].setAttribute(“src”, “ms-winsoundevent:Notification.Reminder”);

B.	 toastAudioElements[0].setAttribute(“loop”, “true”);

C.	 toastAudioElements[0].setAttribute(“src”, “ms-winsoundevent:Notification.Looping.
Alarm”);

D.	 toastNode.setAttribute(“duration”, “long”);

3.	 For which purpose(s) can you use toast notifications? (Choose all that apply).

A.	 To inform users of an upcoming appointment in a calendar app

B.	 To inform users that their login credentials are invalid and your chat app can’t connect

C.	 To inform users that contacts came online while they used your chat application

D.	 To let users listen to a preview of an audio file that you distribute through your app

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 237

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 4.1: Thought experiment
1.	 You can expect touch, keyboard, mouse, and stylus input.

2.	 Normally this isn’t required. When you want different actions to happen when a user
uses another type of input device, check for the type of input device and adjust your
actions accordingly.

Objective 4.1: Review
1.	 Correct answers: A, C, D, E, F, G

A.	 Correct: Tapping is a quick touch and lift.

B.	 Incorrect: Double-tapping or clicking is no longer part of the standard gestures in
Windows 8. Double-tapping was available in the early Windows 8 releases, but was
removed in the final release.

C.	 Correct: Press and hold is a standard gesture in which a finger touches the screen
and stays on it for a time period longer than a certain threshold (to differentiate it
from tapping).

D.	 Correct: Slide is moving in one direction with one or more fingers.

E.	 Correct: Swiping is like a slide, but on a short distance.

F.	 Correct: Turning or rotating is a standard gesture with two or more fingers in
which they move in a clockwise or counterclockwise direction.

G.	 Correct: Pinching is the standard gesture used for zoom line operations.

2.	 Correct answer: D

A.	 Incorrect: The click event is raised by WinJS when it translates pointer events into
HTML-specific events. It doesn’t fire gesture events.

B.	 Incorrect: Gesture recognizers are used to create custom gestures.

C.	 Incorrect: The MSGestureChange event is a different type of gesture event. It
doesn’t fire as long as you haven’t hooked up the pointer events.

D.	 Correct: By listening for pointer events, you can then pass them on to a gesture
object that raises gesture events in return.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	238	 CHAPTER 4	 Program user interaction

3.	 Correct answers: A, B

A.	 Correct: The itemdragstart event is used to configure the data you want to transfer.

B.	 Correct: The itemdragend event is fired on the drag source element when the
drag-and-drop operation ends.

C.	 Incorrect: The dragover event is fired on the target element while the item is be-
ing dragged over the element.

D.	 Incorrect: The dragenter event fires when an element that’s being dragged enters
the target element.

E.	 Incorrect: The dragleave event fires when an element that’s being dragged leaves
the target element.

F.	 Incorrect: The drop event is the final event fired in a drag-and-drop operation on
the target element.

Objective 4.2: Thought experiment
1.	 Single-page architecture enables fast navigation between pages. It also enables you to

keep state around without having to save and restore state on each navigation.

2.	 WinJS.Navigation keeps track of history and fires navigation events, WinJS.Page
defines separate pages by URI, and PageControlNavigator links the two together by
listening to navigation events and showing the correct WinJS.Page objects.

3.	 Because semantic zoom allows you to quickly switch between two views of data, you
might call it a form of navigation. You use it to show different views of the same data
to a user.

Objective 4.2: Review
1.	 Correct answer: A

A.	 Correct: WinJS.Navigation has a back method that updates the history and fires
the correct events.

B.	 Incorrect: PageControlNavigator responds to events raised by WinJS.Navigation.
It is not used to initiate navigation.

C.	 Incorrect: WinJS.UI.Pages is used to define new page objects.

D.	 Incorrect: BackButton is a WinJS control that listens for events raised by WinJS.
Navigation. It shows a back button when the WinJS.Navigation object has a history
of URIs. You shouldn’t use it to navigate back programmatically.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 239

2.	 Correct answers: A, B, D

A.	 Correct: The SemanticZoom control is essential for implementing semantic zoom.

B.	 Correct: The two ListViews should be placed in the SemanticZoom control: one for
the zoomed-in view; one for the zoomed-out view.

C.	 Incorrect: IZoomableView is already implemented by ListView. You don’t have to
implement it yourself.

D.	 Correct: To create two different views of your data, group the data so you can
view headers, groups, and items.

3.	 Correct answer: C

A.	 Incorrect: Within the single-page architecture, you don’t use two different
starting pages.

B.	 Incorrect: Loading HTML fragments yourself still loads all CSS and JavaScript, so it
doesn’t resolve the conflicts.

C.	 Correct: By scoping the CSS rules, you can avoid conflicts.

D.	 Incorrect: Although technically possible, it isn’t the best solution. It complicates
code and decreases performance.

Objective 4.3: Thought experiment
1.	 The small tile can show your the logo of your app, but it can’t show any notifications.

Medium can show notifications in various templates. Wide and large support the most
templates.

2.	 A secondary tile can deep-link to a specific task or task list and show status updates.

3.	 Notifications can be used for showing new or open tasks or task updates.

4.	 Badges can show the number of new or open tasks or a glyph showing that new
content has arrived.

Objective 4.3: Review
1.	 Correct answer: D

A.	 Incorrect: This is not possible; check the activated event for any specific
arguments.

B.	 Incorrect: The ActivationKind secondaryTile does not exist.

C.	 Incorrect: You can use the activated event. There is no specific event for
secondary tile launches.

D.	 Correct: By checking for arguments in your activated handler, you know whether
the user selected a secondary tile.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	240	 CHAPTER 4	 Program user interaction

2.	 Correct answer: A

A.	 Correct: Badges don’t support a combination of glyphs and numbers.

B.	 Incorrect: This shows only a glyph, not a number and a glyph.

C.	 Incorrect: This shows only a number, not a glyph.

D.	 Incorrect: The combination of both a glyph and a number is not allowed in a
badge.

3.	 Correct answer: D

A.	 Incorrect: Local updates are generated by your app when it runs. If the user isn’t
using your app, the tile doesn’t get updated with news.

B.	 Incorrect: With a scheduled update, you specify a local update to occur at some
time in the future.

C.	 Incorrect: Polling the service for updates happens at 30-minutes intervals, which is
not suited for breaking news.

D.	 Correct: Push notifications are very fast and leave the service in control of the
update.

Objective 4.4: Thought experiment
Toast notifications can show users that a task was finished or a new task is assigned to them.
They help users stay up to date without having to open your app.

Objective 4.4: Review
1.	 Correct answer: A

A.	 Correct: The launch attribute on your toast XML is passed to your activated event
as part of the arguments.

B.	 Incorrect: A toast can’t have a unique ID that you then map to the specific context
in which it was created. Instead, you can attach data to the toast XML.

C.	 Incorrect: You can’t attach a unique handler to each toast for activation.

D.	 Incorrect: The NotificationsExtensions library is a C# wrapper around the
XML templates. It doesn’t offer any extra features besides those of direct XML
manipulation; it is just easier to use.

2.	 Correct answers: B, C, D

A.	 Incorrect: The Reminder sound is a short sound that can’t be looped.

B.	 Correct: You need to configure the audio to loop.

C.	 Correct: The Alarm sound can be looped.

D.	 Correct: Looping can be done only on a toast with a long duration.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 241

3.	 Correct answer: A

A.	 Correct: An upcoming appointment is a perfect scenario for a toast notification.

B.	 Incorrect: Errors such as expired credentials shouldn’t be shown in a toast that a
user can easily miss. You should show them in-app.

C.	 Incorrect: While inside your application, you shouldn’t use any toasts.

D.	 Incorrect: Using toasts to preview audio is not possible; you can use only Windows
audio sounds.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 243

C H A P T E R 5

Manage security and data
Data is an essential part of a lot of apps. Maybe your app stores data locally, roams it to
other devices, or stores it on a back end such as Azure Mobile Services. Choosing the
correct data strategy is an important part of the development of your app. And when you
know where your data is stored, you need ways to access your data. This objective focuses
on choosing the correct data access strategy, retrieving data, and working with the data
within your UI.

The second part of this objective is about security. Making sure users can authenticate
with your app and that you can manage access to sensitive data is important for most apps.

This chapter focuses on content that comprises 20 to 25 percent of your exam. Choosing
the correct data access strategy is not an exact science. Make sure you understand the
different options and understand when they can be useful. Try to experiment with the
different security options and make sure you know how to use CredentialPicker and
PasswordVault.

Objectives in this chapter:
■■ Objective 5.1: Choose a data access strategy

■■ Objective 5.2: Retrieve data remotely

■■ Objective 5.3: Implement data binding

■■ Objective 5.4: Manage Windows authentication and authorization

■■ Objective 5.5: Manage web authentication

Objective 5.1: Choose a data access strategy

The data your app uses has to be stored somewhere, so Windows Store apps offer you
options for storing data both locally and remotely. Depending on your app requirements,
choose a data access strategy that uses one or a combination of the different data storage
options you have.

This objective discusses the different options and scenarios.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	244	 CHAPTER 5	 Manage security and data

This objective covers how to:
■■ Choose the appropriate data access strategy (file based; web service; remote

storage, including Microsoft Azure storage and Azure Mobile Services) based on
requirements

Choosing the appropriate data access strategy based on
requirements
When deciding on a data access strategy, you need to store data somewhere. In essence, you
have to decide whether to store data locally or remotely. Both options have advantages and
disadvantages that you need to be aware of, such as performance and security. The following
sections will discuss both options to help you choose the correct option for your scenario.

Local data
Local data, such as images or other data files that are distributed with your app and are
always present on a user’s device can be stored in your app package. Local data, which is
well-suited for static data that should be loaded relatively quickly, can be loaded by using the
ms-appdata:// protocol that you’ve seen in previous samples.

Local data is stored in three folders:

■■ LocalFolder

■■ RoamingFolder

■■ TemporaryFolder

The local folder should be used for any data that you want to be preserved between app
sessions. Data stored in memory will be lost when the app closes. Local data will be preserved
on the device and can be loaded when needed. The local folder should be used whenever
you have data that isn’t not portable to other devices or that is too big to sync between
devices.

The temporary folder is managed by Windows and can be cleaned up at any time by
both the system or by a user explicitly running a cleanup action. Because of this you can’t be
certain if the data you saved in here is still available the next time you want to load it. The
temporary folder can be used as a cache.

The roaming folder is for data that should be automatically synced between a user’s
different devices, which is very useful for storing data locally and making it accessible on
multiple devices. A roaming folder can’t be shared between different users.

Roaming data does not happen instantly. The user’s device checks factors such as available
bandwidth and user activity to determine when it should roam data. The size of roaming data is
also limited and should be kept below the quota found in the RoamingStorageQuota property.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.1: Choose a data access strategy	 CHAPTER 5	 245

The following code shows how to write some data to the roaming folder:

var roamingFolder = Windows.Storage.ApplicationData.current.roamingFolder;
var filename = "sampleFile.txt";
roamingFolder.createFileAsync(filename,
 Windows.Storage.CreationCollisionOption.replaceExisting)
 .done(function (file) {
 return Windows.Storage.FileIO.writeTextAsync(file, "file content");
 });

The createFileAsync method takes a filename and a CreateCollisionOption parameter. The
CreateCollectionOption parameter is an enum with one of the following values:

■■ GenerateUniqueName  Creates the new file or folder with the desired name, or
automatically appends a number if a file or folder already exists with that name

■■ ReplaceExisting  Creates the new file or folder with the desired name, and replaces
any file or folder that already exists with that name

■■ FailIfExists  Creates the new file or folder with the desired name, or returns an error if
a file or folder already exists with that name

■■ OpenIfExists  Creates the new file or folder with the desired name, or returns an
existing item if a file or folder already exists with that name

In the previous example, replaceExisting is used. This option makes sure that no error oc-
curs if the file already exists. It also lets you start with a clean, empty file if the file does exist.

File-based actions are always asynchronous because you don’t want to block the app. In
this case, you first create the file and then write some text to it. By using the writeBytesAsync
method, you can also write some binary data to a file.

Reading data from your roaming folder is easy:

roamingFolder.getFileAsync(filename)
 .then(function (file) {
 return Windows.Storage.FileIO.readTextAsync(file);
 }).done(function (text) {
	 // use the text in your app
});

Similar to writing to a file, you first receive a reference to the file and then read the content
as text. Opening the file and readings its content is also done asynchronously, but it is easy to
write the code using promises.

The following example demonstrates how to couple different input/output operations
together. The sample reads a binary file (an image) and writes it to the roaming folder:

var roamingFolder = Windows.Storage.ApplicationData.current.roamingFolder;
var imageFilename = new Windows.Foundation.Uri("ms-appx:///images/logo.scale-100.png");
var outputFilename = "output.dat";

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	246	 CHAPTER 5	 Manage security and data

roamingFolder.createFileAsync(outputFilename,
 Windows.Storage.CreationCollisionOption.replaceExisting)
 .done(function (outputFile) {
 return Windows.Storage.StorageFile.getFileFromApplicationUriAsync(imageFilena
me).done(function (inputFile) {
 return Windows.Storage.FileIO.readBufferAsync(inputFile).done(function
(buffer) {

 var bytes = new Uint8Array(buffer.length);
 var dataReader = Windows.Storage.Streams.DataReader.fromBuffer(buffer);
 dataReader.readBytes(bytes);
 dataReader.close();

 outputDiv.innerText = outputFile.path;

 return Windows.Storage.FileIO.writeBytesAsync(outputFile, bytes);
 });
 });
 });

The final promise receives a buffer of data and then converts that data to an array that can
be stored in the output file. All methods return a promise to make sure that the code runs
asynchronously and doesn’t block the UI.

So which scenarios should you choose for storing data in a folder? The temporary folder
should be used only for data that can be removed after you finish with it. Windows checks to
see whether the file is still in use and deletes it after you’re done.

The local folder can be used to store persistent data that is applicable only to the user’s
current device. Because the data is local, you can store files that are larger than those in the
roaming folder.

Roaming data is a very popular option. By storing data in this folder, you give users a
consistent experience across different devices. Roaming data is stored in the cloud (Microsoft
Azure) and is synced to all the devices of a user where your app is installed. Roaming saves
users from having to set up each app to their specifications and enables them to work on the
same data set on whichever device they use.

When storing data in a folder, remember that the lifetime of the data is bound to the
lifetime of the app. When you store data in a local folder, the data is removed when the user
removes the app. Roaming data is kept around in the cloud for a specific time interval (30
days at the time of this writing). So don’t store data in a folder if it is valuable to the user and
needs to be easily accessed.

Because storing data in a local or roaming folder is easy to do and saves you from creat-
ing your own custom back end, it’s a very viable option for many apps. Even if not all data is
suited to be stored in a folder, you can always choose a hybrid model in which you offload
some data to a cloud solution and other data to the folders in your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.1: Choose a data access strategy	 CHAPTER 5	 247

EXAM TIP

Make sure you understand the difference between the local folder and the roaming folder.

Remote data
Although they can be a good data storage solution, folders can’t fulfill the requirements of
more complex apps. Apps that allow multiple users to work together, or apps that are a front
end to some centralized data that can be accessed through a website or through other apps
on other platforms, need a remote way to store data.

Microsoft Azure is a perfect solution for your apps’ back end. Azure is a Microsoft cloud
solution that offers you a wide variety of services. For apps, the huge benefit of Azure is that
you don’t have to invest in buying servers or infrastructure upfront. When you release your
app, you probably don’t know how much income you will generate, so buying hardware
upfront is difficult. If your app suddenly becomes very popular, Azure is also there to help.
By giving you the option to automatically scale your back end to the number of users and
pay only for what you use, Azure gives you a very cost-efficient solution that can handle any
number of users.

The Azure services that are the most interesting when it comes to apps are Azure Mobile
Services and Azure storage.

Azure storage offers complex features such as tables and queues, which are out of scope
for this exam. Azure block blob storage can be seen as an enormous hard drive in the cloud,
in which you can store data that can be securely delivered to clients. When it comes to storing
large data files such as videos, Azure block blob storage is a perfect solution.

The following code shows how to upload a file to Azure blob storage. In this case, the
credentials of the Azure Storage Account are removed from the listing. You need to add your
own credentials if you want to test this example.

The example consists of two parts: one in C#, the other in JavaScript. The C# code is used
to create what’s known as a Shared Access Signature. This is a URL that can be used from your
JavaScript to access the Blob storage. The URL contains access rights and an expiration date.

The C# code is as follows:

private async Task<string> _GetSaS()
{
 var storageAccountString = String.
Format("DefaultEndpointsProtocol=https;AccountName={0};AccountKey={1}",

accountName, accountKey);
 var storageAccount = CloudStorageAccount.Parse(storageAccountString);
 var client = storageAccount.CreateCloudBlobClient();

 CloudBlobContainer container = client.GetContainerReference("mycontainer");
 await container.CreateIfNotExistsAsync();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	248	 CHAPTER 5	 Manage security and data

 var blob = container.GetBlockBlobReference("myimage.png");

 var sas = blob.GetSharedAccessSignature(
 new SharedAccessBlobPolicy()
 {
 Permissions = SharedAccessBlobPermissions.Write |
SharedAccessBlobPermissions.Read | SharedAccessBlobPermissions.List,
 SharedAccessExpiryTime = DateTime.UtcNow.AddMinutes(30),
 });

 return string.Format(CultureInfo.InvariantCulture, "{0}{1}", blob.Uri, sas);
}

In this case, a Shared Access Signature is created that lasts for 30 minutes and allows the
user to write and read data. The container name, mycontainer, is created in Azure Storage
with a Block Block named myimage.png.

The JavaScript code calls this C# code and then uploads a file:

function uploadData() {
 var ajaxRequest = new XMLHttpRequest();

 var imageFilename = new Windows.Foundation.Uri("ms-appx:///images/logo.scale-100.
png");

 Windows.Storage.StorageFile.getFileFromApplicationUriAsync(imageFilename).
done(function (inputFile) {
 return Windows.Storage.FileIO.readBufferAsync(inputFile).done(function (buffer)
{

 var bytes = new Uint8Array(buffer.length);
 var dataReader = Windows.Storage.Streams.DataReader.fromBuffer(buffer);
 dataReader.readBytes(bytes);
 dataReader.close();

 new CORSSupport.AzureCommon().getSas().done(function (url) {
 try {
 ajaxRequest.open('PUT', url, true);
 ajaxRequest.setRequestHeader('Content-Type', 'image/jpeg');
 ajaxRequest.setRequestHeader('x-ms-blob-type', 'BlockBlob');
 ajaxRequest.send(bytes);
 }
 catch (e) {
 outputDiv.innerText = "can't upload the image to server.\n" +
e.toString();
 }
 });
 })
 });
}

This code reads an image file from the package, converts it to a byte array, and then
uploads the data to Azure by sending a put request.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.1: Choose a data access strategy	 CHAPTER 5	 249

You can use authentication on your blob storage or you can create public blobs that can
be referenced by anyone. Azure blob storage is primarily about storing data and retrieving it
from all over the world.

If you need a back end that contains some actual logic, Azure Mobile Services can be a
solution. (Chapter 4 discussed using Azure Mobile Services for sending push notifications to
your app, and it can be used for toast or tile updates.)

You can also use Azure Mobile Services to store the data for your app. It automatically
creates a table schema for your data and enables you to perform Create, Read, Update,
Delete (CRUD) operations on your data. By writing custom JavaScript or C#, you can add
code to your back end that extends to those CRUD operations. You can even add completely
custom operations to your back end and then use other Azure features such as blob storage
from within your Mobile Services code.

The beauty of the cloud is that you pay only for what you use. Mobile Services is
completely managed for you by Azure, and you can configure it to scale when the user load
increases. You then have a back end to handle the load if your app suddenly becomes very
popular.

After you create a Mobile Service, it is easy to connect to it from JavaScript. The following
code sample shows how to add a new ToDo item to a Mobile Services back end:

var todolistClient = new WindowsAzure.MobileServiceClient(
 "https://todolist.azure-mobile.net/",
 "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");
var item = { description: {'todo item'}};
var todoTable = todolistClient.getTable('TodoItem');
 todoTable.insert(todoItem).done(function (item) {
 // item is added
 });
};

MORE INFO  CREATING A MOBILE SERVICE

For more information on how to use the Azure portal to create a Mobile Service, see
http://azure.microsoft.com/en-us/documentation/articles/mobile-services-windows-store-
javascript-get-started-data.

A complete discussion of how Azure works is outside the scope of this book and the exam.
What’s required is a basic understanding of what Azure offers with its Mobile Services and
storage. Understanding that Mobile Services is a perfect way to create a back end for your
app and knowing its possibilities will help you during the exam.

You should also understand the differences between storing data locally (in a roaming
folder) or remotely.

From the Library of Ida Schander

www.hellodigi.ir

http://azure.microsoft.com/en-us/documentation/articles/mobile-services-windows-storejavascript-

get-started-data
http://azure.microsoft.com/en-us/documentation/articles/mobile-services-windows-storejavascript-

get-started-data

ptg14200515

	250	 CHAPTER 5	 Manage security and data

Thought experiment 
Designing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are considering the Weather app that is installed by Windows. Although you
don’t know how the app is implemented, can you determine what data is stored
locally and which is stored remotely?

Objective summary
■■ Local data is stored in folders, and you have a local folder that is available only on the

device in which it is created. A temporary folder can also be used; its data is removed
when an app no longer uses it. Roaming data is automatically synced between devices
on which users have your app, enabling you to create a seamless experience when a
user moves from one device to another.

■■ You can remotely store data, such as videos and images that you store in Azure stor-
age. You can also create a back end by using Azure Mobile Services, which enables you
to store data and create custom actions that your app can use.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You allow users to select large video files in your app and add custom effects to them.
Users expect that video files will sync to all their devices. Where do you store the data?

A.	 Roaming folder

B.	 Table in Azure Mobile Services

C.	 Local folder

D.	 Azure blob storage

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.2: Retrieve data remotely	 CHAPTER 5	 251

2.	 Your app allows users to add text and other effects as metadata to an image they
select and then share this image with other users so they can rate it. Which features do
you use? (Choose all that apply.)

A.	 Table in Azure Mobile Services

B.	 Azure blob storage

C.	 Roaming folder

D.	 Local folder

3.	 Why is it important to always use asynchronous code when using I/O operations like
storage or web service calls?

A.	 It ensures that the external I/O call finishes more quickly.

B.	 It ensures that your app stays responsive while waiting for the I/O operation.

C.	 It allows the web service or I/O device to do other work while your app is waiting
for the response.

D.	 It ensures that the user can still use the Internet or I/O device for other applications
while your app is sending a request.

Objective 5.2: Retrieve data remotely

When you store your data remotely, it’s important to know how to get to that data. The
Windows Library for JavaScript (WinJS) offers features that you can use to call external web
services. However, depending on the communication style used by those web services, ensure
that you connect to them in the correct way.

This objective discusses the options you have for remote connectivity and how to use
them optimally.

This objective covers how to:
■■ Use XHR or HttpClient to retrieve web services

■■ Set appropriate HTTP verb for REST

■■ Handle progress of data requests

■■ Consume SOAP/WCF services

■■ Use WebSockets for bidirectional communication

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	252	 CHAPTER 5	 Manage security and data

Using XHR or HttpClient to retrieve web services
Your Windows Store app with HTML, JavaScript, and Cascading Style Sheets (CSS) runs in
Internet Explorer, so you can use the features that Internet Explorer offers when you access
remote web services.

In regular web applications, you often use a technology called Asynchronous JavaScript
and XML (AJAX) when loading data from a web service. Browsers implement support for
making asynchronous web service calls by using an object called XmlHttpRequest. This object
allows you to process a web service call from JavaScript and process the result when it re-
turns. In web applications, XmlHttpRequest can be used to load some data and update a part
of the page without doing a full page load.

You can still use the XmlHttpRequest object with Windows Store apps, but that is a very
rudimentary way of working with AJAX requests. To help you, Microsoft implemented WinJS.
xhr and later released HttpClient, which is based on WinJS.xhr.

The following code shows how to process a call with WinJS.xhr:

WinJS.xhr({ url: "http://www.microsoft.com" }).done(
 function complete(result) {
 }
);

This code processes an asynchronous call to www.microsoft.com and gets an object of type
XMLHttpRequest as a result.

Although this process might look simple, sending requests becomes more difficult when
you start adding headers, cookies, or other custom settings. WinJS.xhr doesn’t have any
strong typing, so all values that you pass to it are plain text. The same is true for retrieving
data: You know that the lastModified header contains a date, but WinJS returns it as a plain
string—leaving all the parsing up to you.

Fortunately, Microsoft introduced a new library that makes handling remote web service
calls much easier: HttpClient. HttpClient was introduced for all Windows Store platforms:
JavaScript, C# and C++.

EXAM TIP

For the exam, you need to understand both WinJS.xhr and HttpClient. However, for real-
world scenarios, you should always choose HttpClient. HttpClient is more modern and has
more functionality in Windows Store apps.

In JavaScript, HttpClient is essentially a strong wrapper around WinJS.xhr; in a modern
application, you should use HttpClient for the best programming experience. The previous

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com

ptg14200515

	 Objective 5.2: Retrieve data remotely	 CHAPTER 5	 253

sample code of retrieving the Microsoft website with WinJS.xhr can be changed to the
following to use HttpClient:

var hc = new Windows.Web.Http.HttpClient();
var uri = new Windows.Foundation.Uri("http://www.microsoft.com");
hc.defaultRequestHeaders.userAgent.parseAdd("ie");
hc.getStringAsync(uri).done(
 function complete(result) {
});

Start by instantiating a new HttpClient object. Instead of using a string-based URL,
construct a URI object. This code also adds a header value setting the user agent to Internet
Explorer. This avoids a response from the server stating that your app is an automated
process and that you can’t access the site. You can then use the getStringAsync method of
HttpClient to retrieve the Microsoft website directly as a string.

Although this basic use of HttpClient doesn’t differ much from the WinJS.xhr method,
some differences become apparent when you start using more complex functionality.

If you use HttpClient.getStringAsync, you directly retrieve the result as a string. Call-
ing getStringAsync is a shorthand way to use GetAsync, which returns an object of type
HttpResponseMessage.

The HttpResponseMessage object has several important properties:

■■ Content  Gets or sets the content of the HTTP response message on the
HttpResponseMessage object

■■ Headers  Gets the collection of HTTP response headers associated with the
HttpResponseMessage that was sent by the server

■■ IsSuccessStatusCode  Gets a value that indicates whether the HTTP response was
successful

■■ ReasonPhrase  Gets or sets the reason phrase, which is typically sent with the status
code by servers

■■ RequestMessage  Gets or sets the request message that led to this response message

■■ Source  Gets the source of the data received in HttpResponseMessage

■■ StatusCode  Gets or sets the status code of the HTTP response

■■ Version  Gets or sets the HTTP protocol version used on the HttpResponseMessage
object

The content property is one that you will often use to get the result of an HTTP request.
Content can be a buffer, string, stream, or name/value data. You can even define custom
content.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	254	 CHAPTER 5	 Manage security and data

The following code snippet uses HttpClient to process a Get request and parse the content
as XML:

var uri = new Windows.Foundation.Uri("http://www.microsoft.com/");

var hc = new Windows.Web.Http.HttpClient();
hc.defaultRequestHeaders.userAgent.parseAdd("ie");
var httpPromise = hc .getAsync(uri)
 .then(function (response) {
 response.ensureSuccessStatusCode();
 return response.content.readAsStringAsync();
 }).then(function (responseBodyAsText) {
 var parser = new window.DOMParser();
 var xml = parser.parseFromString(responseBodyAsText, "text/xml");
 });

httpPromise.done(function () {
}, function (error) { });

This code shows a typical pattern for using HttpClient. First, it’s important to call response.
ensureSuccessStatusCode() to make sure that your request returned successfully. If this call
fails, the error handler in the “done” part of the promise processes.

In this case, it is getAsync, so you get a full HttpResponseMessage in which you can decide
how you want to work with the content. Parsing it as a string and then funneling it through
the DOMParser as XML is one option. Depending on your requirements, you can use the data
any way you want.

Adding cookies to a request is a common scenario. HttpClient supports it because of its
extensible pipeline. A request flows through several filters that comprise the pipeline of your
request. HttpBaseProtocolFilter is the base filter that you can add to a request. You can use
this object to retrieve a CookieManager to work with your app’s cookies:

var bpf = new Windows.Web.Http.Filters.HttpBaseProtocolFilter();
var cookieManager = bpf.cookieManager;
var cookie = new Windows.Web.Http.HttpCookie("myCookieName", ".mydomain.com", "/");
cookie.Value = "myValue";
cookieManager.setCookie(cookie);
var httpClient = new Windows.Web.Http.HttpClient(bpf);

This example adds a cookie for your domain with a custom value. The filter is then added
to HttpClient and is used in all requests processed through this HttpClient instance.

You can create custom filters and add them to the pipeline. The filters have to be written
in C++ and are outside the scope of the exam. However, when you find yourself executing the
same code over and over on a request, think of filters and how they can help you centralize
code. Microsoft made a sample available in which it has created a retry filter that automatically
retries the request whenever a 503 status code is returned from the server.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.2: Retrieve data remotely	 CHAPTER 5	 255

MORE INFO  HTTPCLIENT SAMPLE

The HttpClient sample shows how to implement a customer filter, but also demonstrates
other uses of HttpClient. You can find it at http://code.msdn.microsoft.com/windowsapps/
HttpClient-sample-55700664.

Until now, the discussion has been how to process a Get request for data. The following
sections discuss what other options you have and how they map to HttpClient.

Setting appropriate HTTP verbs for REST
Getting data from a web service is probably one of the most-used web service features in an
app. However, with that data you also want to Create, Update, Read, and Delete (CRUD).

HttpClient offers support for working with web services to process these action types. But
to understand how it does so, you should know a little more about how HTTP works.

The nature of the HTTP protocol used for the Internet (and thus for web services) is built
around URIs that describe resources and HTTP verbs that describe your actions. Services
that are based on the HTTP verbs and URIs are called Representational State Transfer (REST)
services.

For example, just by looking at the URL http://mydomain.com/people/john, you can guess
that it represents getting some information about people named John. In this case, you are
using the Get HTTP verb to retrieve some data.

The available HTTP verbs are listed in Table 5-1.

TABLE 5-1  HTTP verbs

Verb CRUD Action Behavior

Post Create Inserts a new entity to the URI

Get Read Retrieves one or more entities or some other data that is identified
by the URI of the request

Put Update Replaces an entity that is identified by the URI. This verb requires
that all fields on the entity be specified, regardless of how many
change

Patch Update Transmits a partial change to the entity identified by the URI in
which only identifiers and modified fields are specified

Delete Delete Specifies that a given URI be deleted

Head N/A Retrieves just the message headers identified by the URI

Options N/A Represents requests for information about the communication
options available on the target resource

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664
http://code.msdn.microsoft.com/windowsapps/HttpClient-sample-55700664

ptg14200515

	256	 CHAPTER 5	 Manage security and data

The most popular HTTP verbs are Post, Get, Put, and Delete, which match the typical
Create, Read, Update, and Delete (CRUD) actions that you want to perform on your data.

HttpGet
Most query or retrieval operations are implemented as HttpGet actions. The number of
methods on a web service that are implemented as HttpGet actions are usually the highest.
For any type of data, all the items in the data set that allow for individual retrieval by the key
usually have to be retrieved. Table 5-2 shows a basic REST scheme for retrieval centered on
a given model (in practice, a web service can expose several different models, so you usually
find several different HttpGet methods).

TABLE 5-2  HttpGet retrieval on a fictional Baz object

URI Action

/api/Bazs Gets a list of all Bazs

/api/Bazs/keyvalue Gets and instance of Baz by key field

/api/Bazs?attributename=attributevalue Gets an instance of Baz by attribute

The HttpClient class supports several methods that you can use for Get operations:

■■ GetAsync(Uri)  Sends a Get request to the specified URI as an asynchronous
operation.

■■ GetAsync(Uri, HttpCompletionOption)  Sends a Get request to the specified URI
with an HTTP completion option as an asynchronous operation. The HTTP completion
option specifies whether you want the request to finish when the headers are read or
when the complete content is read.

■■ GetBufferAsync  Sends a Get request to the specified URI and returns the response
body as a buffer in an asynchronous operation.

■■ GetInputStreamAsync  Sends a Get request to the specified URI and returns the
response body as a stream in an asynchronous operation.

■■ GetStringAsync  Sends a Get request to the specified URI and returns the response
body as a string in an asynchronous operation.

HttpDelete
Arguably the easiest of the HTTP verbs to identify, HttpDelete requests are straightforward to
use. The most common way to delete a record is to specify a unique key and use it to identify
and delete the record.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.2: Retrieve data remotely	 CHAPTER 5	 257

A web service typically provides some form of feedback about a Delete request. There are
three possible outcomes, assuming that the request is correctly formed and processed:

■■ The first outcome is a successfully processed request that has an HttpStatusCode of OK
(200). A valid response is returned to the client, and information from the request can
be included.

■■ The next outcome is an HttpStatusCode of Accepted (202), which indicates that the
request was processed and accepted, but is still pending.

■■ The last outcome is an HttpStatusCode of No Response (204).

To send a Delete request to your REST service, you can use the DeleteAsync method on
your HttpClient. If your service is truly RESTful, you can probably use an URI such as http://
mydomain.com/people/id, where id is the unique ID of the entity that you are trying to delete.
Because of the correct HTTP verb, the REST service knows what you are trying to do.

HttpPost
When you want to insert new data, you usually use the HttpPost verb. If any exam question
or requirement specifies that a new record be created, it probably necessitates an HttpPost
operation.

HttpClient has a PostAsync method that you can use to process a Post request. This
method takes both a URI and the content you want to send. You use it like this:

var stringContent = new Windows.Web.Http.HttpStringContent("The content to post");
var uri = new Windows.Foundation.Uri("http://mydomain.com/people");
var httpClient = new Windows.Web.Http.HttpClient();
var httpPromise = httpClient.postAsync(uri, stringContent).done(function () {
}, function (error) { });

A correctly implemented REST service returns an HttpStatusCode of Created (201) when
the insertion of the new data is successful. The response also contains the location of the new
resource, which enables you to immediately get the feedback from which you can find out
any details about the entity that was just added.

HttpPut
The HttpPut verb is used for operations that correspond to upserts, inserting for new records
and updating for existing records. A side-effect of upserts is that the method should be
idempotent (if you call the method once or 100 times with the same data, there should be no
meaningful difference in the side-effects of calling it 1 or 100 times).

HttpPut is also supported by the HttpClient with the method PutAsync. This method also
takes a URI and the content you want to send.

From the Library of Ida Schander

www.hellodigi.ir

http://mydomain.com/people/id
http://mydomain.com/people/id

ptg14200515

	258	 CHAPTER 5	 Manage security and data

EXAM TIP

Make sure you understand how the HTTP verbs Get, Put, Delete, and Post map to Create,
Read, Update, and Delete. You can expect exam questions that ask you to choose the cor-
rect verb based on the requirements.

Handling progress of data requests
Executing web service requests can be one of the most time-consuming actions in your app.
Even if the request takes only one second, the user is probably waiting for the request to
finish. To make sure that your app is still fast, fluid, and shows the user what’s happening, you
can implement progress reports for your requests.

The following code shows how to handle progress updates:

var uri = new Windows.Foundation.Uri("http://www.microsoft.com");
var httpClient = new Windows.Web.Http.HttpClient();
httpClient.getAsync(uri).done(function (response) {
},
function error(result) {
},
function progress(progress) {
 WinJS.log && WinJS.log("Progress: " + progress.stage);
});

This code processes a regular Get request with an extra method for errors and for progress
notifications. The progress object passed to your handler contains a property named stage
that contains a number that maps to certain stages in your request. The values and their
meanings are shown in Table 5-3.

TABLE 5-3  Progress stages

HttpProgress.stage Numeric Value HttpProgress.stage Meaning

10 Detecting proxy

20 Resolving name

30 Connecting to server

40 Negotiating Secure Sockets Layer (SSL)

50 Sending headers

60 Sending content

70 Waiting for response

80 Receiving headers

90 Receiving content

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.2: Retrieve data remotely	 CHAPTER 5	 259

By mapping these values to something understandable, you can give your users an idea of
what’s happening in your app.

Consuming SOAP/WCF services
REST services are built on the idea of HTTP verbs and URIs to work with resources. Simple
Object Access Protocol (SOAP) services work differently. Instead of accessing one URI
with multiple verbs, different URIs directly map to specific actions. So instead of calling
http://mydomain.com/people with a Get verb, you call http://mydomain.com/getpeople. The
getpeople segment maps to the name of the method defined in the service.

SOAP communication is based on XML. Instead of sending plain JavaScript Object Nota-
tion (JSON) to the server, you send what’s called a SOAP envelope that contains the data in
XML format. An example SOAP message looks something like this:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 </soap:Header>
 <soap:Body>
 <m:GetStockPrice xmlns:m="http://mydomain.com/stock">
 <m:StockName>Microsoft</m:StockName>
 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>

This envelope describes that you want to call the GetStockPrice method on the specified
URL and that you pass a StockName parameter with a value of Microsoft.

You can construct those envelopes by hand and use HttpClient to send the data. An-
other option that doesn’t require you to deal with XML in JavaScript is to add a Windows
Runtime (WinRT) component project and then add a service reference to the Windows
Communication Foundation (WCF) service you want to use. By then exposing this service to
your JavaScript project, you have an easier way to work with your service. A typical service
method in your WinRT component might look like this:

public sealed class Service
{
 public Windows.Foundation.IAsyncOperation<string> GetDataAsync()
 {
 var service = new Service1Client(new BasicHttpBinding(),
 new EndpointAddress("http://localhost:7214/Service1.svc"));

 return service.GetDataAsync().AsAsyncOperation();

 }

This method uses the service proxy that Visual Studio can generate for WCF services and
exposes it as an AsyncOperation.

From the Library of Ida Schander

www.hellodigi.ir

http://mydomain.com/people
http://mydomain.com/getpeople

ptg14200515

	260	 CHAPTER 5	 Manage security and data

MORE INFO  WCF SERVICES

Creating your own WCF services is outside of the scope of this book. For more information,
see http://msdn.microsoft.com/en-us/library/dd456779.aspx.

EXAM TIP

Working with WCF can be difficult. Make sure that you understand the conceptual
difference between a REST service and a SOAP service. Remember that SOAP services are
based on XML envelopes that contain the data while REST is based on a URI scheme with
HttpVerbs.

Using WebSockets for bidirectional communication
Real-time communication between your app and a server is often required. For example, you
might be developing a multiplayer game or working on another type of app that requires
users to work together and see updates in real time.

A common solution to real-time scenarios has been to regularly ask the server about
available updates by using a JavaScript timer and sending an AJAX request to the server. In
this situation, your app is constantly busy sending requests and processing the responses, but
an update might not be available. So there is a load on the server, especially when multiple
users are running your app, and most of their update requests are not filled.

This type of communication is also one-directional. The client app asks the server for
updates, but the server can’t send some data to the client.

Fortunately, technology has improved and there is a new solution: WebSockets, which is a
protocol that provides bidirectional communication between client and server. The initial request
is created over HTTP, but the request is upgraded to a TCP-based protocol after the handshake.

WebSockets enables a fast bidirectional communication path between an app and a back-
end server. They can send each other updates when they become available without having to
frequently check to see if there are updates available.

Building the server side of a WebSockets server is outside the scope of this exam. Microsoft
provides an example with several scripts that automatically set up a web server so you can
test your WebSockets code.

From the Library of Ida Schander

www.hellodigi.ir

http://msdn.microsoft.com/en-us/library/dd456779.aspx

ptg14200515

	 Objective 5.2: Retrieve data remotely	 CHAPTER 5	 261

MORE INFO  WEBSOCKETS SAMPLE

For the complete implementation of all the required methods, see the WebSockets sample
at http://code.msdn.microsoft.com/wpapps/Connecting-with-WebSockets-643b10ab.

Working with WebSockets in your app means that you first construct a WebSocket and
then start listening for incoming messages. You can also use the opened WebSocket to send
messages to the server.

Creating a WebSocket is easy:

var webSocket = new Windows.Networking.Sockets.MessageWebSocket();

You have to start listening for incoming messages or for the WebSocket to be closed:

webSocket.onmessagereceived = function (args) {};
webSocket.onclosed = function (args) {};

Now you can start the WebSocket by passing an URI to the connectAsync method. This
URI starts with ws:// for plain WebSocket connections or wss:// for secured WebSocket
connections:

webSocket.connectAsync(uri);

If the connection is successful, you start listening for incoming messages. You send
messages through the outputStream property of the WebSocket. By writing data to this
stream, you can send messages to the server:

var messageWriter = new Windows.Storage.Streams.DataWriter(webSocket.outputStream);
messageWriter.writeString("message");
messageWriter.storeAsync();

This code shows you how to work with WebSockets on a low level. Microsoft is currently
working on a library called SignalR, which encapsulates a lot of the work of building both
clients and server applications that use WebSockets. If you start using WebSockets in any
real-world app, you should definitely learn about SignalR.

EXAM TIP

Whenever you see a requirement for real-time communication in your exam, think about
WebSockets.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/wpapps/Connecting-with-WebSockets-643b10ab

ptg14200515

	262	 CHAPTER 5	 Manage security and data

Thought experiment 
Retrieving remote data

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are building a multiplayer puzzle game. Users can look through their open
games, start new games, and play games in real time against other users.

With this in mind, answer the following questions:

1.	 Would you use HttpClient or WinJS.xhr for certain parts of your app?

2.	 How can you create the real-time portion of your communication?

Objective summary
■■ Although WinJS.xhr can be used to access remote web services, using HttpClient is the

preferred option.

■■ When working with REST services, you use HTTP verbs such as Get, Delete, Post, and
Put. Those verbs are all supported by HttpClient.

■■ You can use HttpClient to listen for progress updates for your request.

■■ SOAP services follow a design different from REST services. SOAP is based on calling an
actual method by name on the server and passing all required data in an XML envelope.

■■ Using WebSockets is a perfect solution whenever your app requires bidirectional
communication with the server for real-time updates.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You are using a REST service and you want to add data to your service. Which HTTP
verb should you use?

A.	 Get

B.	 Delete

C.	 Post

D.	 Put

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.3: Implement data binding	 CHAPTER 5	 263

2.	 You want to get only the headers of a web request. Which method should you use?

A.	 GetAsync(Uri)

B.	 GetAsync(Uri, HttpCompletionOption)

C.	 GetBufferAsync

D.	 GetInputStreamAsync

3.	 You want to set up bidirectional communication. Which technique should you use?

A.	 WinJS.xhr

B.	 HttpClient

C.	 WebSockets

D.	 jQuery

Objective 5.3: Implement data binding

The last two objectives looked at loading data from a variety of sources. In earlier chapters,
you saw some examples of working with that data. This objective brings all the content
together and shows you how to work with data in your apps.

Some of the content is duplicated throughout this book, but because this topic is so
important for the real world and for your exam, it’s an important objective to study.

This objective covers how to:
■■ Bind data to controls by using data-win-control and data-win-bind

■■ Choose and implement data-bound controls, including WinJS.UI.ListView, to
meet requirements

■■ Bind data to item templates such as WinJS.Binding.Template

■■ Configure an iterator with data-win-options

■■ Enable filtering, sorting, and grouping data in the user interface

Binding data to controls by using data-win-control and
data-win-bind
WinJS enables you to use special attributes to configure data binding, and one of them is the
data-win-bind attribute. This attribute is used to bind a property of an element to a property
of a data source. It uses the following syntax:

<element data-win-bind="elementProperty1 : dataSourceProperty1; elementProperty2:
dataSourceProperty2" />

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	264	 CHAPTER 5	 Manage security and data

The following HTML defines a div that has its innerText and style property bound:

<div id="boundDiv" data-win-bind="innerText: index; style.background: color"></div>

In your JavaScript code, you can now define an object with the properties index and then
color and bind that object to your HTML:

var object = { index: 0, color: "orange" };
var div = document.getElementById("boundDiv");
WinJS.Binding.processAll(div, object);

That’s all there is to the basics of data binding. This code takes your div and binds it to
your newly created object.

By default, WinJS creates one-way binding, so you can update your data and the screen
automatically updates. However, plain JavaScript objects don’t support any notification
mechanism to make this possible. To add notification support, you use the WinJS.Binding.as
method.

The following code uses a timer to regularly update the color property of your object:

var colorArray = ["red", "green", "blue"];
var object = { index: 0, color: colorArray[0] };
var div = document.getElementById("boundDiv");

WinJS.Binding.processAll(div, object);

var bindingObject = WinJS.Binding.as(object);

 setInterval(function () {
 changeColor(bindingObject);
 }, 500);

 var index = 0;

 function changeColor(p) {
 if (index > 2) {
 index = 0;
 }
 p.index = index++;
 p.color = colorArray[index];
 };

Here you see how the WinJS.Binding.as method is used to take your regular object and
transform it into an object that supports notifications.

Data-win-control takes things a step farther. With the data-win-control attribute, you take
an existing div in your markup and convert into the host of a WinJS control. You can use all
kinds of data controls and bind data to those prebuild controls by using this attribute.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.3: Implement data binding	 CHAPTER 5	 265

Choosing and implementing data-bound controls
There are many controls available when Windows Store apps are built with JavaScript, HTML
and CSS. Of course, you can use standard HTML controls such as hyperlinks, input fields,
check boxes, and so on, but you can also take advantage of WinJS controls that are ready to
use in your app.

Some controls are specifically designed to be used with collections of data: FlipView,
Repeater, SemanticZoom, and ListView. These controls can be bound to a set of data and
displayed on-screen. Pay attention to the ListView control because it is explicitly mentioned in
the exam requirements.

Each control has its own specific uses. SemanticZoom (discussed in Chapter 4) is used when
you want different views on the same data set. FlipView (discussed in Chapter 3) displays
a collection of items one at a time and allows the user to flip through the collection. The
Repeater (also discussed in Chapter 3) can generate HTML from a set of items.
As mentioned in the previous section, the data-win-control attribute is used to convert a
regular div into a WinJS control. For example, the following markup defines a div for the
ItemContainer control:

<div id="itemContainerControlHost" data-win-control="WinJS.UI.ItemContainer"></div>

Using data-bound controls follows the same pattern. This code creates a ListView:

<div id="basicListView"
 data-win-control="WinJS.UI.ListView">
</div>

Now you can define the data you want to bind to in your code-behind:

var dataArray = [
 { title: "A", text: "AAAA" },
 { title: "B", text: "BBBB" },
 { title: "C", text: "CCCC" },
 { title: "D", text: "DDDD" },
];

var dataList = new WinJS.Binding.List(dataArray);

var publicMembers =
{
 itemList: dataList
};
WinJS.Namespace.define("DataExample", publicMembers);

You expose the newly created binding list by adding to it to a namespace. Now that the
data is available, you can add a data-win-option attribute to your div to bind to it:

<div id="basicListView"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource : DataExample.itemList.dataSource }">
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	266	 CHAPTER 5	 Manage security and data

The following sections show you how to use templates to customize data–bound item
rendering and how to control the items that are bound to your control.

Binding data to item templates
The previous section showed some code to bind items with a title and text property to a
ListView. Because the ListView doesn’t know how to render the items, it displays them as
strings.

If you don’t want your items to display as strings, you can use templates instead. Templates
define how an individual item renders when it is used in a data-bound control such as
ListView.

A template is defined as a container div with a data-win-control of WinJS.Binding.Template:

<div id="myTemplate" data-win-control="WinJS.Binding.Template"></div>

Inside the container div, you can define the HTML elements that you want to make up one
item. You can use data-win-bind to bind specific elements to properties on your data source.
A template for the items from the previous section might look like this:

<div id="myTemplate" data-win-control="WinJS.Binding.Template">
 <div>
 <h1 data-win-bind="innerText: title"></h1>

 </div>
</div>

The item template defines two elements that are bound to the title and text property of
the data source. Now that you have the template, you have to configure ListView to use it:

<div id="basicListView"
 data-win-control="WinJS.UI.ListView"
 data-win-options="{ itemDataSource : DataExample.itemList.dataSource,
 itemTemplate: myTemplate }">
</div>

It's that simple. Now ListView uses the template when rendering the individual items.

Configuring an iterator with data-win-options
Iterators in languages such as C# are objects that allow you to loop through a collection
without having to worry about the actual implementation. WinRT application programming
interfaces (APIs) define two iterator interfaces: IIterable<T> and IIterator<T>. You never work

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.3: Implement data binding	 CHAPTER 5	 267

with those two interfaces directly; if you see an argument of IIterable when working with
Windows Store apps, just think “array.”

Enabling filtering, sorting, and grouping data in the
user interface
When you bind collection data, you can use the WinJS.Binding.List class to create your
collection. This class has a couple of interesting projection methods that you can use:

■■ createFiltered
■■ createGrouped
■■ createSorted

For example, start with the following data set:

var dataArray = [
 { title: "A", text: "AAAA" },
 { title: "A", text: "AAAA" },
 { title: "B", text: "BBBB" },
 { title: "B", text: "BBBB" },
 { title: "B", text: "BBBB" },
 { title: "C", text: "CCCC" },
 { title: "C", text: "CCCC" },
 { title: "C", text: "CCCC" },
 { title: "C", text: "CCCC" },
 { title: "D", text: "DDDD" },
 { title: "D", text: "DDDD" },
];

var dataList = new WinJS.Binding.List(dataArray);

You can now use dataList to filter, sort, or group the data. Filtering requires a method that
takes one item and returns true to signal that you want the item to be in the filtered collec-
tion (or false otherwise). So this line returns all objects that don’t have a title of A:

var filteredList = dataList.createFiltered(function (x) { return x.title != "A"; });

Sorting takes a function with two parameters. It is your task to compare those two items
and return a negative value if the first argument is less than the second, zero if both are
equivalent, and positive if the first argument is greater than the second. This code sorts items
by title in descending order:

var sortedList = dataList.createSorted(function (x, y) { return x.title < y.title; });

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	268	 CHAPTER 5	 Manage security and data

Grouping data is harder; you have to create two collections of data: one that contains the
different groups with their headers and one with the data that belongs in each group. The
following code shows how to group the data on the title character and count the number of
items in each group:

var groupedList = dataList.createGrouped(function (x) { return x.title; },
 titleGroupData.bind(dataList));
function titleGroupData(j) {
 var titleArray = this.filter(function (v) { return (v.title == j.title); })
 return {
 title: j.title,
 count: titleArray.length
 }
}

When you display grouped data, you need a template for the individual items and both a
template and the data for the group headers. The following markup shows this:

<div id="myTemplate" data-win-control="WinJS.Binding.Template">
 <div>
 <h1 data-win-bind="innerText: title"></h1>

 </div>
</div>
<div id="headerTemplate" data-win-control="WinJS.Binding.Template">
 <div>
 <h1 data-win-bind="innerText: count"></h1>
 </div>
</div>

<h1>Grouped</h1>
<div data-win-control="WinJS.UI.ListView"
 data-win-options="{
 itemDataSource : DataExample.groupedList.dataSource,
 itemTemplate: myTemplate,
 groupDataSource: DataExample.groupedList.groups.dataSource,
 groupHeaderTemplate: headerTemplate
 }"
 >
</div>

Remember that filtering, grouping, and sorting are projections over your data, not copies
of your data; whenever the original data changes, all projections also update.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.3: Implement data binding	 CHAPTER 5	 269

Thought experiment 
Why use data binding?

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are the lead developer of a team that has built a lot of web applications and
used jQuery to retrieve elements and populate them with data. You are building
your first Windows Store app and you are discussing the benefits of using data
binding with your team.

What are the advantages of using data binding over manual binding through a
library such as jQuery?

Objective summary
■■ By using the data-win-bind attribute, you can bind data to elements in your UI.

■■ The data-win-control attribute lets you use WinJS controls in your app.

■■ WinJS offers various data–bound collection controls such as FlipView, Repeater,
SemanticZoom, and ListView.

■■ Item templates such as WinJS.Binding.Template define the layout for items rendered in
collection controls.

■■ Iterators in languages such as C# are objects that allow you to loop through a collection
without having to worry about the actual implementation. WinRT application pro-
gramming interfaces (APIs) define two iterator interfaces: IIterable<T> and IIterator<T>.

■■ WinJS.Binding.List is a collection class that can be used for data binding. It supports
methods such as createFiltered, createGrouped, and createSorted to create projections
of your data.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	270	 CHAPTER 5	 Manage security and data

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You have set up data binding in your app. On the first run, the data is correctly shown
in the UI. However, when you update the data in the back end, the UI doesn’t reflect
those changes. What have you done wrong?

A.	 You did not call WinJS.Binding.processAll after each update.

B.	 You forgot that WinJS doesn’t support automatic updates of data-bound controls.

C.	 You have to use a WinJS.Binding.Template so WinJS knows how to render your
newly updated item.

D.	 You have to use WinJS.Binding.as to set up change notification.

2.	 You have created a ListView and configured the itemDataSource to point to your data.
When you launch the app, all your items are rendered as simple string representations.
What should you do next? (Choose all that apply.)

A.	 Create an item template with WinJS.Binding.Template in the ListView element.

B.	 Use the data-win-option attribute to set the itemTemplate.

C.	 Create an item template with WinJS.Binding.Template outside of the ListView
element.

D.	 Use the data-win-control attribute to set the itemTemplate.

3.	 You have a person object with a lastName property. You want a list with people
starting with an A, sorted alphabetically. Which line do you use?

A.	 dataList.createFiltered(function (x) { return x. lastName.charAt(0) == “A”;
}).createSorted(function (x, y) { return x. lastName > y. lastName; });

B.	 dataList.createSorted(function (x, y) { return x. lastName < y. lastName; });

C.	 dataList.createFiltered(function (x) { return x. lastName == “A”;
}).createSorted(function (x, y) { return x. lastName > y. lastName; });

D.	 dataList.createFiltered(function (x) { return x. lastName.charAt(0) == “A”; })

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.4: Manage Windows authentication and authorization	 CHAPTER 5	 271

Objective 5.4: Manage Windows authentication and
authorization

The next two objectives look at security. Authorizing users, knowing what they are allowed to
do and making sure this can’t be compromised is becoming more and more important.

This objective discusses security-related features for storing passwords and credentials in a
safe way. You also learn how to ask users for their credentials.

This objective covers how to:
■■ Retrieve a user’s roles or claims

■■ Store and retrieve credentials by using the PasswordVault class

■■ Implement the CredentialPicker class

■■ Verify credential existence by using Credential Locker

■■ Store account credentials in app settings

NOTE  RETRIEVING A USER’S ROLES OR CLAIMS

While the exam OD mentions retrieving a user’s roles or claims as a possible exam topic,
it seems unlikely. There is currently no information available on this topic in the context
of developing Windows Store apps. This might be the result of the OD being written well
before the product details are final.

Storing and retrieving credentials by using the
PasswordVault class
Storing sensitive data in a secure location is important. Maybe you want to store users’
login credentials so you can automatically authenticate them whenever they come back to
your app. Or perhaps you are using some kind of security token to integrate with back-end
systems. This token also needs to be stored in a secure location.

PasswordVault can help. Although the name suggests that you can store only passwords in
it, it isn’t the case. You can store any type of data that you want to be securely stored.

EXAM TIP

Never store security sensitive data in plain text on the users device. When the exam
requires you to store sensitive data use the PasswordVault.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	272	 CHAPTER 5	 Manage security and data

The PasswordVault class is found in the Windows.Security.Credentials namespace.
Constructing a new instance can take some time, so it’s wise to load PasswordVault
asynchronously before you will use it, as the samples in the Microsoft software development
kit (SDK) show:

function asyncVaultLoad()
{
 return new WinJS.Promise(function (complete, error, progress) {
 var vault = new Windows.Security.Credentials.PasswordVault();

 // any call to the password vault will load the vault
 var creds = vault.retrieveAll();
 complete();
 });
}

After constructing PasswordVault, you can add, read and remove credentials.

Adding a credential takes three properties:

■■ Resource name

■■ UserName

■■ Password

By using a unique resource name, you can later retrieve the credentials from PasswordVault.

You can use the following code to construct a new PasswordCredential and add it to
PasswordVault:

var vault = new Windows.Security.Credentials.PasswordVault();
var cred = new Windows.Security.Credentials.PasswordCredential(resource,
 username,
 password);
vault.add(cred);

By default, the content of PasswordVault is roamed to other user devices. For example,
if you get a new device and start configuring it, apps you already installed on your other
devices can automatically get any required credentials; you don’t have to reenter them on
your new device.

Reading credentials from PasswordVault can be done in a couple of different ways.
PasswordVault offers you access only to the values stored for your app. You can’t see any
credentials saved by other apps. The same is true for multiple users installing the same app on
a shared device. The PasswordVault will keep the credentials of the users separated.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.4: Manage Windows authentication and authorization	 CHAPTER 5	 273

To list all the credentials that your app has saved, you can call retrieveAll on PasswordVault:

var creds = vault.retrieveAll();

You can also search for specific credentials by using findAllByResource or findAllByUserName:

creds = vault.findAllByResource(resource);
creds = vault.findAllByUserName(username);

If you have both the resource and user name value, you can use retrieve to search for a
specific credential:

cred = vault.retrieve(resource,username);

One important difference between findAllByResource, findAllByUserName, and retrieve is
that retrieve returns a fully populated object that includes the password. The findAll methods
return objects with only the user name and resource set. If you want the password, you can
use the user name and resource and then pass them to the retrieve method to avoid having
to decrypt passwords for all credentials in the vault for the current user and app.

You can also remove a credential from PasswordVault. To do so, you need both the user
name and resource name. First, retrieve the correct credential and then call vault.remove to
delete it:

var vault = new Windows.Security.Credentials.PasswordVault();
var cred = vault.retrieve(resource, username);
vault.remove(cred);

MORE INFO  PASSWORDVAULT SAMPLE

You can find a complete sample of how to use PasswordVault at http://code.msdn.
microsoft.com/windowsapps/PasswordVault-f01be74a/.

Implementing the CredentialPicker class
To enable users to enter credentials in enterprise scenarios, Windows Store apps can use
CredentialPicker. This object shows a UI to users, they enter credentials, and the entered
values are returned to your app. An example of what CredentialPicker looks like is shown in
Figure 5-1. Note that depending on if you are connecting remotely or working on a physical
machine, you might see another option to authenticate with a smart card.

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/PasswordVault-f01be74a/
http://code.msdn.microsoft.com/windowsapps/PasswordVault-f01be74a/

ptg14200515

	274	 CHAPTER 5	 Manage security and data

FIGURE 5-1  The CredentialPicker UI

CredentialPicker provides the UI for domain logins complete with support for smart cards.
You can find the CredentialPicker class in the Windows.Security.Credentials.UI namespace.
CredentialPicker takes a couple of options to construct:

■■ Target Name  This is ignored

■■ Message  This is shown in Figure 5-1

■■ Caption  This is shown at the top of the image in Figure 5-1 as RuntimeBroker

When activating CredentialPicker, you have three overloads. The simplest one is this:

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(target, message)
.done(function (results) { }

The pickAsync method takes only a target and message. You can also pass the caption by
using another overload:

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(target, message, caption)
.done(function (results) { }

The third overload of pickAsync allows you to pass a CredentialPickerOptions object that
allows for more configuration options:

■■ AlwaysDisplayDialog  Gets or sets the option of whether the dialog box is displayed

■■ AuthenticationProtocol  Gets or sets the authentication protocol

■■ CallerSavesCredential  Gets or sets whether the caller wants to save the credentials

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.4: Manage Windows authentication and authorization	 CHAPTER 5	 275

■■ Caption  Gets or sets caption text displayed to the user

■■ CredentialSaveOption  Gets or sets the option of saving credentials

■■ CustomAuthenticationProtocol  Gets or sets whether the authentication protocol is
custom rather than a standard authentication protocol

■■ ErrorCode  Gets or sets the error code

■■ Message  Gets or sets the body of text that displays to the user

■■ PreviousCredential  Gets or sets whether to fill dialog box fields with previous
credentials

■■ TargetName  Gets or sets the name of the target computer (not used at the moment)

The ErrorCode property lets you show the CredentialPicker UI with an error message such
as “The Username Or Password Is Incorrect”. You can use this message to tell users what went
wrong during logon. Error codes include the following:

■■ 1326  Logon failure

■■ 1330  Password expired

■■ 2202  Bad user name

■■ 1907 or 1938  Password must change/password change required

■■ 1351  Can’t access domain info

■■ 1355  No such domain

Authentication protocol is one of the values found in the AuthenticationProtocol enumeration:

■■ Basic  The authentication protocol is basic. Credentials are returned to the caller as
plaintext.

■■ Digest  The authentication protocol is digest. Credentials are returned to the caller as
plaintext.

■■ Ntlm  The authentication protocol is NTLM. Credentials are transformed before being
returned to the caller.

■■ Kerberos  The authentication protocol is Kerberos. Credentials are transformed
before being returned to the caller.

■■ Negotiate  The authentication protocol is negotiate, including negotiate extensions.
Credentials are transformed before being returned to the caller.

■■ CredSsp  The authentication protocol is for remote access using the Credential
Security Support Provider (CredSSP) protocol.

■■ Custom  The authentication protocol is anything other than the previous ones.
Credentials are returned to the caller as plaintext.

The back end you use determines which authentication protocol you need.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	276	 CHAPTER 5	 Manage security and data

The following code sample uses CredentialPickerOptions to show CredentialPicker to the
user with an error message:

var options = new Windows.Security.Credentials.UI.CredentialPickerOptions();
options.message = "Let's login!";
options.caption = "CredentialPickerSample";
options.targetName = "Target";
options.alwaysDisplayDialog = true;
options.errorCode = 1326; // Shows "The username or password is incorrect."
options.callerSavesCredential = true;
options.authenticationProtocol = Windows.Security.Credentials.UI.AuthenticationProtocol.
negotiate;
options.credentialSaveOption = Windows.Security.Credentials.UI.CredentialSaveOption.
selected;

Windows.Security.Credentials.UI.CredentialPicker.pickAsync(options).done(function
(results) {
});

Verifying credential existence by using Credential Locker
One popular use of PasswordVault is to store user credentials so users don’t have to reenter
their credentials every time they access your app.

When you need to authenticate the user, you should check whether the correct credentials
are already stored in PasswordVault. If not, you can use the CredentialPicker UI to let users
enter their credentials and then store them in PasswordVault for later use.

The following sample code shows how to differentiate between the users credentials being
available or having to ask the user for credentials. You check to see whether the credentials
are available from PasswordVault. If they are available, you can use them; if not, you have to
show the UI to the user, get the credentials, and store them for later use.

function showCredentialPickerIfNotStored() {
 var loginCredential = getCredentialFromLocker();
 if (loginCredential != null) {
 loginCredential.retrievePassword();
 document.getElementById("output").innerText = loginCredential.userName + ": " +
 loginCredential.password;
 } else {
 Windows.Security.Credentials.UI.CredentialPicker.pickAsync("target",
 "please enter credentials").done(function (results) {
 loginCredential = results;
 storeCredentialsInLocker(loginCredential);
 document.getElementById("output").innerText =
 loginCredential.credentialUserName + ": " +
 loginCredential.credentialPassword;
 });
 }
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.4: Manage Windows authentication and authorization	 CHAPTER 5	 277

The following code shows the basic structure of checking to see whether credentials are
available. If they aren’t, show CredentialPicker. The getCredentialFromLocker function looks
like this:

function getCredentialFromLocker() {
 try {
 var vault = new Windows.Security.Credentials.PasswordVault();
 var credentialList = vault.findAllByResource(resourceName);
 if (credentialList.length > 0) {
 return credentialList[0];
 }
 else {
 return null;
 }
 }
 catch (ex) {
 return null;
 }
}

The try/catch block is important because the findAllByResource method throws an
exception when nothing is found for the specified resource name.

Storing the credentials in PasswordVault is done like this:

function storeCredentialsInLocker(loginCredential) {
 var vault = new Windows.Security.Credentials.PasswordVault();
 var cred = new Windows.Security.Credentials.PasswordCredential(resourceName,
 loginCredential.
credentialUserName,
 loginCredential.
credentialPassword);
 vault.add(cred);
}

By using this code, you can now load the credentials from PasswordVault or get them from
the user if PasswordVault is empty.

EXAM TIP

The Credential Locker is the object in Windows that stores credentials. PasswordVault is
a class that you can use from your Windows Store apps that uses the Credential Locker
behind the scenes. So whenever you see something about the Credential Locker on your
exam, remember that this can be used through the PasswordVault class.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	278	 CHAPTER 5	 Manage security and data

Storing account credentials in app settings
In addition to storing data in the PasswordVault, you can also store settings in the
ApplicationData.localSettings and ApplicationData.roamingSettings properties. However,
storing secure data in ApplicationData is not recommended because ApplicationData is
stored on the users device at C:\Users\<user_name>\AppData\Local\Packages\<package>\
Settings\settings.dat.

This file can be edited by using the registry editor making it easy for a malicious user to
change the data in your settings file outside of your app.

If you do want to store sensitive data in the app settings, you should at least encrypt the
data. The problem with encrypting, however, is that the key used for the encryption process
needs to be stored in the application code that can also be accessed by the user.

Hashing data is another option. Hashing is a one-way mathematical operation where you
take some data and generate a fixed length value. This resulting value can’t be transformed
into the original value. This means that storing a hashed value is more secure then storing the
original value.

For example, the following code is a simple example of a hash function:

var hashCode = function (s) {
 return s.split("").reduce(function (a, b) { a = ((a << 5) - a) + b.charCodeAt(0);
return a & a }, 0);
}

You can use this function like this:

var username = "Baz";
var password = "bar";

var hash = hashCode(username + password);
var outputDiv = document.getElementById("outputDiv");
outputDiv.innerHTML += "username: " + username + " password: " + password;
outputDiv.innerHTML += "
";
outputDiv.innerHTML += "hash: " + hash;
outputDiv.innerHTML += "
";
outputDiv.innerHTML += "password: xxx " + (hashCode(username + "xxx") == hash).
toString();
outputDiv.innerHTML += "
";
outputDiv.innerHTML += "username: xxx " + (hashCode("xxx" + password) == hash).
toString();
outputDiv.innerHTML += "
";
outputDiv.innerHTML += "correct credentials: " + (hashCode(username + password) ==
hash).toString();

By comparing the credentials to the hash, you can verify if the user entered the same
username and password combination. Nowadays, hash functions can be cracked by using
brute-force approaches that use video card GPUs. But as always is the case with security,
adding layers makes it more difficult for malicious users to attack your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.4: Manage Windows authentication and authorization	 CHAPTER 5	 279

MORE INFO  HASHING ALGORITHMS

The quality of your hash depends on the hashing algorithm you use. An algorithm should
create values that are as unique as possible to avoid collisions in the hashed values. One
implementation of a hashing algorithm that is also used on servers, namely SHA256, can be
found at https://bitwiseshiftleft.github.io/sjcl/.

Now that you know something about hashing, the remaining part of this objective looks at
using the localSettings and roamingSettings properties to store data.

The following code sample shows how to use the localSettings property:

var applicationData = Windows.Storage.ApplicationData.current;
var settings = applicationData.localSettings;

// Create a simple setting
settings.values["exampleSetting"] = "Hello Windows";

// Read data from a simple setting
var value = settings.values["exampleSetting"];

if (!value)
{
 // No data
}
else
{
 // Access data in value
}

// Delete a simple setting
settings.values.remove("exampleSetting");

To work with roaming instead of local data, change the following line:

var settings = applicationData.localSettings;

to this line:

var settings = applicationData.roamingSettings;

All other code can stay the same.

If you want more structure in your settings, you can use a container. Creating a container is
easy:

var applicationData = Windows.Storage.ApplicationData.current;
var localSettings = applicationData.localSettings;

var container = localSettings.createContainer("exampleContainer",
 Windows.Storage.ApplicationDataCreateDisposition.Always);

From the Library of Ida Schander

www.hellodigi.ir

https://bitwiseshiftleft.github.io/sjcl/

ptg14200515

	280	 CHAPTER 5	 Manage security and data

The ApplicationDataCreateDisposition enumeration can have a value of always to make
sure that the container is created if it doesn’t exist. A value of existing opens the container
only if it already exists.

You can see whether a container exists by calling this:

var hasContainer = localSettings.containers.hasKey(containerName);

You can get to the values stored in a container by using the lookup method:

var hasSetting = localSettings.containers.lookup(containerName).values;

Use the following code to write a value to your container:

localSettings.containers.lookup(containerName).values[settingName] = "Hello World";

Retrieving a value is also easy:

var value = localSettings.containers.lookup(containerName).values[settingName];

And, finally, you can delete a container:

localSettings.deleteContainer(containerName);

 Thought experiment 
Authenticating your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are building an intranet app that connects to various systems in your organiza-
tion. Some systems don’t integrate well, so users have to enter their credentials.

List the features discussed in this objective that you will use.

Objective summary
■■ Use PasswordVault to securely store credentials on a user’s device.

■■ CredentialPicker offers a standard UI for users to enter credentials.

■■ To help users use your app, make sure to store their credentials in PasswordVault so
they don’t have to reenter credentials when coming back to your app.

■■ You can use ApplicationData to store settings locally or roaming.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.4: Manage Windows authentication and authorization	 CHAPTER 5	 281

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 You want to securely store user credentials. Which class do you use?

A.	 CredentialLocker

B.	 PasswordVault

C.	 CredentialPicker

D.	 ApplicationData

2.	 A user entered incorrect credentials in CredentialPicker. You want to ask the user to
reenter credentials. Which method do you use?

A.	 CredentialPicker.pickAsync(target, message, caption)

B.	 CredentialPicker.pickAsync(target, message)

C.	 CredentialPicker.pickAsync(CredentialPickerOptions) with CredentialSaveOption set
to false

D.	 CredentialPicker.pickAsync(CredentialPickerOptions) with ErrorCode set to 1326

3.	 You want to see whether a user has already entered credentials for your app. Which
elements do you need? (Choose all that apply.)

A.	 PasswordVault findAllByResource method

B.	 A try/catch block

C.	 CredentialPicker.pickAsync

D.	 PasswordCredential.retrievePassword();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	282	 CHAPTER 5	 Manage security and data

Objective 5.5: Manage web authentication

The previous objective discussed the security features Windows Store apps can use. This ob-
jective discusses securing your app by integrating it with external services such as Facebook
or Twitter, setting up single sign-on, and using other important security features.

This objective covers how to:
■■ Use the Windows.Security.Authentication.Web namespace

■■ Set up OAuth2 for authentication

■■ Set up single sign-on (SSO)

■■ Implement the CredentialPicker class

■■ Implement credential roaming

■■ Implement the WebAuthenticationBroker class

■■ Support proxy authentication for enterprises

Using the Windows.Security.Authentication.Web
namespace
The rest of this objective shows you how to use various members of the Windows.Security.
Authentication.Web namespace. For now, it’s important to have a conceptual foundation
when it comes to authentication and the web.

Regulating complete security around user authentication at the client is hard, which is why
most apps use a server back end that handles authentication. Your app sends a password
and user name to the back-end service and gets special token in return. This token represents
the user and allows your app to send the token when issuing new requests to the back-end
service. You can now store the token in PasswordVault and use it in the future.

Another way to authenticate users is to completely outsource the whole process to
another service. Maybe you came across websites that let you log on with your Facebook,
Twitter, Windows Live, and Gmail accounts. What happens is that the user is redirected to
another page that is under control of Microsoft or Google, for example. The user enters the
user name and password on that page and is authenticated. This authentication happens with
the OAuth2 protocol, which describes how the communication should take place.

When working with external web services for communication, you also have to think about
the Internet lines that are between the user’s app and the server. Protecting the data while it
is traveling from one end to the other is also an important part of authentication and is where
SSL is used. Websites that use SSL start their addresses with “https”. Whenever you see a web-
site that starts with “https” instead of “http”, you know that the communication between your
browser and the website is being encrypted and ensures that potential listeners can’t read the

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.5: Manage web authentication	 CHAPTER 5	 283

content you are sending. Building a secure authentication mechanism in your app starts with
using the correct https protocol for sending data.

The remaining part of this objective discusses how to implement authentication features in
your app.

Setting up OAuth2 for authentication
OAuth2 authentication is the process of allowing an external website to handle your
authentication. This website can be a well-known party such as Facebook or Twitter.

This process starts with your app providing the URI of the authentication page of an ex-
ternal site. This URI needs to start with “https” to make sure the communication is encrypted
and is then loaded into an overlay in your app. This page is completely defined by the OAuth2
provider; you can’t change its content or appearance.

It could be that authenticating yourself with an OAuth2 provider takes you through mul-
tiple pages. Maybe the first page lets you enter your credentials while other pages explicitly
ask you to allow certain data to be exchanged. To make sure that your app knows when the
authentication is finished, you specify not only the starting URI but also the URI that signals
authentication is done. Your app makes sure that when this page is hit, the logon overlay is
closed, and the user returns to your app.

The broker that orchestrates this process, WebAuthenticationBroker, is found in the
Windows.Security.Authentication.Web namespace.

For example, suppose that you want to set up OAuth2 authentication with Twitter. The first
thing you should do is set up a new Twitter app at https://apps.twitter.com/app/new. Here you
specify the callback URL that is used by your app to verify that authentication is finished. After
creating your app, you receive two important values: your API key and your API secret. Those
values are required for authenticating your app with Twitter.

You can now use those values in the WebAuthentication sample that Microsoft created.

MORE INFO  WEBAUTHENTICATION SAMPLE

You can find the WebAuthentication sample at http://code.msdn.microsoft.com/
windowsapps/Web-Authentication-d0485122.

The sample contains a lot of code that you can inspect. However, the most important step
is this:

Windows.Security.Authentication.Web.WebAuthenticationBroker.authenticateAsync(
 Windows.Security.Authentication.Web.WebAuthenticationOptions.none,
 startURI,
 endURI).done(function (result) {
});

The call to WebAuthenticationBroker.authenticateAsync starts the OAuth2 connection.
By passing it the start and end URI, the broker knows which page to load and when the

From the Library of Ida Schander

www.hellodigi.ir

http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122
http://code.msdn.microsoft.com/windowsapps/Web-Authentication-d0485122

ptg14200515

	284	 CHAPTER 5	 Manage security and data

authentication is finished. The start URI is composed of your secret keys and some other data
that Twitter requires.

EXAM TIP

Remember that OAuth2 depends on both a start URI and an end URI for configuration the
WebAuthenticationBroker.

After the authentication finishes, the returned result has a responseData property that has
the data passed to you by the OAuth2 provider. Depending on your OAuth2 provider, you
know the schema of the data and you can parse it for the token and other data you require.

Offering an OAuth2 sign-in option in your app makes it easier for users to use your app.
Instead of having to create a new account, they can use an existing account and just give your
app the correct permissions.

Setting up Single Sign-On (SSO)
If you use PasswordVault and CredentialPicker correctly, your app asks for the user’s creden-
tials only once. However, multiple apps using the same back-end services still ask the users to
provide their credentials.

From the users’ point of view, nothing has improved because they still enter credentials
multiple times. SSO can be used to authenticate the user in one app for a given OAuth2
provider, effectively logging users on for all apps that use that OAuth2 provider.

SSO requires cookies to be stored in an application. Although the default
behavior of the WebAuthenticationBroker class doesn’t allow cookie storage, when the
WebAuthenticationBroker class is set up for SSO authentication, cookies received during
the authentication steps can remain in a special SSO application container. To support SSO,
the online identity provider must allow the registration of URLs with the format ms-app://
[Application SID]. The application’s package ID (also called the security identifier [SID]) can be
obtained from the application’s page in the Windows Store.

The following steps are required to set up SSO with WebAuthenticationBroker in Windows
Store apps:

1.	 Register your application with the identity provider and obtain a client ID and secret
key. Request the provider to register a redirect URL of the form ms-app://[Application
SID].

2.	 Use the SilentMode and UseHttpPost members of the WebAuthenticationOptions
enumeration in the AuthenticateAsync method; do not specify the redirect URL.

3.	 If authentication was successful, the online identity provider redirects the app to the
redirect URL configured with an access token as a query parameter.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.5: Manage web authentication	 CHAPTER 5	 285

4.	 If the redirect URL matches with the application’s SID, the WebAuthenticationBroker
class returns the token to the app. The whole URL is kept in a cookie stored in a special
app container so that future authentication requests do not require the user to log on
with the credentials.

The cookies used for SSO in a Windows Store app are not shared with Internet Explorer,
other browsers, or other apps. If an app attempts to misuse a cookie for an app in which the
user is already logged on, it fails authentication because the redirect URL of the two apps
never match.

MORE INFO  FACEBOOK SSO SAMPLE

A sample of implementing SSO with Facebook can be found at http://facebooksdk.net/
docs/windows/sso/.

Implementing the CredentialPicker class
The CredentialPicker class is used in Windows Store apps to show users a familiar interface in
which they can enter their credentials. You can find the CredentialPicker class in the Windows.
Security.Credentials.UI namespace.

MORE INFO  CREDENTIALPICKER CLASS

The CredentialPicker class is discussed in more detail in Objective 5.4.

Implementing credential roaming
Credential roaming is the process in which a user logs on in your app or device, after which
their credentials are automatically roamed to other devices. This way, they have to log on only
once for each app.

The PasswordVault class provides built-in support for roaming credentials.

MORE INFO  CREDENTIAL ROAMING CLASS

Credential roaming and PasswordVault are discussed in more detail in Objective 5.4.

Implementing the WebAuthenticationBroker class
In the “Setting up OAuth2 for authentication”, section, you saw how to use the
WebAuthenticationBroker class. The idea is that you launch WebAuthenticationBroker with a
start and end URI. This start URI points to a specific provider and often contains a unique ID
that helps the provider identify your app.

From the Library of Ida Schander

www.hellodigi.ir

http://facebooksdk.net/docs/windows/sso/
http://facebooksdk.net/docs/windows/sso/

ptg14200515

	286	 CHAPTER 5	 Manage security and data

When the authentication provider navigates to the end URI, WebAuthenticationBroker
knows the authentication is finished and closes the UI.

When the authentication finishes, it’s up to you to see whether everything went well and
to parse the result.

The following code shows how to log on with a Facebook provider:

var facebookURL = "https://www.facebook.com/dialog/oauth?client_id=XXXXXXXXXXXXXXX";

var callbackURL = "https://www.facebook.com/connect/login_success.html";

facebookURL += "&redirect_uri=" + encodeURIComponent(callbackURL) + "&scope=read_
stream&display=popup&response_type=token";

var startURI = new Windows.Foundation.Uri(facebookURL);
var endURI = new Windows.Foundation.Uri(callbackURL);

Windows.Security.Authentication.Web.WebAuthenticationBroker.authenticateAsync(
 Windows.Security.Authentication.Web.WebAuthenticationOptions.none, startURI, endURI)
 .done(function (result) {
 }, function (err) {
 });

You should decide what to do when an error happens. It’s also up to you to parse the
incoming result and extract the token.

Supporting proxy authentication for enterprises
When an app runs in an enterprise environment, Internet traffic often runs through a proxy.

With the release of Windows 8.1, proxy authentication works out of the box. When your
network uses Web Proxy Auto-Discovery (WPAD) and Privilege Attribute Certificate (PAC),
Windows prompts the user for authentication to connect to the network.

If you want to configure proxy settings on your device, press Windows key+W and search
for Change Proxy Settings. You see the screen shown in Figure 5-2.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.5: Manage web authentication	 CHAPTER 5	 287

FIGURE 5-2  Configuring proxy settings in Windows 8.1

If your organization has set up a Group Policy that configures the proxy settings for
Internet Explorer, those settings are automatically used in Windows Store apps.

Thought experiment 
Designing your app

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You have enabled logging in your app with logging so you can see what your users
are doing, and you notice that your app is becoming more and more popular. How-
ever, you also notice that a lot of users stop using your app when they are asked to
accounts.

How can you enhance your app to address this issue?

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	288	 CHAPTER 5	 Manage security and data

Objective summary
■■ The Windows.Security.Authentication.Web namespace contains the

WebAuthenticationBroker class that you can use to implement web authentication
scenarios.

■■ OAuth2 allows you to use an external provider to authenticate users for your app. This
external provider could be Twitter, Facebook, or a Microsoft account.

■■ SSL is used to authenticate a user once for a back-end service in multiple
apps. It is supported by putting a special access token in the URI, after which
WebAuthenticationBroker handles SSO.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 By popular demand, you have decided to implement photo sharing using your photo
mosaic Windows Store app with Facebook. You have to allow users to post photos
to their Facebook timelines. What are the steps required to implement this feature?
(Choose all that apply.)

A.	 Authenticate users by requesting Facebook credentials in a custom dialog box.

B.	 Register your app with Facebook to obtain a client ID; configure a redirect URL to
obtain an access token.

C.	 Set up the WebAuthenticationBroker with a URL that contains the client ID, redirect
URL, and the permissions requested.

D.	 Use the AuthenticateAsync method of the WebAuthenticationBroker class to
authenticate users and use the access token from the result for posting photos to
Facebook using the recommended APIs.

E.	 After users are logged on, post photos to Facebook using the methods available
for desktop apps.

2.	 To improve employee productivity in an organization that provides a Windows Store
to its employees, you recommend that the organization uses SSO in the app. Which of
the following is true of SSO?

A.	 Implementation of SSO requires the application’s SID to be present in a URL that is
used as the redirect URL.

B.	 Each time an update for the app is released, users need to log on again because
the cookie is no longer available as the SID changes with every update.

C.	 SSO works with both http:// and https://. Therefore, if employees are logged on
to the corporate network through a virtual private network (VPN), they do not
require http:// for the authentication.

D.	 A user can use SSO to log on to any app along with the organization’s app using
the same set of credentials; this is one of the major benefits of using SSO.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 5.5: Manage web authentication	 CHAPTER 5	 289

3.	 You are investigating the feasibility of implementing OAuth2 authentication using an
online identity provider. To provide a consistent user experience, you decide to use
the WebAuthenticationBroker class in your app. Which of the following is a correct
statement?

A.	 The WebAuthenticationBroker class supports OAuth2 authentication with only
those identity providers that are located in the domain in which the user has
joined with the app.

B.	 The WebAuthenticationBroker class supports OAuth2 authentication with online
identity providers that implement the OAuth2 standard and it also supports SSO.

C.	 The WebAuthenticationBroker class must be used every time the user wants to log
on because it does not support SSO.

D.	 The WebAuthenticationBroker class is suitable for use with online identity
providers that support only the http:// prefix.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	290	 CHAPTER 5	 Manage security and data

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 5.1: Thought experiment
The Weather app stores your preferred cities and current location. Storing these preferences
can be done in the roaming settings folder so that each device knows your settings. The
actual weather data is retrieved remotely. Although the data can be cached locally, it should
be updated from a remote back end.

Objective 5.1: Review
1.	 Correct answer: D

A.	 Incorrect: The Roaming folder is used only for small files. Although the roaming
option would be perfect, storing large video files is not an option.

B.	 Incorrect: Tables in Azure Mobile Services shouldn’t be used to store binary data.

C.	 Incorrect: Storing the video files in the local folder can be used as a cache, but
they don’t sync to other devices.

D.	 Correct: You should store them remotely in Azure blob storage because of the file
size and need for availability on multiple devices.

2.	 Correct answers: A, B

A.	 Correct: Azure Mobile Services can be used to store details about the image such
as the rating.

B.	 Correct: Blob storage can be used to store the actual image.

C.	 Incorrect: The roaming folder is use-specific. It is not meant to be used to share
data with other users.

D.	 Incorrect: The local folder is on only one device. It is not meant to be used to
share data with other users.

3.	 Correct answer: B

A.	 Incorrect: Executing a web service request asynchronously doesn’t make it finish
faster.

B.	 Correct: By executing the request asynchronously, your app can handle user input
while it waits for the request to finish.

C.	 Incorrect: The fact that the client app invokes the request asynchronously doesn’t
influence the web server.

D.	 Incorrect: Users can always fire multiple requests at the same time from multiple
applications. It is handled by Windows and doesn’t have anything to do with
sending requests asynchronously from your app.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 5	 291

Objective 5.2: Thought experiment
1.	 HttpClient is the preferred solution over WinJS.xhr. You can use HttpClient to load

open games and start a new game.

2.	 The real-time game play can be done with WebSockets.

Objective 5.2: Review
1.	 Correct answer: C

A.	 Incorrect: The Get verb is used to read or select data.

B.	 Incorrect: Delete is used to remove data.

C.	 Correct: Post is used to add data.

D.	 Incorrect: Put is used to update data.

2.	 Correct answer: B

A.	 Incorrect: GetAsync(Uri) downloads the complete request.

B.	 Correct: You can specify that you want only the request headers, not the content.

C.	 Incorrect: GetBufferAsync loads the data as a buffer.

D.	 Incorrect: GetInputStreamAsync streams the incoming data.

3.	 Correct answer: C

A.	 Incorrect: WinJS.xhr is used for regular AJAX requests. HttpClient should be
favored when doing those types of requests.

B.	 Incorrect: HttpClient isn’t used for real-time communication; it fires only one
single request.

C.	 Correct: Using WebSockets is the perfect solution for real-time communication.

D.	 Incorrect: jQuery is a JavaScript framework that can be used to send AJAX
requests. It doesn’t feature real-time communication.

Objective 5.3: Thought experiment
When you use your JavaScript or a library such as jQuery to select elements in your HTML and
set their values from your code, you create a hard dependency between your code and the
UI. Something simple, such as changing the element ID or moving it around in your HTML,
can break your code.

Data binding creates a loose coupling between your data and the UI, which makes for a
more maintainable application in which it is easier to change the layout without having to
change the JavaScript.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	292	 CHAPTER 5	 Manage security and data

Objective 5.3: Review
1.	 Correct answer: D

A.	 Incorrect: WinJS.Binding.processAll has to be called only once to initiate the
binding.

B.	 Incorrect: WinJS supports automatic updates of data-bound controls. Although
JavaScript objects don’t have intrinsic change notifications, you can easily add
them to an existing object.

C.	 Incorrect: WinJS templates define the layout of data-bound items; they don’t
control data updates.

D.	 Correct: WinJS.Binding.as adds change notification features to an existing object.
WinJS checks for updates and automatically refreshes the UI.

2.	 Correct answers: B, C

A.	 Incorrect: The item template should be a separate element outside of the ListView
element.

B.	 Correct: The data-win-option attribute on ListView is used to connect ListView to
the template.

C.	 Correct: The item template is a separate element located outside of ListView.

D.	 Incorrect: You should use the data-win-option attribute, not data-win-control.

3.	 Correct answer: A

A.	 Correct: Here you compare only the first character of the last name and create a
collection that is both filtered and sorted.

B.	 Incorrect: The resulting collection is not filtered.

C.	 Incorrect: The filter function checks to see whether the complete name is equal to
A, not only the first character.

D.	 Incorrect: The resulting collection is not sorted.

Objective 5.4: Thought experiment
CredentialPicker can be used whenever the user needs to enter credentials for a back-end
system. PasswordVault can then be used to store those credentials so the user has to enter
them only once.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 5	 293

Objective 5.4: Review
1.	 Correct answer: B

A.	 Incorrect: The CredentialLocker class doesn’t exist; PasswordVault is sometimes
called a Credential Locker.

B.	 Correct: PasswordVault is recommended for storing sensitive data such as
credentials.

C.	 Incorrect: CredentialPicker shows the UI for users to enter their credentials.

D.	 Incorrect: ApplicationData is not safe for storing security sensitive data.

2.	 Correct answer: D

A.	 Incorrect: This shows the CredentialPicker UI as if it were the first time. No error
message is displayed.

B.	 Incorrect: This shows the CredentialPicker UI as if it were the first time. No error
message is displayed.

C.	 Incorrect: CredentialSaveOption doesn’t show an error message.

D.	 Correct: Using CredentialPickerOptions with the correct error code shows an error
message to the user.

3.	 Correct answers: A, B, D

A.	 Correct: The findAllByResource method searches PasswordVault for the credential
you are looking for.

B.	 Correct: If no credentials are saved for the particular resource, an exception is
thrown that you need to handle.

C.	 Incorrect: This shows the CredentialPicker UI so users can enter their credentials.

D.	 Correct: After loading PasswordCredential by using findAllByResource, you have
to explicitly load the password for the retrieved credential.

Objective 5.5: Thought experiment
Users often dislike having to create a new account for each app they want to use. Instead, you
can offer OAuth2 integration so they can log on with an existing account, such as Windows
Live ID, Twitter, or Facebook.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	294	 CHAPTER 5	 Manage security and data

Objective 5.5: Review
1.	 Correct answers: B, C, D

A.	 Incorrect: Users might never enter user names and passwords from third-party
sites into an app’s custom dialog box because of lack of trust and fear of having
their credentials compromised.

B.	 Correct: Registration of a new app with a remote service provides your app with a
client ID, secret key, and option to set up the redirect URL.

C.	 Correct: The URL used by the WebAuthenticationBroker class needs to contain the
client ID; redirect URI; and, in most cases, the scope for the permissions requested.

D.	 Correct: If the authenticateAsync is successful in authenticating the user, the
response contains the access token. The app then uses the access token with all
future requests.

E.	 Incorrect: An app is expected to use well-defined APIs for accessing resources for
users and carrying out actions such as posting photos. These processes require an
access token that is available only through authentication using OAuth2.

2.	 Correct answer: A

A.	 Correct: The WebAuthenticationBroker class uses a custom URL that contains the
SID of the app to ensure that the access token contained in a cookie in the SSO
app container belongs to the app.

B.	 Incorrect: The SID of an application does not change with updates, so the user is
automatically signed in after the app is updated.

C.	 Incorrect: The WebAuthenticationBroker class can be used only with URLs that
support the https:// prefix.

D.	 Incorrect: Other apps can’t log on with the user’s organizational domain account.
SSO can help authenticate back-end services.

3.	 Correct answer: B

A.	 Incorrect: The WebAuthenticationBroker class supports identity providers that
implement the OAuth2 standard and are located on an intranet or the Internet.

B.	 Correct: The WebAuthenticationBroker class can be configured for SSO with
OAuth2 providers. SSO requires a redirect URL containing the app’s SID to be set
up with the identity provider.

C.	 Incorrect: The WebAuthenticationBroker class supports SSO for Windows Store
apps.

D.	 Incorrect: The WebAuthenticationBroker class can be used only with URLs that
support the https:// prefix.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

295

AppBar events,  176–177
appendResultSuggestion method,  83
ApplicationDataCreateDisposition enumeration,  280
ApplicationData.RoamingStorageQuota property,  106
applicationHidden event,  232
application links, sharing data,  93–95
Application page (Manifest Designer),  44–45
ApplicationView object,  167
applying CSS styling,  179–183

gradients,  179–180
Grid layouts,  181
media queries,  183–184
scroll snapping,  182
zooming,  182

app manifest,  44–48,  75–76
App Manifest Designer

configuring tile sizes,  214–215
ContactPicker declaration,  62
enabling toast notifications,  227–228
list of declarations,  75
Minimum Width property,  162–163
Search declaration,  84–85
Share declaration,  90

AppointmentsProvider value (ActivationKind
enumeration),  37

app requirements
app bar,  171–172
data binding,  265–266
navigation,  206–207

apps
deployment planning,  40–49

app manifest,  44–48
requirements for enterprise deployment,  49
signing an app,  48
Windows 8 certification requirements,  40–43

design
planning app deployment,  40–49
PLM (Process Lifetime Management),  26–38

Index

Symbols
@font-face CSS rule,  159

A
AccChecker (UI Accessibility Checker) tool,  11
accepting share requests,  90–92
accessibility, UI layout,  11
accessible rich Internet applications (ARIAs),  11
accessing

contacts,
ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
selecting specific data,  66–67
set number of contacts,  61–65

data,  243–249
local data,  244–247
remote data,  247–249

Account Picture Provider declaration,  47
activated events,  64
ActivateKind enumeration, PLM,  37–39
activating apps,  27
ActivationKind enumeration,  84
add event handler,  64
Add New Item dialog box,  9–10, 47–48
Addresses property (Contact class),  65
AdjacentToLeftDisplayEdge property,  167
AdjacentToRightDisplayEdge property,  167
AJAX (Asynchronous JavaScript and XML),  252
AlwaysDisplayDialog property,  274
app bar,  171–176

AppBar events,  176–177
app requirements,  171–172
placement of controls,  175–176
styling and positioning items,  173–175

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

296

AppSettings

B
Background Task extension, Manifest Designer,  32–33
background tasks,  32–36
Background Tasks declaration,  47
BackgroundWorkCostChange trigger,  35
BackgroundWorkCostNotHigh condition, background

tasks,  35
badges,  219–221
Basic authentication protocol,  275
beginZoom method,  210
bidirectional communication, WebSockets,  260–261
binding data,  263–268

configuring iterators with data-win-options,  266
data-win-bind attribute,  263–264
data-win-control attribute,  263–264
filtering, sorting, and grouping data,  267–268
HTML layout controls,  154–156
item templates,  266
meeting requirements with data-bound

controls,  265–266
Blank App template,  8
Blob storage,  247–249
block compressed images sample,  110
break-after property,  153
break-before property,  153
break-inside property,  153
Button control, settings flyout,  102
buttons, app bar,  174

C
Cached File Updater declaration,  47
CachedFileUpdater value (ActivationKind

enumeration),  37
CallerSavesCredential property,  274
Camera Settings declaration,  47
CameraSettings value (ActivationKind enumeration),  37
canGoBack property,  139
canGoForward property,  139
capabilities, app manifest,  45
Capabilities page (Manifest Designer),  44
Caption property,  275
capturing gesture library events,  192–195
certification requirements,  40–43
changes in orientation, responding to,  165–166
charms,  69–76

separation of concerns,  17–23
UI layout and structure,  1–14

development
accessing and displaying contacts,  57–67
charms and contracts,  69–79
integration of media features,  109–115
managing application setting s and

preferences,  97–107
Search charm,  78–85
sharing data,  87–95

People,  61
AppSettings

adding entry points,  98
choosing accessible features,  97–98

args.detail.previousExecutionState property,  38
ARIAs (accessible rich Internet applications),  11
Asynchronous JavaScript and XML (AJAX),  252
asynchronous methods,  58
AsyncOperation,  259
audio

playback, HTML5 DRM,  115–116
playing sounds with toast notifications,  230–231

authentically digital design principle,  3
authentication,  271–280

Credential Locker,  276–277
CredentialPicker class,  273–276
storing account credentials,  278–281
storing/retrieving credentials,  271–273
web authentication,  282–287

CredentialPicker class,  285
credential roaming,  285
OAuth2,  283–284
proxy authentication,  286–287
SSO (Single Sign-On),  284–285
WebAuthenticationBroker class,  285
Windows.Security.Authentication.Web

namespace,  282–283
AuthenticationProtocol property,  274
authorization,  271–280

Credential Locker,  276–277
CredentialPicker class,  273–276
storing account credentials,  278–281
storing/retrieving credentials,  271–273

auto keyword (Grid layout columns and rows),  149
AutoPlay declaration,  47
avoiding global state, loosely coupled layers,  19–20

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

297

controls

ClosedByUser (previous state of app),  38
columns, Grid layout,  149
commands, app bar,  173
compareGroups method,  134
ComponentLoadFailed event,  115
conceptual design, UI layout

creating a vision,  5–7
Microsoft design principles,  2–5

conditions, background tasks,  35
configureForZoom method,  210
configuring

iterators, data-win-options,  266
Mobile Services for push notifications,  232–235
search contracts,  84–85
tile sizes,  214–215

ConnectedServiceAccounts property (Contact class),  65
consuming SOAP/WCF services,  259–260
Contact class,  65–66
ContactFieldType property,  59
ContactPicker class,  58–59
ContactPicker declaration, App Manifest

Designer,  47, 62
contactPicker.js file,  63
contact pickers,  61–62
ContactPicker value (ActivationKind enumeration),  37
contacts, accessing and displaying,  57–67

ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
selecting specific data,  66–67
set number of contacts,  61–65

Contact value (ActivationKind enumeration),  37
Content property,  253
contracts,  69–76

app requirements,  69–74
configuring app manifest for correct

permissions,  75–76
designing app to be charm- and

contract-aware,  74–75
ControlChannelReset trigger,  34
controls

custom,  12
flyouts,  131
HTML layout controls,  147–160

structuring layout,  147–154
templates and bindings,  154–156

ListView,  132–134
implementing data-bound controls,  265–266

app requirements,  69–74
configuring app manifest for correct

permissions,  75–76
designing app to be charm- and

contract-aware,  74–75
Devices,  74
Search,  77–85

activation from within search,  84
configuring search contracts,  84–85
providing/constraining search within an app,  81
searching and launching other apps,  81–82
SearchPane and SearchBox control

classes,  78–80
search result previews,  82–84

Settings,  95–107
adding entry points for AppSettings,  98
adding setting options to SettingsFlyout

control,  101–104
choosing accessible features in

AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

Share,  86–95
accepting sharing requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

charms bar,  69
checkpoint event,  31–32
classes

Contact,  65–66
ContactPicker,  58–59
CredentialPicker,  273–276, 285
DataTransferManager,  87–90
Horizontal,  157
InputPane,  167
PageControlNavigator,  204, 207
PasswordVault,  271–273
SimpleOrientationSensor,  165
SpeechSynthesizer,  113
TileUpdateManager,  219–221
ToastUpdateManager,  229–230
WebAuthenticationBroker,  285
Windows.UI.Input.Inking.InkManager,  198
Windows.UI.StartScreen.SecondaryTile,  218
WinJS.Binding.List,  267

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

298

CookieManager

credentials
storing and retrieving,  271–273
storing in app settings,  278–281
verifying with Credential Locker,  276–277

CredentialSaveOption property,  275
CredSsp authentication protocol,  275
crossSlideExact property,  196
crossSlideHorizontally property,  196
crossSlideThresholds property,  196
CRUD (Create, Read, Update, and Delete)

operations,  249, 256
cryptography,  41
CSS3

media queries,  162–165
scrolling and zooming,  156–158

CSS styling,  179–183
Flyout control,  132
gradients,  179–180
Grid layouts,  181
media queries,  183–184
scroll snapping,  182
zooming,  182

Custom authentication protocol,  275
CustomAuthenticationProtocol property,  275
custom contact pickers,  61–62
custom controls,  12
custom formats,  89
custom gesture recognizers,  196–197
custom layout, app bar layout,  176

D
data

binding,  263–268
configuring iterators with data-win-options,  266
data-win-bind attribute,  263–264
data-win-control attribute,  263–264
filtering, srting, and grouping data,  267–268
HTML layout controls,  154–156
item templates,  266
meeting requirements with data-bound

controls,  265–266
formats that can be shared,  88
management

data access strategy,  243–249
data binding,  263–268
retrieving data remotely,  251–260

implementing drag-and-drop,  199–201
placement on app bar,  175–176
SemanticZoom,  209
SettingsFlyout

adding settings options to,  101–104
creating setting flyouts,  99–101

WinJS,  125–145
FlipView,  126–130
flyout,  130–132
Grid and List layout,  132–135
item containers,  140–142
menu objects,  135–137
Repeater,  142–145
WebView,  138–140

WinJS.UI.AppBar,  173
CookieManager,  254
Create App Packages dialog box,  43
CreateCollisionOption parameter

(createFileAsync method),  245
createFileAsync method,  245
createFiltered method,  267
createGrouped method,  134, 267
Create, Read, Update, and Delete (CRUD)

operations,  249, 256
createSorted method,  267
creating

app packages,  41–42
contact information,  65–66
custom gesture recognizers,  196–197
setting flyouts,  99–101
tiles,  214–225

creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

UI (user interface)
app bar,  171–176
CSS styling,  179–183
HTML layout controls,  147–160
layout-aware apps,  162–169
WinJS controls,  125–145

Credential Locker,  276–277
CredentialPicker class,  273–276, 285
CredentialPickerOptions object,  274
credential roaming,  285

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

299

enableNotificationQueue method

desiredFieldsWithContactFieldType property,  59
development, Windows Store apps

accessing and displaying contacts,  57–67
charms and contracts,  69–79
integration of media features,  109–115
managing application settings and

preferences,  97–107
Search charm,  78–85
sharing data,  87–95

Devices charm,  74
Device value (ActivationKind enumeration),  37
dialog boxes

Add New Item,  9–10, 47–48
Create App Packages,  43
Manifest Designer,  29
Speech Properties,  114
Windows App Certification Kit,  43

Digest authentication protocol,  275
Digital Rights Management (DRM),  115–116
DirectDraw Surface (DDS) images,  110–111
DirectX Video Acceleration (DXVA),  112
DISM (Deployment Image Servicing and Management)

command-line tool,  49
displaying

contacts,  57–67
ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
selecting specific data,  66–67
set number of contacts,  61–65

DisplayName property (Contact class),  65
drag-and-drop events,  199–201
dragenter event,  141
dragenter event handler,  200
dragleave event,  141
dragleave event handler,  200
dragover event,  141
dragstart event,  141
DRM (Digital Rights Management),  115–116
drop event,  141
drop event handler,  200
DXVA (DirectX Video Acceleration),  112

E
Emails property (Contact class),  65
enableNotificationQueue method,  223

roaming,  105–107
sharing,  87–95

accepting share requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

temporary,  105
data-bound controls,  265–266
DataPackage object,  92
DataRequestedEventArgs,  88
datarequested handler,  88
dataSource property,  127
DataSuppliers property (Contact class),  65
DataTransferManager class,  87–90
data-win-bind attribute,  155, 263–264
data-win-control attribute,  126, 263–264
data-win-options, configuring iterators,  266
DDS (DirectDraw Surface) images,  110–111
declarations, app manifest, 45, 75
Declarations page (Manifest Designer),  44
DeleteAsync method,  257
delivery methods, tiles,  224
Deployment Image Servicing and Management (DISM)

command-line tool,  49
deployment of apps, planning,  40–49

app manifest,  44–48
requirements for enterprise deployment,  49
signing an app,  48
Windows 8 certification requirements,  40–43

design
app bar,  171–176

AppBar events,  176–177
app requirements,  171–172
placement of controls,  175–176
styling and positioning items,  173–175

Microsoft design principles,  2–5
navigation,  202–212

loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

Windows Store apps
planning app deployment,  40–49
PLM (Process Lifetime Management),  26–38
separation of concerns,  17–23
UI layout and structure,  1–14

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

300

enabling apps for toast notifications

G
GenerateUniqueName value (CreateCollisionOption

parameter),  245
gesture recognizers,  196–197
gestures,  192–195

custom gesture recognizers,  196–197
touch,  198

gestureSettings property,  196
GetAsync(Uri, HttpCompletionOption) method,  256
GetAsync(Uri) method,  256
GetBufferAsync method,  256
getCommandById method,  176
getCurrentItem method,  210
getDeferral method,  89
getGroupKey method,  134
GetInputStreamAsync method,  256
getPanAxis method,  210
GetStockPrice method,  259
GetStringAsync method,  253, 256
global positioning of commands, app bar,  175
global searches,  70
global state, loosely coupled layers,  19–20
glyph badges,  220–221
gradients, CSS styling,  179–180
Grid App template,  9
Grid layout,  132–135, 149–151,  181
grouping data,  267–268

H
handlePointer method,  210
handwriting recognition,  198
hashing algorithms,  279
hashing data,  278
Headers property,  253
HonorificNamePrefix property (Contact class),  65
HonorificNameSuffix property (Contact class),  65
Horizontal class,  157
HTML5 DRM (Digital Rights Management),  115–116
HTML fragments, navigation,  210–212
HTML layout controls,  147–160

scrolling and zooming with CSS3,  156–158
structuring layout,  147–154

Flexible Box (FlexBox) layout,  147–149
Grid layout,  149–151
multi-column layout,  152–154

enabling apps for toast notifications,  227–229
encrypting data,  278
endZoom method,  210
Enterprise Authentication capability,  46
enterprise deployment, planning requirements,  49
entry points,  98–101
ErrorCode property,  275
error codes,  275
Error method,  204
event.detail.insertAfterIndex property,  201
event handlers,  64
event.preventDefault method,  199
Expression Sketchflow,  7

F
FailIfExists value (CreateCollisionOption parameter),  245
fast and fluid design principle,  2
FIFO (first-in, first-out) approach,  223
File Open Picker declaration,  47
FileOpenPicker value (ActivationKind enumeration),  37
files

contactPicker.js,  63
ui.js,  126

File Save Picker declaration,  47
FileSavePicker value (ActivationKind enumeration),  37
File Type Associations declaration,  47
File value (ActivationKind enumeration),  37
filtering

contacts,  59–61
data,  267–268

findAllByResource method,  273, 277
findAllByUserName method,  273
first-in, first-out (FIFO) approach,  223
FirstName property (Contact class),  65
FlexBox (Flexible Box) layout,  147–149
Flexible Box (FlexBox) layout,  147–149
FlipView control,  126–130
flyouts,  99-101, 130–132
formats, sharing data,  88
fraction unit (Grid layout columns and rows),  150
FreeNetworkAvailable condition, background tasks,  35
functions.  See also methods

pickContactsAsync,  59
rgba,  180
template,  129

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

301

InternetAvailable trigger

accepting share requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

WinJS controls,  125–145
FlipView,  126–130
flyout,  130–132
Grid and List layout,  132–135
item containers,  140–142
menu objects,  135–137
Repeater,  142–145
WebView,  138–140

ImportantDates property (Contact class),  65
in-app searches,  70,  78
in-app Share,  93
inheritance, designing UI layout,  10–11
Init method,  204
inking,  198–199
InkManager class,  198
InkStroke objects,  198
input devices,  191–201

capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

Input Ink sample (SDK),  199
InputPane class,  167
Input: Simplified ink sample (SDK),  199
Inspect tool,  11
integration

apps, charms and contracts,  69–76
configuring app manifest for correct

permissions,  75–76
designing app to be charm- and

contract-aware,  74–75
media features,  109–115

audio and video playback using HTML5
DRM,  115–116

DXVA,  112
supporting DDS images,  110–111
TTS,  113–115
video playback,  111
XVP,  112

InternetAvailable condition, background tasks,  35
InternetAvailable trigger,  34

Regions layout,  153–154
templates and bindings,  154–156
text flow and presentation,  159–160

HTML PageControl,  11
HttpBaseProtocolFilter,  254
HttpClient, retrieving web servicves,  252–255
HttpDelete requests,  256
HttpGet actions,  256–257
HttpPost,  257–258
HttpPut verb,  257
HttpResponseMessage object,  253
Hub App template,  12–15
Hyperlink control, settings flyout,  102

I
Id property,  65, 167
implementation

app bar,  171–176
AppBar events,  176–177
app requirements,  171–172
placement of controls,  175–176
styling and positioning items,  173–175

HTML layout controls,  147–160
structuring layout,  147–154
templates and bindings,  154–156

navigation,  202–212
loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

PLM (Process Lifetime Management),  26–38
ActivateKind enumeration,  37–39
onactivated event,  27–30
preparing for app termination,  32–36
previous state,  37–39
state management strategy,  26
suspended event,  31–32

Search charm,  78–85
activation from within search,  84
configuring search contracts,  84–85
providing/constraining search within an app,  81
searching and launching other apps,  81–82
SearchPane and SearchBox control classes,  78–

80
search result previews,  82–84

Share charm,  87–95

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

302

Internet (Client) capability

multi-column layout,  152–154
Regions layout,  153–154

templates and bindings,  154–156
text flow and presentation,  159–160

layout, UI,  1–14
conceptual design evaluation,  2–7

creating a vision,  5–7
Microsoft design principles,  2–5

custom controls,  12
designing for accessibility,  11
Hub App template,  13–15
inheritance and reuse of visual elements,  10–11
project templates,  7–10

life cycle, apps,  26
limiting scope of sharing, DataPackage object,  92
linear gradients,  179
LinguisticDetails

(SearchBoxQuerySubmittedEventArgs),  79
List layout,  132–135
List objects,  127
ListView control,  132–134

implementing data-bound controls,  265–266
implementing drag-and-drop,  199–201

live tiles,  214
loading HTML fragments, navigation,  210–212
local data,  105,  244–247
localSettings property,  279
Location capability,  46
LockScreenApplicationAdded trigger,  34
LockScreenApplicationRemoved trigger,  34
LockScreenCall value (ActivationKind enumeration),  37
logical layers,  17–18
long-duration toasts,  232
lookup method,  280
looping sounds,  230
loosely coupled layers,  19–22

avoiding global state,  19–20
strict mode,  21
TypeScript,  21–22

M
Mail share target, sharing data,  73
main content (flyouts),  131
maintainable software,  17–23

integrating WinMD Components,  22–23
loosely coupled layers,  19–22

Internet (Client) capability,  46
Internet (Client & Server) capability,  46
InternetNotAvailable condition, background tasks,  35
invokeScryptAsync method,  139
IsFullScreen property,  167
IsOnLockScreen property,  167
IsScreenCaptureEnabled property,  167
IsSuccessStatusCode property,  253
item containers,  140–142
itemDataSource property,  127
itemdragdrop event,  201
itemdragend event handler,  199
itemdragenter event,  201
itemdragstart event handler,  199
item templates,  9–10,  266
iterators, configuring with data-win-options,  266
IZoomableView interface,  209, 210

J
JobInfo property (Contact class),  65

K
Keep It Simple (KIS) principle,  10
Kerberos authentication protocol,  275
KeyModifiers (SearchBoxQuerySubmittedEventArgs),  79
KIS (Keep It Simple) principle,  10

L
Language (SearchBoxQuerySubmittedEventArgs),  79
LastName property (Contact class),  65
launching apps, Search charm,  81–82
Launch value (ActivationKind enumeration),  37
layout-aware apps, creating,  162–169

CSS3 media queries,  162–165
responding to changes in orientation,  165–166
settings for an apps view,  168–170
ViewManagement namespace,  167–168

layout controls,  147–160
scrolling and zooming with CSS3,  156–158
structuring layout,  147–154

Flexible Box (FlexBox) layout,  147–149
Grid layout,  149–151

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

303

methods

Media Foundation Transcode Video Processor
(XVP),  112

MediaProtectionManager object,  115
media queries

creating layout-aware apps,  162–165
CSS styling,  183–184

menu objects,  135–137
Message property,  275
methods.  See also functions

appendResultSuggestion,  83
beginZoom,  210
compareGroups,  134
configureForZoom,  210
createFileAsync,  245
createFiltered,  267
createGrouped,  134, 267
createSorted,  267
DeleteAsync,  257
delivery methods for tiles,  224
enableNotificationQueue,  223
endZoom,  210
Error,  204
event.preventDefault,  199
findAllByResource,  273, 277
findAllByUserName,  273
GetAsync(Uri),  256
GetAsync(Uri, HttpCompletionOption),  256
GetBufferAsync,  256
getCommandById,  176
getCurrentItem,  210
getDeferral,  89
getGroupKey,  134
GetInputStreamAsync,  256
getPanAxis,  210
GetStockPrice,  259
GetStringAsync,  253, 256
handlePointer,  210
Init,  204
invokeScryptAsync,  139
lookup,  280
myFunction,  139
navigateToString,  138
onTimer,  36
pickAsync,  274
pickContactsAsync,  58
positionItem,  210
PostAsync,  257
Processed,  204

planning logical layers,  17–18
management

application settings and preferences,  97–107
adding entry points for AppSettings,  98
adding setting options to SettingsFlyout

control,  101–104
choosing accessible features in

AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

data
data access strategy,  243–249
data binding,  263–268
retrieving data remotely,  251–260

input devices,  191–201
capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

security
authorization and authentication,  271–280
web authentication,  282–287

settings for an apps view,  168–170
tiles,  214–225

creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

mandatory snapping,  158, 182
Manifest Designer

Application page,  44–45
Background Task extension,  32–33

Manifest Designer dialog box,  29
matrices,  194
max-content keyword (Grid layout columns and

rows),  150
media features, integration,  109–115

audio and video playback using HTML5
DRM,  115–116

DXVA,  112
supporting DDS images,  110–111
TTS,  113–115
video playback,  111
XVP,  112

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

304

Microphone capability

Mobile Services, configuring for push
notifications,  232–235

modifying contact information,  65–66
more with less design principle,  3
mouse events,  198
MrfCrf444 mode,  112
ms-appdata protocol,  139
ms-content-zooming property,  158
ms-content-zooming: zoom property,  182
MSCSSMatrix object,  194
ms-flex: 2 property,  149
ms-flex-align property,  149
ms-flexbox property,  148
ms-flex-pack property,  149
ms-flex-wrap property,  149
MSGestureChange event,  193
MSGestureEnd event,  193
MSGestureHold event,  193
MSGestureStart event,  193
MSGestureTap event,  193
ms-grid-column-align property,  150
ms-grid-column-span property,  150
ms-grid-row-align property,  150
ms-grid-row-span property,  150
ms-scroll-snap-type property,  158, 182
MSWebViewAsyncOperation object,  139
MSWebViewScriptNotify event,  140
multi-column layout,  152–154
Music Library capability,  46
myFunction method,  139

N
namespaces

ViewManagement,  167–168
Windows.Applicationmodel. Contacts,  58
Windows.Media.SpeechSynthesis,  113
Windows.Media.Transcoding,  112
Windows.Security.Authentication.Web,  282–283
Windows.Security.Credentials.UI,  274
Windows.UI.Input.GestureRecognizer,  196
Windows.UI.Notification,  217
WinJS.Navigation,  203–206
WinJS.UI.Fragments,  210

Narrator,  12
navigateToString method,  138
navigation,  202–212

PutAsync,  257
Ready,  204
response.ensureSuccessStatusCode(),  254
retrieveAll,  273
sensor.getCurrentOrientation(),  166
SetApplicationLink,  89, 92
SetBitmap,  89, 92
setCurrentItem,  210
SetData,  89, 92
SetDataProvider,  89, 92
SetHtmlFormat,  89, 92
SetRtf,  89, 92
SetStorageItems,  89, 92
SetText,  89, 92
SetUri,  89, 92
SetWebLink,  89, 92
showMenu,  136
swapDisplaysForViewsAsync,  169
synthesizeSsmlToStreamAsync,  114
synthesizeTextToStreamAsync,  114
Unload,  204
UpdateLayout,  205
WebAuthenticationBroker.authenticateAsync,  283
Windows.Devices.Sensors.SimpleOrientationSensor.

getDefault(),  165
Windows.UI.ViewManagement.ApplicationView.

getForCurrentView(),  167, 168
WinJS.Binding.as,  264
WinJS.Binding.as ‘,  155
WinJS.Binding.processAll,  155
WinJS.Class.define,  20
WinJS.Namespace.define,  19
WinJS.Navigation.back,  206
WinJS.Navigation.forward,  206
WinJS.Navigation.navigate,  206
WinJS.UI.Pages.define,  204
WinJS.UI.processAll,  126
WinJS.xhr,  252
writeBytesAsync,  245

Microphone capability,  46
Microsoft design principles,  2–5
MiddleName property (Contact class),  65
min-content keyword (Grid layout columns and

rows),  149
Minimum Width property,  162–163
minmax(a, b) keyword (Grid layout columns and

rows),  150
mipmaps,  110

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

305

PLM (Process Lifetime Management)

onaftershow event,  176
onbeforehide event,  176
onbeforeshow event,  176
one-directional communication,  260
OnlineIdConnectedStateChange trigger,  35
onpagecomplete event,  129
onpageselected event,  129
onpagevisibilitychanged event,  129
onTimer method,  36
OpenIfExists value (CreateCollisionOption

parameter),  245
openMenuButton HTML element,  136
OrientationChanged event,  165
orientation changes, responding to,  165–166
Orientation property,  167
overflow, presenting text,  160
overloads, CredentialPicker,  274

P
Package Family Name (PFN),  94
Packaging page (Manifest Designer),  44
PAC (Privilege Attribute Certificate),  286
PageControlNavigator class,  204, 207
panning,  156–158
PasswordVault class,  271–273
People app,  61
periodic notifications, tiles,  222–223
Permissions option (Settings charm),  97
PFN (Package Family Name),  94
Phones property (Contact class),  66
pickAsync method,  274
pickContactAsync callback,  61
pickContactsAsync method,  58–59
Pictures Library capability,  46
pinch gesture,  192
placement, app bar controls,  175–176
planning

app deployment,  40–49
app manifest,  44–48
requirements for enterprise deployment,  49
signing an app,  48
Windows 8 certification requirements,  40–43

logical layers,  17–18
playing sounds, toast notifications,  230–231
PLM (Process Lifetime Management),  26–38

ActivateKind enumeration,  37–39

loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

Navigation App template,  8
NCP (Notification Client Platform),  223
Negotiate authentication protocol,  275
NetworkStateChange trigger,  34
nonlooping sounds,  230
Notes property (Contact class),  65
Notification Client Platform (NCP),  223
notifications

tiles,  221
toast,  227–235

configuring Mobile Services for push
notifications,  232–235

controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

NotificationsExtensions library,  217
NotRunning (previous state of app),  38
N-tiered applications,  18
Ntlm authentication protocol,  275
number badges,  220

O
OAuth2 authentication,  283–284
object-oriented design concepts,  21
objects

ApplicationView,  167
CredentialPickerOptions,  274
DataPackage,  92
HttpResponseMessage,  253
InkStroke,  198
List,  127
MediaProtectionManager,  115
MSCSSMatrix,  194
MSWebViewAsyncOperation,  139
searchSuggestionCollection,  82
shareOperation,  91
WinJS.Application,  32
WinJS.Application.sessionState,  31
XMLHttpRequest,  252

onactivated event, PLM,  27–30
onafterhide event,  176

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

306

pointer input

scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

toast notifications,  227–235
configuring Mobile Services for push

notifications,  232–235
controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

progress updates, data requests,  258–259
ProjectionManager,  169
project templates, UI layout,  7–10
properties

AdjacentToLeftDisplayEdge,  167
AdjacentToRightDisplayEdge,  167
AlwaysDisplayDialog,  274
ApplicationData.RoamingStorageQuota,  106
AuthenticationProtocol,  274
break-after,  153
break-before,  153
break-inside,  153
CallerSavesCredential,  274, 275
canGoBack,  139
canGoForward,  139
Caption,  275
Contact class,  65–66
ContactFieldType,  59
Content,  253
CredentialSaveOption,  275
crossSlideExact,  196
crossSlideHorizontally,  196
crossSlideThresholds,  196
CustomAuthenticationProtocol,  275
dataSource,  127
data-win-bind,  155
desiredFieldsWithContactFieldType,  59
ErrorCode,  275
event.detail.insertAfterIndex,  201
gestureSettings,  196
Headers,  253
HttpResponseMessage object,  253
Id,  167
IsFullScreen,  167
IsOnLockScreen,  167
IsScreenCaptureEnabled,  167
IsSuccessStatusCode,  253

onactivated event,  27–30
preparing for app termination,  32–36
previous state,  37–39
state management strategy,  26
suspended event,  31–32

pointer input,  192
poll notifications,  223
positioning app bar items,  173–175
positionItem method,  210
PostAsync method,  257
preferences,  97–107

adding entry points for AppSettings,  98
adding setting options to SettingsFlyout

control,  101–104
choosing accessible features in AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

presentation, HTML layout controls,  159–160
press and hold gesture,  192
previews, search results,  82–84
PreviousCredential property,  275
previous state, PLM,  37–39
pride in craftsmanship design principle,  2
Print Task Settings declaration,  47
PrintTaskSettings value (ActivationKind

enumeration),  37
Private Network (Client & Server) capability,  46
Privilege Attribute Certificate (PAC),  286
Process Lifetime Management.  See PLM
Processed method,  204
program user interaction

input devices,  191–201
capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

navigation,  202–212
loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

tiles,  214–225
creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

307

responding to toast events

push notifications
configuring Mobile Services for,  232–235
tiles,  223–224

PutAsync method,  257

Q
querysubmitted event,  79–80
query suggestions, searches,  72, 79, 82
QueryText (SearchBoxQuerySubmittedEventArgs),  79

R
radial gradients,  179
Radio Button control, settings flyout,  102
RandomAccessStreamReference,  83
Rate And Review option (Settings charm),  97
ratings,  41
Ready method,  204
real-time communication, WebSockets,  260–261
ReasonPhrase property,  253
RebootNeeded event,  115
Regions layout,  153–154
remote data, access strategy,  247–249
remote retrieval of data,  251–260

consuming SOAP/WCF services,  259–260
handling progress of data requests,  258–259
setting HTTP verbs for REST,  255–258
using WebSockets for bidirectional

communication,  260–261
XHR or HTTPClient,  252–255

Removable Storage capability,  46
Repeater control,  142–145
ReplaceExisting value (CreateCollisionOption

parameter),  245
Representational State Transfer (REST)

services,  255–258
request.data property,  89
RequestMessage property,  253
requirements, apps

app bar,  171–172
charms and contracts,  69–74
data binding,  265–266
navigation,  206–207

responding to toast events,  231–232

itemDataSource,  127
localSettings,  279
Message,  275
Minimum Width,  162–163
ms-content-zooming,  158
ms-content-zooming: zoom,  182
ms-flex: 2,  149
ms-flex-align,  149
ms-flexbox,  148
ms-flex-pack,  149
ms-flex-wrap,  149
ms-grid-column-align,  150
ms-grid-column-span,  150
ms-grid-row-align,  150
ms-grid-row-span,  150
ms-scroll-snap-type,  158, 182
Orientation,  167
PreviousCredential,  275
ReasonPhrase,  253
request.data,  89
RequestMessage,  253
responseData,  284
roamingSettings,  279
RoamingSettings,  105
RoamingStorageQuota,  244
scheme,  168
selectionDisabled,  141
selectionMode,  59
Source,  253
StatusCode,  253
TargetName,  275
TerminateAppOnFinalViewClose,  167
text-overflow,  160
Title,  167
touch-action CSS,  158
Value,  167
Version,  253
Windows.Media.SpeechSynthesis.SpeechSynthesizer.

allVoices,  114
WinJS.Binding.optimizeBindingReferences,  154
z-index,  150

Protocol value (ActivationKind enumeration),  37
prototypes,  7
ProviderProperties property (Contact class),  66
Proximity capability,  46
proximity snapping,  158, 182
proxy authentication,  286–287

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

308

responseData property

SearchPane control,  78–80
search result previews,  82–84
searchSuggestionCollection object,  82
Search value (ActivationKind enumeration),  37
secondary tiles,  218
security management

authorization and authentication,  271–280
Credential Locker,  276–277
CredentialPicker class,  273–276
storing account credentials,  278–281
storing/retrieving credentials,  271–273

web authentication,  282–287
CredentialPicker class,  285
credential roaming,  285
OAuth2,  283–284
proxy authentication,  286–287
SSO (Single Sign-On),  284–285
WebAuthenticationBroker class,  285
Windows.Security.Authentication.Web

namespace,  282–283
Segoe UI font family,  159
Select Control, settings flyout,  102
selectionDisabled property,  141
selectionMode property,  59
Selection option, positioning commands on app

bar,  175
semantic zoom,  207–210
SemanticZoom control,  209
sensor.getCurrentOrientation() method,  166
separation of concerns.  See SoC
separators, app bar,  175
ServiceRequested event,  115
ServicingComplete trigger,  34
SessionConnected condition, background tasks,  35
SessionConnected trigger,  34
SessionDisconnected condition, background tasks,  35
SetApplicationLink method,  89, 92
SetBitmap method,  89, 92
setCurrentItem method,  210
SetData method,  89, 92
SetDataProvider method,  89, 92
SetHtmlFormat method,  89, 92
SetRtf method,  89, 92
SetStorageItems method,  89, 92
SetText method,  89, 92
setting flyouts,  99–101
Settings charm,  74, 97–107

adding entry points for AppSettings,  98

responseData property,  284
response.ensureSuccessStatusCode() method,  254
REST (Representational State Transfer)

services,  255–258
RestrictedLaunch value (ActivationKind

enumeration),  37
restrictions, using WinRT Components,  23
resultsuggestionchosen event,  83
result suggestions, searches,  72, 79, 82
retrieveAll method,  273
retrieving

credentials,  271–273
data,  251–260

consuming SOAP/WCF services,  259–260
handling progress of data requests,  258–259
setting HTTP verbs for REST,  255–258
using WebSockets for bidirectional

communication,  260–261
XHR or HTTPClient,  252–255

settings from roaming app data store,  105–107
reuse of visual elements, designing UI layout,  10–11
rgba function,  180
roaming app data store, storing and retrieving

settings,  105–107
roaming folder, storing local data,  244
RoamingSettings property,  105, 279
RoamingStorageQuota property,  244
rows, Grid layout,  149

S
scheduled notifications, tiles,  221–222
scheme property,  168
scrolling,  156–158
scroll snapping,  182
SDK (software development kit),  11, 199
SearchBox control,  78–80
SearchBoxResultSuggestionChosenEventArgs,  83
Search charm,  70–72, 78–85

activation from within search,  84
configuring search contracts,  84–85
providing/constraining search within an app,  81
searching and launching other apps,  81–82
SearchPane and SearchBox control classes,  78–80
search result previews,  82–84

search contracts, configuring,  84–85
Search declaration,  47,  84–85

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

309

Storyboarding plug-in

SimpleOrientationSensorOrientation
ChangedEventArg,  166

simulators
testing apps,  164
testing gestures,  195

single-page application (SPA) structure,  9, 203
Single Sign-On (SSO),  284–285
slide gesture,  192
SmsReceived trigger,  34
snapping,  158
SOAP (Simple Object Access Protocol) services,

consuming,  259–260
SoC (separation of concerns),  17–23

integrating WinMD Components,  22–23
loosely coupled layers,  19–22
planning logical layers,  17–18

software development kit (SDK),  11, 199
software development, maintainability,  17–23

integrating WinMD Components,  22–23
loosely coupled layers,  19–22
planning logical layers,  17–18

solid-state drives (SSDs),  3
sorting data,  267–268
sound, playing sounds with toast notifications,  230–231
Source property,  253
SPA (single-page application) structure,  9, 203
Speech Properties dialog box,  114
Speech Synthesis Markup Language (SSML),  113
SpeechSynthesizer class,  113
Split App template,  9
SSDs (solid-state drives),  3
SSML (Speech Synthesis Markup Language),  113
SSO (Single Sign-On),  284–285
standard length unit (Grid layout columns and

rows),  149
standard toasts,  232
state management, PLM (Process Lifetime

Management),  26
static tiles,  214
StatusCode property,  253
storage

account credentials,  278–281
credentials,  271–273
data

local data,  244–246
remote data,  247–249

settings from roaming app data store,  105–107
Storyboarding plug-in,  7

adding setting options to SettingsFlyout
control,  101–104

choosing accessible features in AppSettings,  97–98
creating setting flyouts,  99–101
storing and retrieving settings,  105–107

SettingsFlyout control
adding settings options to,  101–104
creating setting flyouts,  99–101

Settings window,  98
SetUri method,  89, 92
SetWebLink method,  89, 92
Share charm,  72–73, 87–95

accepting sharing requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

Share contract,  72–73
Shared Access Signatures,  247
Share declaration, App Manifest Designer,  90
Shared User Certificates capability,  46
shareOperation object,  91
Share Target declaration,  47
share targets,  73
ShareTarget value (ActivationKind enumeration),  37
sharing

contact information,  57–67
ContactPicker class,  58–59
creating/modifying contact information,  65–66
filtering contacts to display,  59–61
set number of contacts,  61–65

data,  87–95
accepting sharing requests,  90–92
DataTransferManager class,  87–90
implementing in-app Share outside of charm,  93
limiting scope of sharing using DataPackage

object,  92
web links and application links,  93–95

showMenu method,  136
sideloading apps,  49
SignalR,  224
SignificantOthers property (Contact class),  66
signing an app,  48
Simple Object Access Protocol (SOAP) services,

consuming,  259–260
SimpleOrientation enumeration,  166
SimpleOrientationSensor class,  165

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

310

strict mode, loosely coupled layers

tiers,  18
tiles,  214–225

creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

TileTemplateType enumeration,  217
TileUpdateManager class,  219–221
TileUpdateManager.getTemplateContent,  217
TimeZoneChange trigger,  34
Title (flyout),  131
Title property,  167
toast events,  231–232
toast notifications,  227–235

configuring Mobile Services for push
notifications,  232–235

controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

ToastUpdateManager class,  229–230
toggles, app bar,  174
Toggle Switch control, settings flyout,  102
tools

AccChecker (UI Accessibility Checker),  11
DISM (Deployment Image Servicing and

Management) command-line tool,  49
Inspect,  11

touch-action CSS property,  158
touch gestures,  198
transcoding video,  112
triggers, background tasks,  34
TTS (Text To Speech),  113–115
turn gesture,  192
TypeScript,  21–22

U
UI Accessibility Checker (AccChecker) tool,  11
ui.js files,  126
UI (user interface)

creating
app bar,  171–176

strict mode, loosely coupled layers,  21
structure, UI,  1–14

conceptual design evaluation,  2–7
creating a vision,  5–7
Microsoft design principles,  2–5

custom controls,  12
designing for accessibility,  11
Hub App template,  13–15
inheritance and reuse of visual elements,  10–11
project templates,  7–10

structuring layout, HTML layout controls,  147–154
Flexible Box (FlexBox) layout,  147–149
Grid layout,  149–151
multi-column layout,  152–154
Regions layout,  153–154

styling, app bar,  173–175
stylus input,  198–199
suggestionsrequested event,  80, 82
suspended event, PLM,  31–32
Suspended (previous state of app),  38
suspended state, apps,  27
swapDisplaysForViewsAsync method,  169
swipe gesture,  192
synthesizeSsmlToStreamAsync method,  114
synthesizeTextToStreamAsync method,  114

T
tap gesture,  192
TargetName property,  275
Telerik,  12
template function,  129
templates

HTML layout controls and,  154–156
Hub App,  13–15

temporary data,  105
temporary folder, storing local data,  244
TerminateAppOnFinalViewClose property,  167
Terminated (previous state of app),  38
termination of apps, PLM,  32–36
testing gestures,  194
text flow, HTML layout controls,  159–160
Text Input Box control, settings flyout,  102
text-overflow property,  160
Text To Speech (TTS),  113–115
Thumbnail property (Contact class),  66

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

311

Window Communication Foundation (WCF) service, consuming

V
Value property,  167
verifying credentials, Credential Locker,  276–277
Version property,  253
video playback,  111,  115–116
Videos Library capability,  46
ViewManagement namespace,  167–168
vision, UI layout,  5–7
Visual Assets page (Manifest Designer),  44
Visual Studio, creating app packages,  41

W
WCF (Window Communication Foundation) service,

consuming,  259–260
Weather app

app bars,  172
Settings charm,  74
Share charm,  73

web authentication,  282–287
CredentialPicker class,  285
credential roaming,  285
OAuth2,  283–284
proxy authentication,  286–287
SSO (Single Sign-On),  284–285
WebAuthenticationBroker class,  285
Windows.Security.Authentication.Web

namespace,  282–283
WebAuthenticationBroker,  283
WebAuthenticationBroker.authenticateAsync

method,  283
WebAuthenticationBroker class,  285
Webcam capability,  46
WebGL,  110
web links, sharing data,  93–95
Web Proxy Auto-Discovery (WPAD),  286
web services, retrieving with XHR or

HTTPClient,  252–255
Websites property (Contact class),  66
WebSockets, bidirectional communication,  260–261
WebView control,  138–140
win as one design principle,  4
Window Communication Foundation (WCF) service,

consuming,  259–260

CSS styling,  179–183
HTML layout controls,  147–160
layout-aware apps,  162–169
WinJS controls,  125–145

layout and structure,  1–14
conceptual design evaluation,  2–7
custom controls,  12
designing for accessibility,  11
Hub App template,  13–15
inheritance and reuse of visual elements,  10–11
project templates,  7–10

Unload method,  204
UpdateLayout method,  205
update schedule, tiles,  224–225
updating tiles and tile content,  214–219
UserAway trigger,  34
user interaction

input devices,  191–201
capturing gesture library events,  192–195
custom gesture recognizers,  196–197
drag-and-drop events,  199–201
listening to mouse events or touch gestures,  198
stylus input and inking,  198–199

navigation,  202–212
loading HTML fragments,  210–212
meeting app requirements,  206–207
semantic zoom,  207–210
WinJS.Navigation namespace,  203–206

tiles,  214–225
creating and updating badges,  219–221
periodic notifications,  222–223
push notifications,  223–224
responding to notification requests,  221
scheduled notifications,  221–222
tile update schedule,  224–225
updating tiles and tile content,  214–219

toast notifications,  227–235
configuring Mobile Services for push

notifications,  232–235
controlling toast duration,  232
enabling apps for,  227–229
populating with images and text,  229–230
responding to toast events,  231–232

user interface.  See UI (user interface)
UserNotPresent condition, background tasks,  35
UserPresent condition, background tasks,  35
UserPresent trigger,  34

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

312

windowing modes, creating layout-aware apps

WinJS.Binding.List class,  267
WinJS.Binding.optimizeBindingReferences

property,  154
WinJS.Binding.processAll method,  155
WinJS.Binding.Template,  266
WinJS.Class.define method,  20
WinJS controls,  125–145

FlipView,  126–130
flyout,  130–132
Grid and List layout,  132–135
item containers,  140–142
menu objects,  135–137
Repeater,  142–145
WebView,  138–140

WinJS.Namespace.define method,  19
WinJS.Navigation.back method,  206
WinJS.Navigation namespace,  203–206
WinJS.Navigation.navigate method,  206
WinJS.UI.AppBar control,  173
WinJS.UI.BackButton,  205
WinJS.UI.Fragments namespace,  210
WinJS.UI.Pages.define method,  204
WinJS.UI.processAll method,  126
WinJS.xhr method,  252
WinMD Components, incorporation,  22–23
WNS (Windows Push Notification Services),  223
WPAD (Web Proxy Auto-Discovery),  286
writeBytesAsync method,  245

X
XHR, retrieving web services,  252–255
XMLHttpRequest object,  252
XML templates

support for tiles,  216
toasts,  229

XVP (Media Foundation Transcode Video
Processor),  112

Y
YAGNI (You Aren’t Gonna Need It) principle,  10
YomiDisplayName property (Contact class),  66
YomiFamilyName property (Contact class),  66

windowing modes, creating layout-aware
apps,  162–169

CSS3 media queries,  162–165
responding to changes in orientation,  165–166
settings for an apps view,  168–170
ViewManagement namespace,  167–168

Windows 8 certification requirements,  40–43
Windows App Certification Kit,  42–44
Windows App Certification Kit dialog box,  43
Windows.Applicationmodel. Contacts namespace,  58
Windows Dev Center page (WebView control),  138
Windows.Devices.Sensors.SimpleOrientationSensor.

getDefault() method,  165
Windows.Media.SpeechSynthesis namespace,  113
Windows.Media.SpeechSynthesis.SpeechSynthesizer.

allVoices property,  114
Windows.Media.Transcoding namespace,  112
Windows Push Notification Services (WNS),  223
Windows.Security.Authentication.Web

namespace,  282–283
Windows.Security.Credentials.UI namespace,  274
Windows Store apps

design
planning app deployment,  40–49
PLM (Process Lifetime Management),  26–38
separation of concerns,  17–23
UI layout and structure,  1–14

development
accessing and displaying contacts,  57–67
charms and contracts,  69–79
integration of media features,  109–115
managing application setting s and

preferences,  97–107
Search charm,  78–85
sharing data,  87–95

Windows.UI.Input.GestureRecognizer namespace,  196
Windows.UI.Input.Inking.InkManager class,  198
Windows.UI.Notification namespace,  217
Windows.UI.StartScreen.SecondaryTile class,  218
Windows.UI.ViewManagement.ApplicationView.

getForCurrentView() method,  167, 168
Windows.UI.WebUI.WebUIBackgroundTaskInstance.

current property,  36
WinJS.Application object,  32
WinJS.Application.onsettings event,  98
WinJS.Application.sessionState object,  31
WinJS.Binding.as method,  155, 264

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

313

zooming, CSS3

YomiGivenName property (Contact class),  66
You Aren’t Gonna Need It (YAGNI) principle,  10

Z
z-index property,  150
zoomedInListView,  209
zoomedOutListView,  209
ZoomFactor,  209
zooming, CSS3,  156–158, 182

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

About the author
WOUTER DE KORT was born in a little place in the Netherlands called
Grootebroek (literal translation: large pants!) in 1986. He started playing with
software development when he was seven years old, when his dad came home
with their first computer. Wouter works with C# and .NET on a daily basis and
has done so since their inception. He is now a software architect focusing

on Application Lifecycle Management for everything that runs on the Microsoft stack. As a
Microsoft Certified Trainer, he loves helping companies stay on the cutting edge of software
development, solving complex problems, and teaching others how to become better developers.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get
free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for
Kindle formats.

Look for other great resources at Microsoft Virtual Academy,
where you can learn new skills and help advance your career
with free Microsoft training delivered by experts.

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoftvirtualacademy.com/ebooks

ptg14200515

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

From the Library of Ida Schander

www.hellodigi.ir

http://aka.ms/tellpress

	Contents
	Introduction
	Microsoft certifications
	Acknowledgments
	Free ebooks from Microsoft Press
	Errata, updates, & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1 Design Windows Store apps
	Objective 1.1: Design the UI layout and structure
	Evaluating the conceptual design
	Deciding how the UI will be composed
	Designing for the inheritance and reuse of visual elements
	Designing for accessibility
	Deciding when custom controls are needed
	Using the Hub App template
	Objective summary
	Objective review

	Objective 1.2: Design for separation of concerns
	Planning the logical layers of your solution to meet application requirements
	Designing loosely coupled layers
	Incorporating WinMD Components
	Objective summary
	Objective review

	Objective 1.3: Design and implement Process Lifetime Management (PLM)
	Choosing a state management strategy
	Handling the onactivated event
	Handling the suspend event (oncheckpoint)
	Preparing for app termination
	Checking the ActivationKind and previous state
	Objective summary
	Objective review

	Objective 1.4: Plan for an application deployment
	Planning a deployment based on Windows 8 application certification requirements
	Preparing an app manifest (capabilities and declarations)
	Signing an app
	Planning the requirements for an enterprise deployment
	Objective summary
	Objective review

	Answers

	Chapter 2 Develop Windows Store apps
	Objective 2.1: Access and display contacts
	Calling the ContactPicker class
	Filtering which contacts to display
	Displaying a set number of contacts
	Creating and modifying contact information
	Selecting specific contact data
	Objective summary
	Objective review

	Objective 2.2: Design for charms and contracts
	Choosing the appropriate charms based on app requirements
	Designing an application to be charm- and contract-aware
	Configuring the application manifest for correct permissions
	Objective summary
	Objective review

	Objective 2.3: Implement search
	Providing search suggestions using the SearchPane and SearchBox control classes
	Searching and launching other apps
	Providing and constraining search within an app
	Providing search result previews
	Implementing activation from within search
	Configuring search contracts
	Objective summary
	Objective review

	Objective 2.4: Implement Share in an app
	Using the DataTransferManager class to share data with other apps
	Accepting sharing requests by implementing activation from within Share
	Limiting the scope of sharing using the DataPackage object
	Implementing in-app Share outside of the Share charm
	Using web links and application links
	Objective summary
	Objective review

	Objective 2.5: Manage application settings and preferences
	Choosing which application features are accessed in AppSettings
	Adding entry points for AppSettings in the Settings window
	Creating settings flyouts using the SettingsFlyout control
	Adding settings options to the SettingsFlyout control
	Storing and retrieving settings from the roaming app data store
	Objective summary
	Objective review

	Objective 2.6: Integrate media features
	Supporting DDS images
	Implementing video playback
	Implementing XVP and DXVA
	Implementing TTS
	Implementing audio and video playback using HTML5 DRM
	Objective summary
	Objective review

	Answers

	Chapter 3 Create the user interface
	Objective 3.1: Implement WinJS controls
	Using a FlipView control
	Using a flyout
	Using a Grid layout and a List layout
	Using a menu object
	Using a WebView control
	Using an item container
	Using the Repeater control
	Objective summary
	Objective review

	Objective 3.2: Implement HTML layout controls
	Implementing layout controls to structure your layout
	Implementing templates and bindings
	Supporting scrolling and zooming with CSS3
	Managing text flow and presentation, including overflow
	Objective summary
	Objective review

	Objective 3.3: Create layout-aware apps to handle windowing modes
	Using CSS3 media queries to adapt to different devices
	Responding to changes in orientation
	Adapting to new windowing modes by using the View- Management namespace
	Managing settings for an apps view
	Objective summary
	Objective review

	Objective 3.4: Design and implement the app bar
	Determining what to put on the app bar based on app requirements
	Styling and positioning app bar items
	Designing the placement of controls on the app bar
	Handling AppBar events
	Objective summary
	Objective review

	Objective 3.5: Apply CSS styling
	Implementing gradients
	Implementing Grid layouts
	Implementing zooming
	Implementing scroll snapping
	Implementing media queries
	Objective summary
	Objective review

	Answers

	Chapter 4 Program user interaction
	Objective 4.1: Manage input devices
	Capturing gesture library events
	Creating custom gesture recognizers
	Listening to mouse events or touch gestures
	Managing stylus input and inking
	Handling drag-and-drop events
	Objective summary
	Objective review

	Objective 4.2: Design and implement navigation in an app
	Handling navigation events, checking navigation properties, and calling navigation functions by using the WinJS.Navigation namespace
	Designing navigation to meet app requirements
	Using semantic zoom
	Loading HTML fragments
	Objective summary
	Objective review

	Objective 4.3: Create and manage tiles
	Creating and updating tiles and tile contents
	Creating and updating badges (the TileUpdateManager class)
	Responding to notification requests
	app requirements
	Objective summary
	Objective review

	Objective 4.4: Notify users by using toast
	Enabling an app for toast notifications
	Populating toast notifications with images and text by using ToastUpdateManager
	Playing sounds with toast notifications
	Responding to toast events
	Controlling toast duration
	Configuring and using Microsoft Azure Mobile Services for push notifications
	Objective summary
	Objective review

	Answers

	Chapter 5 Manage security and data
	Objective 5.1: Choose a data access strategy
	Choosing the appropriate data access strategy based on requirements
	Objective summary
	Objective review

	Objective 5.2: Retrieve data remotely
	Using XHR or HttpClient to retrieve web services
	Setting appropriate HTTP verbs for REST
	Handling progress of data requests
	Consuming SOAP/WCF services
	Using WebSockets for bidirectional communication
	Objective summary
	Objective review

	Objective 5.3: Implement data binding
	Binding data to controls by using data-win-control and data-win-bind
	Choosing and implementing data-bound controls
	Binding data to item templates such as WinJS.Binding.Template
	Configuring an iterator with data-win-options
	Enabling filtering, sorting, and grouping data in the user interface
	Objective summary
	Objective review

	Objective 5.4: Manage Windows authentication and authorization
	Storing and retrieving credentials by using the PasswordVault class
	Implementing the CredentialPicker class
	Verifying credential existence by using Credential Locker
	Storing account credentials in app settings
	Objective summary
	Objective review

	Objective 5.5: Manage web authentication
	Using the Windows.Security.Authentication.Web namespace
	Setting up OAuth2 for authentication
	Setting up Single Sign-On (SSO)
	Implementing the CredentialPicker class
	Implementing credential roaming
	Implementing the WebAuthenticationBroker class
	Supporting proxy authentication for enterprises
	Objective summary
	Objective review

	Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	About the author
	Free ebooks
	Tell us what you think!

