
ptg14200515

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Exam Ref 70-480
Programming in HTML5
with JavaScript and CSS3

Rick Delorme

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Rick Delorme

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014940678
ISBN: 978-0-7356-7663-3

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Anne Hamilton
Developmental Editor: Karen Szall
Editorial Production: Box Twelve Communications
Technical Reviewer: Todd Meister
Cover: Twist Creative • Seattle

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

ptg14200515

iii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction	 ix
Microsoft certifications	 ix

Free ebooks from Microsoft Press	 x

Errata, updates, & book support	 x

We want to hear from you	 x

Stay in touch	 x

Preparing for the exam	 xi

Chapter 1	 Implement and manipulate document
structures and objects	 1

Objective 1.1: Create the document structure. 2

Using HTML5 semantic markup	 2

Creating a layout container in HTML	 15

Optimizing for search engines	 16

Optimizing for screen readers	 17

Objective summary	 20

Objective review	 21

Objective 1.2: Write code that interacts with UI controls 22

Adding or modifying HTML elements	 22

Implementing media controls	 34

Implementing graphics with HTML5 <canvas> and SVG	 39

Objective summary	 58

Objective review	 59

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/booksurvey/

ptg14200515

iv Contents

Objective 1.3: Apply styling to HTML elements programmatically. 60

Changing the location of an element	 61

Applying a transform	 63

Showing and hiding elements	 67

Objective summary	 71

Objective review	 71

Objective 1.4: Implement HTML5 APIs. 72

Using the storage API	 72

Using the AppCache API	 77

Using the Geolocation API	 81

Objective summary	 85

Objective review	 85

Objective 1.5: Establish the scope of objects and variables 86

Establishing the lifetime of variables and variable scope	 87

Avoiding using the global namespace	 90

Leveraging the this keyword	 91

Objective summary	 92

Objective review	 92

Objective 1.6: Create and implement objects and methods. 93

Implementing native objects	 94

Creating custom objects	 95

Implementing inheritance	 99

Objective summary	 101

Objective review	 101

Answers. 102

Chapter 2	 Implement program flow	 111
Objective 2.1: Implement program flow. 112

Evaluating expressions	 112

Working with arrays	 117

Implementing special types of arrays	 121

Using advanced array methods	 122

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

vContents

Implementing iterative control flow	 125

Objective summary	 129

Objective review	 130

Objective 2.2: Raise and handle an event. 130

Using events	 131

Handling DOM events	 139

Creating custom events	 146

Objective summary	 147

Objective review	 148

Objective 2.3: Implement exception handling. 149

Implementing try…catch…finally constructs	 149

Checking for null values	 154

Objective summary	 155

Objective review	 155

Objective 2.4: Implement a callback. 156

Implementing bidirectional communication with the
WebSocket API	 157

Making webpages dynamic with jQuery and AJAX	 161

Wiring up an event with jQuery	 165

Implementing a callback with an anonymous function	 167

Using the this pointer	 169

Objective summary	 170

Objective review	 171

Objective 2.5: Create a web worker process. 172

Getting started with a web worker process	 172

Creating a worker process with the Web Worker API	 176

Using web workers	 178

Understanding web worker limitations	 179

Configuring timeouts and intervals	 180

Objective summary	 181

Objective review	 181

Answers. 183

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

vi Contents

Chapter 3	 Access and secure data	 189
Objective 3.1: Validate user input by using HTML5 elements. 190

Choosing input controls	 190

Implementing content attributes	 206

Objective summary	 209

Objective review	 210

Objective 3.2: Validate user input by using JavaScript. 211

Evaluating regular expressions	 211

Evaluating regular expressions in JavaScript	 214

Validating data with built-in functions	 216

Preventing code injection	 216

Objective summary	 217

Objective review	 218

Objective 3.3: Consume data. 218

Consuming JSON and XML data by using web services	 219

Using the XMLHttpRequest object	 219

Objective summary	 223

Objective review	 223

Objective 3.4: Serialize, deserialize, and transmit data. 224

Sending data by using XMLHttpRequest	 224

Serializing and deserializing JSON data	 225

Serializing and deserializing binary data	 225

Objective summary	 228

Objective review	 229

Answers. 230

Chapter 4	 Use CSS3 in applications	 235
Objective 4.1: Style HTML text properties. 235

Apply styles to text appearance	 236

Apply styles to text font	 238

Applying styles to text alignment, spacing, and indentation	 239

Applying styles to text hyphenation	 241

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

viiContents

Applying styles for a text drop shadow	 242

Objective summary	 243

Objective review	 243

Objective 4.2: Style HTML box properties. 244

Applying styles to alter appearance attributes	 244

Applying styles to alter graphic effects	 249

Apply styles to establish and change an element’s position	 258

Objective summary	 264

Objective review	 265

Objective 4.3: Create a flexible content layout . 266

Implement a layout using a flexible box model	 266

Implementing a layout using multi-column	 273

Implementing a layout using position, floating, and exclusions	 276

Implementing a layout using grid alignment	 280

Implementing a layout using regions, grouping, and nesting	 286

Objective summary	 287

Objective review	 288

Objective 4.4: Create an animated and adaptive UI. 288

Animating objects by applying CSS transitions	 289

Applying 3-D and 2-D transformations	 291

Adjusting UI based on media queries	 292

Hiding or disabling controls	 297

Objective summary	 299

Objective review	 299

Objective 4.5: Find elements using CSS selectors and jQuery 300

Defining element, style, and attribute selectors	 300

Choosing the correct selector to reference an element	 301

Finding elements by using pseudo-elements
and pseudo-classes	 301

Objective summary	 304

Objective review	 305

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

viii Contents

Objective 4.6: Structure a CSS file by using CSS selectors. 305

Referencing elements correctly	 306

Implementing inheritance	 307

Overriding inheritance using !important	 307

Styling an element based on pseudo-elements and
pseudo-classes	 308

Objective summary	 309

Objective review	 309

Answers. 312

Index	 321

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/booksurvey/

ptg14200515

ix

Introduction

The 70-480 exam is a detailed examination of your skills with using HTML5 and CSS3. This
book will guide you through the necessary objectives that you are expected to know to
pass this exam. It is expected that you have at least 2 years’ experience working with these
technologies. This book is structured such that it provides a reference to the key information
required for each objective. This book does not teach every concept but provides an account
of the details you are expected to know for each objective covered on the exam.

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx

ptg14200515

x Introduction

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from
Microsoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and
Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

http://aka.ms/ER480R2

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

From the Library of Ida Schander

www.hellodigi.ir

http://aka.ms/mspressfree
http://aka.ms/ER480R2
http://support.microsoft.com
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

ptg14200515

xi

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your "at home” preparation and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 1

C H A P T E R 1

Implement and manipulate
document structures
and objects
Web developers today need to understand the complexities of the constructs involved in
building interactive and dynamic applications with HTML
and JavaScript. The introduction of HTML5 brought a new
standard for defining the structure of your webpages as
well as changes in how you interact with them via script.

This chapter demonstrates how to create HTML5
documents with the new HTML5 semantic markup. You’ll
explore the process of creating the code required to
manipulate and interact with HTML5 markup and applying
styles to HTML5 elements.

NOTE  ELEMENTS VS. TAGS

HTML markup is referred to as both HTML tags and HTML elements. These terms are often
used interchangeably. This book refers to the HTML markup as elements.

Objectives in this chapter:
■■ Objective 1.1: Create the document structure

■■ Objective 1.2: Write code that interacts with UI controls

■■ Objective 1.3: Apply styling to HTML elements programmatically

■■ Objective 1.4: Implement HTML5 APIs

■■ Objective 1.5: Establish the scope of objects and variables

■■ Objective 1.6: Create and implement objects and methods

i m p o r t a n t

Have you read
page xi?
It contains valuable
information regarding
the skills you need to
pass the exam.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 2	 CHAPTER 1	 Implement and manipulate document structures and objects

Objective 1.1: Create the document structure

Writing an HTML page can be very easy or very daunting, depending on your objectives.
Any HTML page renders in a browser even if it contains only plain text. But this type of web
application might not be effective at delivering your intended message or at providing inter-
activity to keep users coming back to the site for more. This is where HTML markup comes in
handy.

HTML enables you to apply a fluid and organized structure to webpages. Paired with a
powerful tool such as JavaScript, HTML5 lets you deliver highly interactive content that can
pique your users’ interest. This objective focuses on the semantic elements available to you
in HTML5, which, along with JavaScript, allow you to create the rich end-user experience that
modern web users want and have come to expect.

The purpose of a document’s structure is to tell the browser how the content should be
displayed. Without any declarative structure in your page, the browser won’t detect any
structure, so it will lay out your content according to the rules implemented by its render-
ing engine. When using the HTML5 markup presented in this objective, you are telling the
browser to take your semantics into account when displaying the page. Going forward, new
releases of browsers will incorporate more and more of the HTML5 standards into their
rendering engines.

The exam will test your ability to use HTML5 semantic markup to create webpages and
your ability to optimize webpages for use on screen readers. The exam will also cover the
effect that the HTML5 semantic markup will have on search engine optimization.

This objective covers how to:
■■ Use HTML5 semantic markup

■■ Create a layout container in HTML

■■ Optimize for search engines

■■ Optimize for screen readers

Using HTML5 semantic markup
Table 1-1 lists the HTML5 semantic elements as defined by the specification. These elements
make up the core of HTML5. As such, understanding the definition and proper usage of each
element is critical to successful completion of the exam. In the following sections, you will use
each of these semantic markup elements to create a complete document structure.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Create the document structure	 CHAPTER 1	 3

TABLE 1-1  HTML5 semantic markup

HTML5 element Description

<article> Defines self-contained areas on a page

<aside> Defines smaller content areas outside the flow of a webpage

<figcaption> Defines the caption of a figure element

<figure> Defines content that contains a figure, such as an image, chart, or picture

<footer> Defines the bottom of a section or page

<header> Defines the top of a section or page

<hgroup> Defines a group of headings (H1–H6 elements)

<mark> Defines text that should be highlighted

<nav> Defines navigation to other pages in the site

<progress> Defines the progress of the task

<section> Defines the distinct content of a document

NOTE  USE ONLY WHAT YOU NEED

When designing a webpage, you don’t necessarily need to use every available element.
Instead, use only the elements you need to get your job done.

Understanding the core structure of an HTML5 page
Although a browser can render any plain text file, to provide any structure to the document
the page must contain the basic elements that you are about to learn. Although this book
assumes you have a basic understanding of how webpages are structured, the following
HTML code demonstrates the basic template of an HTML5 page:

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8"/>
 <title></title>
</head>
<body>
<!-- page content goes here -->
</body>
</html>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 4	 CHAPTER 1	 Implement and manipulate document structures and objects

This section elaborates on this basic structure as semantic markup is introduced through-
out the objective. All content to be introduced to the page will go within the <body> element
because that page section displays content in the browser. As it is now, this code would ren-
der nothing more than a blank page. To see some content as you work through the following
sections for each semantic element, use the code in Listing 1-1.

LISTING 1-1  HTML5 semantic elements

<body>
 <header>

<h1>Some fictional company Website</h1>
<nav>

Document Structure
Writing Code
Styles

</nav>
 </header>
 <article>

<header>
<hgroup>

<h1>Our first new Article</h1>
</hgroup>

</header>
<section>

<h1>Section 1</h1>
<p>Some details about section 1</p>
<aside>Did you know that 7/10 is 70%</aside>

</section>
<section>

<h1>Section 2</h1>
</section>

 </article>
 <article>

<header>
<hgroup>

<h1>Second huge article</h1>
</hgroup>

</header>
<p>Provide some useful information in the article</p>

 </article>
 <article>

<header>
<hgroup>

<h1>Third huge article</h1>
</hgroup>

</header>
<p>Provide some useful information in the third article</p>
<figure>

<figcaption>Fig 1: A really juicy orange.</figcaption>

</figure>
 </article>
</body>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Objective 1.1: Create the document structure	 CHAPTER 1	 5

Using the <header> and <footer> elements
Most webpage documents contain common content at the top and bottom of all pages.
Although using the <header> and <footer> elements doesn’t automatically provide this func-
tionality, the elements do provide the ability to define the content in the header and footer of
the website.

Typically, a webpage header contains content such as a company logo or banner. In some
cases, it might also contain a navigation menu. (See the upcoming “Using the <nav> element”
section for this.) Start the example page by adding the <header> element to your page:

<body>
 <header>

<h1>Some fictional company Website</h1>
…
 </header>
</body>

This HTML code produces the output shown in Figure 1-1:

FIGURE 1-1  A <header> element, which causes the browser to format the text within the element as a
heading.

The <header> element isn’t limited to only the start of your page—it provides a semantic
way of declaring the header to any area of the webpage. You can use the <header> element
as a header to a <section> element or to an <article> element. The <header> element is
intended to hold an H1–H6 element as needed; however, you can populate a header with any
markup that suits your needs to create the best header for that particular area of the site.

This HTML code produces the output shown in Figure 1-2:

<body>
…
 <header>

<h1>Some fictional company Website</h1>
 </header>
 <article>
 <header>

<h1>Our first new Article</h1>
 </header>
…
</body>

FIGURE 1-2  The <header> element with a nested <h1> element

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 6	 CHAPTER 1	 Implement and manipulate document structures and objects

Using the <nav> element
Using the <nav> element in an HTML5 document provides users with navigation through the
main elements of the web document or web application as a whole. These main navigation
elements could be represented as a list of links across the top of the page to navigate the
current website. It could also list your favorite websites along the side of the page, such as in a
blog where you list other favorite blogs that you follow.

Typically, the list of links across the top, commonly known as the main menu of the web
application, is contained in the header (but doesn’t have to be). A list of favorite URLs would
most likely be placed into an <aside> so that the list could be placed off to the side, away
from the main content but readily accessible. For the current example, you create a main
menu across the top of the page. This HTML code produces the output in Figure 1-3:

<body>
 <header>
 <h1>Some fictional company Website</h1>
 <nav>
 Document Structure
 Writing Code
 Styles
 </nav>
 </header>
…
</body>

FIGURE 1-3  A navigation menu created using the <nav> element

The other main element commonly used under the <header> element is the rightfully
named <hgroup>.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Objective 1.1: Create the document structure	 CHAPTER 1	 7

Using the <hgroup> element
The <hgroup> element is a semantic method that organizes headers and subheaders. This
element typically contains the standard and familiar <h1> to <h6> elements. The <hgroup>
element groups related headers in sequence. You can add a new <hgroup> element to your
webpage to serve this purpose, like so:

<body>
 …
 <article>

<header>
<hgroup>

<h1>Our first new Article</h1>
</hgroup>

</header>
<p>Provide some useful information in the article</p>

 </article>
</body>

This HTML code renders the output in Figure 1-4.

FIGURE 1-4  Using the <hgroup> element to group headers

This code example effectively tells the renderer that the article has a main heading (<h1>).
You could go on, adding <h2> to <h6> elements if required. How many of these (<h1> to
<h6>) elements you use in your <hgroup> element obviously depends on the document
structure you want to present.

Now that the page is starting to take shape, you can learn about the two main content
elements: <article> and <section>.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 8	 CHAPTER 1	 Implement and manipulate document structures and objects

Using the <article> element
An <article> element represents a whole and complete composition or entry. Examples of
an <article> element could be a magazine article or a blog post, where the content can be
redistributed independently and not lose its meaning. Each article is wholly contained within
itself. You can have an article with subarticles; however, each subarticle must be a direct
extension and related to the root article.

Now that you know about this new <article> element, you can go back to your sample
document and organize it with articles:

<body>
…
 <article>

<header>
<hgroup>

<h1>Our first new Article</h1>
</hgroup>

</header>
<section>

<h1>Section 1</h1>
<p>Some details about section 1</p>
<aside>Did you know that 7/10 is 70%</aside>

</section>
<section>

<h1>Section 2</h1>
</section>

 </article>
 <article>

<header>
<hgroup>

<h1>Second huge article</h1>
</hgroup>

</header>
<p>Provide some useful information in the article</p>

 </article>
 <article>

<header>
<hgroup>

<h1>Third huge article</h1>
</hgroup>

</header>
<p>Provide some useful information in the third article</p>

 </article>
</body>

This HTML code produces the output in Figure 1-5.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Create the document structure	 CHAPTER 1	 9

FIGURE 1-5  Using the <article> element to segment different articles on the page

You have expanded the document to include three articles. Clearly, you don’t want to
put the entire chapter into the sample HTML document, but you’ll add enough to be able to
demonstrate the function of each semantic element. Each article added to the document in
this example represents an independent part of the document that can be wholly contained.
Typically, the first element within the <article> element is a header element or header group.
Closely related to the <article> element is the <section> element, which you explore next.

Using the <section> element
The <section> element subdivides pages into sections. You could continue to break down
the sample page with additional <article> elements; however, the purpose of the <article>
element isn’t to break down a page into more granular details. This is where the <section>
element becomes useful. Each <article> element contains zero or more <section> elements to
denote the different content sections within the <article> element. Like an <article> element,
the first element within a <section> element is typically a header or a header group.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	10	 CHAPTER 1	 Implement and manipulate document structures and objects

Now you can expand the sample page with <section> elements to produce the output
shown in Figure 1-6:

<body>
…
 <article>
 <header>
 <hgroup>
 <h1>Our first new Article</h1>
 </hgroup>
 </header>
 <section>
 <h1>Section 1</h1>
 <p>Some details about section 1</p>
 </section>
 <section>
 <h1>Section 2</h1>
 </section>
 </article>
 …
</body>

FIGURE 1-6  Using the <section> element within an <article> element

When you view this page in the browser now, you might notice something quite interesting.
The <h1> elements inside the <hgroup> elements are rendering differently from the previous
<h1> elements in the same article. Considering that you haven’t applied any styles to this
page yet, you might expect that all <h1> elements would render in the same style (for ex-
ample, the same font size) as the <h1> element in the <article> element. However, when you
render the page in the browser, you can see that this isn’t the case. This is because of the way
the document parser in the browser works through the document to determine the implied
hierarchy of the headings, also called the document outline. You see more of this when you
learn about screen readers later in this lesson. For now, focus on the <aside> element.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Create the document structure	 CHAPTER 1	 11

Using the <aside> element
The <aside> element defines any content that doesn’t fall within the main flow or main
content of the current page—for example, a sidebar, a note, an alert, or an advertisement.
The <aside> element doesn’t place itself automatically to any particular side of the webpage;
it merely serves as a way to semantically define a section of text or graphics as an aside. Later
you will see how to position an aside using styles. For now, add the following <aside> ele-
ment to your page for later use:

<body>
 …
 <article>
 <header>
 <hgroup>
 <h1>Our first new Article</h1>
 </hgroup>
 </header>
 <section>
 <h1>Section 1</h1>
 <p>Some details about section 1</p>
 <aside>Did you know that 7/10 is 70%</aside>
 </section>
 <section>
 <h1>Section 2</h1>
 </section>
 </article>
…
</body>

This HTML code produces the output in Figure 1-7:

FIGURE 1-7  Using an <aside> element within an <article> element

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	12	 CHAPTER 1	 Implement and manipulate document structures and objects

As you can see in the browser output, the <aside> element isn’t treated as special in any
way compared to the other elements used to structure your page. However, a little later you
can see how much more easily you can style the content by using semantic markup, such as
the <aside> element.

Using the <figcaption> and <figure> elements
The <figcaption> and <figure> elements, new in HTML5, provide the semantic elements neces-
sary for adding graphics and figures to webpages. These graphics and figures typically provide
a visual representation of information in the textual content and referenced by the text. You
often see such images in tutorials or textbooks in which the author directs the reader to a
specific figure. As an example, I’ve added some HTML to the end of the previous example:

<body>
…
 <article>
 …
 <figure>

 <figcaption>Fig 1: A really juicy orange.</figcaption>
 </figure>
 </article>
</body>

This HTML code produces the output in Figure 1-8.

FIGURE 1-8  Using the <figure> element to add a graphic or figure to the page

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Objective 1.1: Create the document structure	 CHAPTER 1	 13

You need to replace the example image with one you already have to get the page
to render correctly. However, the essence of what you achieve with the <figcaption> and
<figure> elements should be clear.

Using the <progress> element
The <progress> element represents the progress of an objective or task. The two supported
types of progress tasks are determinate and indeterminate.

Use a determinate progress task when you know in advance the amount of work to be
completed; in other words, you know the starting and ending values. Sample scenarios for
this case include downloading a file for which you know the exact size or displaying the
progress of a fundraising effort. In both situations, you know the exact status of the task at
any particular time, and you also know what the end goal is—either the number of bytes for
the file download or the number of dollars for the fundraiser. In these determinate cases, you
can specify HTML5 markup such as this:

<p>Our goal is to have 1000 users:</p>
0
<progress value="50" max="1000"></progress>
1000

The result of this HTML is the progress bar shown in Figure 1-9.

FIGURE 1-9  Using the <progress> element to show progress toward a total

As shown in the preceding code, the <progress> element has two attributes you need to
know: value and max. The value attribute lets you specify the current value or position of the
<progress> element at a specific point in time. The max attribute tells the browser what the
maximum possible value is for the element. The browser uses these two values to determine
how much of the element should be colored in. Usually, the value attribute updates dynami-
cally using JavaScript. In Figure 1-10, you can see how the <progress> element’s display
changes when the value attribute is updated to 750.

FIGURE 1-10  The effect of the value attribute on the <progress> element

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	14	 CHAPTER 1	 Implement and manipulate document structures and objects

You use indeterminate tasks when you don’t know how long a task will take to complete
but still want to show users that some work is occurring and that they should wait. You still
use the <progress> element but remove the value attribute. When you don’t specify the value
attribute, the browser can infer that the <progress> element represents an indeterminate
task. This might be useful for data received from a service where you have no control over or
knowledge of how quickly the request will complete or how large the request results will be.
The following HTML5 markup demonstrates an indeterminate task:

<p>Data download is in progress, please wait patiently:</p>
<progress max="5"></progress>

This code produces a progress display like the one shown in Figure 1-11:

FIGURE 1-11  Showing indeterminate progress by using moving dots to demonstrate that work is occurring

In Figure 1-11, the blue dots replace the progress bar from the previous determinate
example. This visual change to the progress indicator occurred by simply removing the value
attribute from the <progress> element. In actuality, the dots are animated, as you would see
if you run the code in a browser.

<mark> element
With the <mark> element, you can easily highlight important information or any text you
want to emphasize. It has essentially the same function as a highlighter. By wrapping text in a
<mark> element and providing a background-color attribute to its style element, you can get
the desired highlight effect. The following HTML code demonstrates the <mark> element:

<p>Some very <mark style="background-color:red;">important</mark> information provided
here!</p>

Figure 1-12 shows the output of this HTML. The word “important” is highlighted as a result
of the <mark> element being placed around it.

FIGURE 1-12  The effect on text placed inside the <mark> element

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Create the document structure	 CHAPTER 1	 15

Using the <div> element
The new HTML5 semantic elements don’t (with the exception of the <progress> element)
necessarily provide any default or altered behavior. Instead, they provide a stronger semantic
definition to your webpages. This, in turn, gives you a more reliable and maintainable way to
structure your pages and style them consistently. The goal of these elements is to replace the
older method of structuring pages—prior to HTML5—by using <div> elements and naming
them according to their function. However, note that the <div> element is still part of HTML5
and still plays an important role. Use the new semantic elements as appropriate, but remember
that the <div> element is still quite useful for styling content.

This section explored the new semantic elements in HTML5. In the next section, you learn
how to create and work with layout containers.

Creating a layout container in HTML
You can lay out a webpage in various ways. An important aim here is to urge you to give
serious thought to layout so that your page presentation is user friendly. If users can’t find
what they are looking for because the entire page is styled as a single <p> element inside the
<body> element, they aren’t likely to keep coming back. In this section, you look at a couple
of layout options available in HTML. Chapter 4, “Use CSS in applications,” explains how to use
cascading style sheets (CSS) to implement your layouts.

The two most common methods of creating a layout in HTML involve using <div> and
<table> elements. In either case, more than likely you will still use CSS to help with positioning
and sizing. Chapter 4 goes into more detail about CSS; this section looks specifically at the
layout, using only HTML.

Still the catchall container elements, the familiar <div>s are often used to divide the page
into various sections to create the layout. For example, you might see this sort of HTML used
to achieve layout:

<div id="PageHeader"></div>
<div id="LeftSide"></div>
<div id="RightSide"></div>
<div id="Footer"></div>

The rendering engine displays each <div> according to its rules. To position the divisions
dynamically would require CSS.

The main issue with using <div> elements to structure the document is their inability to
impart standard semantic meaning to each section. You’ll revisit these examples later, when
you explore creating layouts in CSS.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	16	 CHAPTER 1	 Implement and manipulate document structures and objects

The <div> element allows for more dynamic capability in page layout. For a more static lay
out declared right in the HTML page, the <table> element is more appropriate. The following
HTML defines a table that provides a common blog-site format, with a header section, a left
sidebar, a content area, a right sidebar, and a footer area:

<table>
 <tr>
 <td colspan="3" id="Header"></td>
 </tr>
 <tr>
 <td rowspan="3" id="LeftBar"></td>
 <td rowspan="3" id="MainContent"></td>
 <td id="RightSideTop"></td>
 </tr>
 <tr>
 <td id="RightSideMiddle"></td>
 </tr>
 <tr>
 <td id="RightSideBottom"></td>
 </tr>
 <tr>
 <td colspan="3" id="Footer"></td>
 </tr>
</table>

The <table> element is very flexible. Additional elements such as <thead> and <tfoot>
provide a more semantic approach to labeling the table cells. The concern with using the
<table> element approach is the static nature of the structure. To change the overall structure
of a site that uses tables for layout, you need to go to every page and make the changes. It’s
worth noting that some methods that make such changes easier have evolved over the years
in response to the maintenance headache involved.

Optimizing for search engines
When a website is required to create an online presence, you have to ensure that it can be
found among the millions of sites that already exist. Search engine optimization (SEO) is
a technique used to make elements of the website easily discoverable and appropriately
indexed by search engines, so that when users search for content related to your site, they
find your pages. Search engines such as Bing and Google constantly scour the Internet for
content. When they find webpages, they go through the HTML and index content such as
page and image metadata. They use the indexed data to allow users to search for essen-
tially anything on the Internet and receive relevant results. Clearly, then, a relationship exists
between the content on your websites and how easily users can find your sites using a search
engine. With the semantic HTML elements discussed in the previous objective in mind, you
should note some additional things with respect to the logic search engines use to discover
what’s on websites. On the whole, the subject of SEO is far outside the scope of this book and
exam; entire books are written on the subject. However, discussing how HTML5 impacts SEO
and website design is relevant.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Create the document structure	 CHAPTER 1	 17

In the past (defined as pre-HTML5), web designers often used <div> elements to segment
the page. These elements don’t provide very much context as to what they are intended to
contain. But with the semantic markup available in HTML5, you can use more descriptive ele-
ments for the page sections. As you saw in the blog-page layout example, the HTML elements
alone make clear the intent of each segment of the page. As search engines scour webpages,
they detect the markup and know what to take from it to properly index the page.

The <article> and <section> elements are the main ones used by the SEO algorithm. These
elements are known to contain the main body of the page. That a page have more than one
<article> and/or <section> element is acceptable; they all get indexed. Within each <article>
element, the engine then seeks out elements such as <hgroup> or <h1> to get the main
topic of the <article> element for relevant indexing. However, this doesn’t mean that if a site
doesn’t have <article> or <section> elements, it won’t get indexed and be searchable. This
speaks only to the quality of indexing the search engines can conduct to make your site more
searchable by end users.

SEO is a great technique to understand when designing websites. Creating a website just
to leave it in the dark and hard to find doesn’t serve much purpose. Being found is very im-
portant and, when the site is found, you don’t want to limit your audience. Accessibility is also
very important.

Next, look at how HTML5 affects the use of screen readers.

Optimizing for screen readers
Screen readers rely on the document outline to parse the structure and present information
to the user. Screen-reader programs can read the text on the page and convert it to audio
through a text-to-speech algorithm. This is helpful for users who might have difficulty view-
ing the webpage. As discussed earlier, the way the document gets outlined in HTML5 has
changed. Here’s a little more detail.

Prior to HTML5, a page was outlined using only the header elements (<h1> through <h6>).
The relative position of each header element to the previous header element within the page
created the hierarchy. Screen readers could use this information to present a table of contents
to users. However, HTML5 introduced semantic elements to create new sections. This means
that <section>, <article>, <nav>, and <aside> elements all define new sections. The introduc-
tion of the semantic elements changes how the document outline is created. For example, if
the following HTML was going to be the hierarchy of the sample document, you could possibly
lay it out like this:

<h1>Fruits and Vegetables</h1>
<h2>Fruit</h2>
<h3>Round Fruit</h3>
<h3>Long Fruit</h3>
<h2>Vegetables</h2>
<h3>Green</h3>
<h3>Colorful</h3>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	18	 CHAPTER 1	 Implement and manipulate document structures and objects

This produces the expected outline, shown in Figure 1-13.

FIGURE 1-13  The output of a series of header elements to create a document structure

The outline shows the default styles of the different header elements as expected. The
heading elements create implied sections and subsections within the document. This is still
valid in HTML5. However, you shouldn’t leave the page sectioning set to implied sectioning as
presented by the header elements; rather, you should explicitly define the sections by using
the appropriate semantics. Also recommended is that <h1> elements be used solely through-
out an HTML5 document. To produce the same hierarchy in this fashion, you would need to
change your HTML to be like the following:

 <section>
<h1>Fruits and Vegetables</h1>
<section>

<h1>Fruit</h1>
<section>

<h1>Round Fruit</h1>
</section>
<section>

<h1>Long Fruit</h1>
</section>

</section>
<section>

<h1>Vegetables</h1>
<section>

<h1>Green</h1>
</section>
<section>

<h1>Colorful</h1>
</section>

</section>
 </section>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.1: Create the document structure	 CHAPTER 1	 19

Thought experiment
Converting a website to HTML5

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You have just been hired to convert an existing website to the new HTML5 seman-
tic markup. Analyze the following HTML and determine what elements should be
updated to fully leverage the HTML5 semantic markup:

<html>
 <head>
 <title>Experimentations</title>
 </head>
 <body>
 <table>
 <tr>
 <td colspan="3">
 <div id="header">
 <h1>A Thoughtful Experiment</h1>
 </div>
 </td>
 </tr>
 <tr>
 <td>
 Home
 Page 1
 Page 2
 Page 3
 </td>
 <td>
 <div id="content">
 <div id="anArticle">
 <h1>An Article regarding thought is
 presented here.</h1>
 <h2>Thought as a provoking element.</h2>

 <div id="moreInfo">Here are some
 reference material.</div>
 </div>
 </div>
 </td>

This HTML produces the same output as shown earlier in Figure 1-13. The difference is
that now each <section> element creates a new page section rather than rely on the header
elements to create the sections. Screen readers can parse the semantic elements to create the
document outline and eventually can provide a much richer user experience because of how
HTML5 allows webpage designers to lay out the pages.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	20	 CHAPTER 1	 Implement and manipulate document structures and objects

Objective summary
■■ HTML5 introduced new semantic elements to more clearly define sections of an HTML

page. These elements include <section>, <article>, <nav>, <header>, <footer>, <aside>,
<progress>, <mark>, <figure>, and <figcaption>.

■■ Elements within an HTML page can have their layout controlled when they are in-
cluded inside structures such as <div> elements and/or HTML tables.

■■ HTML5 semantic elements provide the mechanisms necessary to structure the page
more easily for accessibility via screen readers.

■■ Search engines take advantage of HTML5 semantics by leveraging the <article>
element to determine the purpose of the page.

 <td>
 <div id="profile">

 </div>
 </td>
 </tr>
 <tr>
 <td>
 <div id="footer">
 This page is copyright protected.
 </div>
 </td>
 </tr>
 </table>
 </body>
</html>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Objective 1.1: Create the document structure	 CHAPTER 1	 21

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. Which of the following elements aren’t introduced in HTML5?

A. <article>

B. <footer>

C. <hgroup>

D. <input>

2. Which element(s) does the <hgroup> element contain?

A. <h1> to <h6>

B. <header>

C. <nav>

D. All of the above

3. Which HTML5 element would you use to organize content so that the page maximizes
a search engine’s algorithm?

A. <div id=”CompanyNews”>

B. <header>Company News</header>

C. <article>Company News</article>

D. All of the above

4. Which HTML5 element should you use to create a more structured layout?

A. <div>

B. <p>

C. <table>

D. <form>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	22	 CHAPTER 1	 Implement and manipulate document structures and objects

Objective 1.2: Write code that interacts with
UI controls

In this objective, you review how to interact with webpages in the browser using code. Web
browsers include a powerful environment in which you can control the behavior of webpages.
And some new HTML5 elements provide improved interactivity for end users.

You also review how to modify the document object model dynamically, using JavaScript.
You review how to implement video and audio in webpages and how to control them pro-
grammatically. Finally, you review how to render graphics dynamically or allow users to draw
their own graphics.

This objective covers how to:
■■ Add or modify HTML elements

■■ Implement media controls

■■ Implement graphics with HTML5 canvas and SVG

Adding or modifying HTML elements
The ability to modify an HTML document at run time is very powerful. So far you’ve seen how
to create your webpages, lay them out elegantly, and render them for users. In many cases,
you should modify the layout of your webpages at run time depending on what your users
do. This is where you can take advantage of the power of JavaScript. JavaScript provides the
toolkit you need to write code that interacts with webpage elements after they are already
rendered into the browser. Before you can start to modify the webpage, you need to know
how to access or reference the elements so you can manipulate them.

Document Object Model
The Document Object Model (DOM) is a representation of the structure of your HTML page
that you can interact with programmatically. As demonstrated earlier, an HTML page is a
hierarchy. The browser produces an outline based on the HTML hierarchy presented to it and
displays this in the browser to the user. Behind the scenes, unknown to the user, the browser
constructs a DOM. The DOM’s application programming interface (API) is exposed as objects
with properties and methods, enabling you to write JavaScript code to interact with the HTML
elements rendered to the page.

This notion is very powerful. You can add new elements to the page that didn’t even ex-
ist in your original HTML page. You can modify elements to change their behavior, layout,

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 23

appearance, and content. Theoretically, although this is rarely a recommended practice, you
could render a blank HTML page to the browser, build the entire page using JavaScript, and
produce the exact same results. Having that power over your webpages is very exciting, even
after they are rendered. You start by selecting items in the DOM to get a reference to them.

Selecting items in the DOM
To manipulate the DOM, you need to know how to access it and to obtain references to the
elements you want to manipulate. In the next section you look at altering the DOM, but first
you need to get elements from the DOM so you can work with them.

NOTE  THE DOCUMENT OBJECT MODEL AS A FAMILY TREE

The DOM is essentially a collection of nodes arranged in a tree. All the nodes are related
to each other. They are one big happy family of children, siblings, parents, grandparents,
grandchildren, and so on. This essence of a family tree represents the hierarchy of the DOM
and is important to understand as you manipulate the DOM through code.

You have a few choices when it comes to using JavaScript to access the DOM. You can
access DOM elements through a global object provided by the browser, called document, or
through the elements themselves after you obtain a reference to one. Table 1-2 outlines the
core native methods used for selecting elements in the DOM.

TABLE 1-2  Methods available for selecting DOM elements

Method Usage description

getElementById Gets an individual element on the page by its unique id attribute value

getElementsByClassName Gets all the elements that have the specified CSS class applied to them

getElementsByTagName Gets all the elements of the page that have the specified tag name or
element name

querySelector Gets the first child element found that matches the provided CSS selector
criteria

querySelectorAll Gets all the child elements that match the provided CSS selector criteria

For the most part, the methods are straightforward to use. In this section, you begin with
a simple HTML document structure that you will use in many other examples in this book to
highlight various concepts. Create a webpage with the HTML markup in Listing 1-2 to pro-
ceed with the following examples.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	24	 CHAPTER 1	 Implement and manipulate document structures and objects

LISTING 1-2  HTML source to work with the DOM

<body>
 <div id="outerDiv">
 <p class='mainPara'>Main Paragraph</p>

 First List Item
 Second List Item
 Third List Item
 Fourth List Item

 <div id="innerDiv">
 <p class='subPara' id='P1'>Paragraph 1</p>
 <p class='subPara' id='P2'>Paragraph 2</p>
 <p class='subPara' id='P3'>Paragraph 3</p>
 <p class='subPara' id='P4'>Paragraph 4</p>
 </div>
 <table>
 <tr>
 <td>Row 1
 </td>
 </tr>
 <tr>
 <td>Row 2
 </td>
 </tr>
 <tr>
 <td>Row 3
 </td>
 </tr>
 <tr>
 <td>Row 4
 </td>
 </tr>
 <tr>
 <td>Row 5
 </td>
 </tr>
 </table>
 <input type="text"/><input type="submit" value="Submit"/>
 </div>
</body>

This sample page is very simple, but it serves the purpose of demonstrating various ways
to access elements through code. To demonstrate this functionality, you need an entry point.
Add the following script block to the head section of the webpage:

 <script>
 window.onload = function () {
 ...
 }
 </script>

This should look familiar, but if it doesn’t, you’ll review the concepts later. For now, this
code essentially tells the runtime to run your code after the window finishes loading. You can

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 25

use your code to experiment with the various methods listed in Table 1-2 in this function,
starting with getElementById.

The getElementById method returns the element in the page that matches the specific ID
value you pass to it. It returns null if no element on the page has the specified ID. Each ele-
ment on the page should have a unique ID. For example, if you want to reference the <div>
element with the ID outerDiv, you would use the following code:

var element = document.getElementById("outerDiv");
alert(element.innerHTML);

The JavaScript alert method, which displays a message box, is used here to show whether
you have actually accessed the DOM successfully. The alert isn’t all that useful in the real
world but it is for development purposes. When you run the page, notice the message box
from the browser with all the innerHTML contents of the <div> you selected out of the DOM
with your code (see Figure 1-14).

FIGURE 1-14  A JavaScript alert demonstrating successful access to the DOM

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	26	 CHAPTER 1	 Implement and manipulate document structures and objects

Now that you have successfully obtained a reference to your <div>, you can do anything
you want to it dynamically—just as you could have defined or applied such changes to it
statically. The getElementById method is great when you know the ID of a specific element in
the page that you want to work with, but in other cases you might want to do something to
all the elements of a particular type—for example, all paragraph elements. In this case, the
getElementsByTagName method is more appropriate. You can use the following code to get a
reference to all the <p> elements:

 <script>
 window.onload = function () {
 var paragraphs = document.getElementsByTagName("p");
 alert(paragraphs.length);
 }
 </script>

In this code, the object returned from the getElementsByTagName method is a little differ-
ent; it’s a special type that acts as a wrapper to all the elements that match your parameter,
called a NodeList. This object isn’t especially useful by itself. In fact, it doesn’t really provide
anything useful other than a length, which lets you know how many items it contains, and the
ability to access each individual item. In the preceding example, the JavaScript alert displays
how many items were returned in the list (paragraphs.length). You can see that the method
returned all five of the <p> elements in the page, as shown in Figure 1-15.

FIGURE 1-15  A message showing the number of <p> elements

In the same way that you could use the getElementsByTagName method to get all
elements of the same type, you can use the getElementsByClassName method to get all
elements of the same CSS class. This is useful when you have many elements with the same
style but perhaps want to modify them at run time. This method also returns a NodeList. The
following snippet demonstrates the usage:

<script>
 window.onload = function () {
 var paragraphs = document.getElementsByClassName("subPara");
 alert("<p> elements with class subPara: " + paragraphs.length);
 }
</script>

Figure 1-16 shows the output of this script.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 27

FIGURE 1-16  A message showing the number of <p> elements with the specified class name subPara

This example adds a little more text to the message box so that it looks different from the
previous example, but the idea is the same. All <p> elements with the subPara class assigned
to them were returned in a NodeList. You can see that the call returned four HTML elements.
When selecting elements in the DOM by class name, the NodeList contains all elements
whose class matches the specified class—not just elements of the same type. If, for example,
you assigned the class subPara to one of your <div> elements and then ran the function
again, the returned NodeList would contain the four <p> elements and the <div> element
because they all have the same class. This is important when you intend to iterate over the
elements and do something to them. In Figure 1-17, the same JavaScript code is run, but with
an added subPara class attribute to a <div> element.

FIGURE 1-17  The same script run with a <div> assigned the class name subPara

This message box is now actually incorrect, because the NodeList contains a single
<div> element and the four <p> elements. Keep this behavior in mind concerning the
getElementsByClassName method.

All the methods you have looked at so far to find elements in the DOM provide a specific
implementation for a specific purpose. If you want a single element by its unique ID, you use
the getElementById method; if you want to find an element or all the elements of a specific
CSS class, you use the getElementsByClassName method. Now look at some examples that
use the much more flexible querySelector and querySelectorAll methods.

The querySelector and querySelectorAll methods allow you to achieve most of what you’ve
already done with the other methods. Both methods take a parameter in the form of a CSS

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	28	 CHAPTER 1	 Implement and manipulate document structures and objects

selector. The querySelector method returns the first element it finds that matches the selec-
tor criteria passed to it, whereas the querySelectorAll method returns all elements that match
the selector criteria passed in. The elements are still returned in the form of a NodeList object.
Both methods exist not only on the document itself, but also on each element. Therefore,
when you have a reference to an element, you can use these methods to search its children
without having to traverse the entire document. You can see some simpler examples in this
section.

To find all the <p> elements on a page, you can use this syntax:

document.querySelectorAll("p");

To find an element by its unique ID, you can use this syntax:

document.querySelector("#outerDiv");

Put those two lines into your HTML file and try them out. You will explore much more
advanced and interesting functionality in Chapter 4. For now, you can use what you’ve seen
about finding elements in the DOM to apply that knowledge to adding or modifying the
DOM through code.

EXAM TIP

jQuery is probably the most popular library available to date for simplifying and extending
the core JavaScript capabilities. Although jQuery isn’t a Microsoft technology, it’s essentially
an industry standard and fully supported by Microsoft. As such, web developers today are
generally understood to have a grasp of using jQuery interchangeably with core JavaScript.
The exam will expect that you can use jQuery effectively in place of the document object
selector methods.

Altering the DOM
Having access to the DOM through JavaScript can be used to provide rich user experience
when creating dynamic webpages. So far, all you’ve done is obtain references to the elements,
which is not particularly useful by itself. The purpose of retrieving elements from the DOM
is to be able to do something with them. In this section, you look at how to manipulate the
DOM by using JavaScript code to add and remove items.

After you have a reference to a container element, you can add child elements to it
dynamically. You can remove elements from it or simply hide elements. When you remove an
element from the DOM, it is gone. So if you want to make something invisible to the user but

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 29

be able to use it again later, you can simply hide it by using the appropriate CSS rather than
remove it. Here’s an example:

var element = document.getElementById("innerDiv");
alert(element.innerHTML);
document.removeChild(element);
var afterRemove = document.getElementById("innerDiv");
alert(afterRemove);

The first alert properly shows the innerHTML property of the innerDiv, but the code never
reaches the second alert. Instead, the getElementById method throws an error because the
element id specified no longer exists in the document.

Be aware of various methods when it comes to adding elements to and removing them
from the DOM.

The first method to look at is document.createElement. You use this method of the
document object to create a new HTML element. The method receives a single parameter—
the element name of the element you want to create. The following code creates a new
<article> element to use in your page:

var element = document.createElement("article");
element.innerText = "My new <article> element";

This new <article> element isn’t visible to anyone at this point; it merely exists in the DOM
for use within your page. Because you don’t have much need to create elements but then not
use them, next look at the methods available to get your new <article> element into your
page. The first of these methods is appendChild. You use this method to add a new HTML
element to the collection of child elements belonging to the calling container. The node is
added to the end of the list of children the parent node already contains. The appendChild
method exists on the document object as well as on other HTML container elements. It returns
a reference to the newly added node. This example appends a new <article> element to the
outerDiv:

var outerDiv = document.getElementById("outerDiv");
var element = document.createElement("article");
element.innerText = "My new <article> element";
outerDiv.appendChild(element);

Like most of the other methods explained in this section, the appendChild method returns
a reference to the new element appended to the child elements. This is a good way to ensure
that you always have a reference to an element for future use, especially when deleting ele-
ments. It also enables you to simplify or restructure the code. The following code achieves the
same result:

var element = document.getElementById("outerDiv").appendChild(document.
createElement("article"));
element.innerText = "My new <article> element";

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	30	 CHAPTER 1	 Implement and manipulate document structures and objects

Figure 1-18 shows the output of this code.

FIGURE 1-18  A new <article> element appended to the bottom of the page

You can see that the <article> element was put in at the end of your page. The
appendChild method always adds the new element to the end of the parent element’s child
node list. To insert the new <article> element somewhere more precise, the insertBefore
method could be more suitable. This method takes two parameters: the new element itself,
and the node before which you want to append the new element. For example, to insert your
new article before the innerDiv element, you could write the following code:

var element = document.getElementById("outerDiv").insertBefore(
 document.createElement("article"),
 document.getElementById("innerDiv"));
element.innerText = "My new <article> element";

This example uses the getElementById method to get a reference to the node before which
you wanted to insert your <article> element in the DOM. You can use other tools to make this
code simpler in some cases, depending on the document’s structure. Each element or node
has the properties listed in Table 1-3 to help get references to the more common nodes when
working with the DOM.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 31

TABLE 1-3  Properties available on a DOM element

Property Description

childNodes A collection of all child nodes of the parent element.

firstChild A reference to the very first child node in the list of child nodes of the parent node.

lastChild A reference to the very last child node in the list of the child nodes of the parent
node.

hasChildNodes A useful property that returns true if the parent element has any child nodes at all.
A good practice is to check this property before accessing other properties, such as
firstChild or lastChild.

For an example of these properties, you can change the preceding code to insert your
<article> element as the first element in the innerDiv element:

var inner = document.getElementById("innerDiv");
var element = inner.insertBefore(document.createElement("article"),inner.firstChild);
element.innerText = "My new <article> element";

This code produces the output shown in Figure 1-19.

FIGURE 1-19  The new <article> element inserted as the first child of a <div> element

Your <article> element is now positioned as the first child element of the innerDiv
element. Experiment with the other properties to become familiar with how they behave.
Every element that can have child elements supports all this functionality; however, if you
try to insert elements into a node that doesn’t support child nodes—such as an , for
example—the interpreter throws a run-time error.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	32	 CHAPTER 1	 Implement and manipulate document structures and objects

Just as you can add new elements to the DOM through code, you also can remove ele-
ments from the DOM using code. In this section you look at the methods available to do just
this, named removeChild and removeNode.

The removeChild method removes a child node from the calling container. This method
exists on the document object as well as other HTML container elements. The removeChild
method returns a reference to the removed node. This is especially handy if you plan to
return that node to the DOM—perhaps in response to some other user interaction with the
page. Remember, however, that if you don’t keep the returned reference to the removed
node, you have no way to add the element back in without completely re-creating it. The
following example removes the first <p> element from your innerDiv element:

var innerDiv = document.getElementById("innerDiv");
var p = innerDiv.removeChild(document.getElementById("P1"));

This code provides the output in Figure 1-20. You can see that the first <p> element has
been removed. Because you captured the removed element into the variable p, you could use
it later if you wanted to put the <p> element somewhere else.

FIGURE 1-20  Removal of the first <p> element by the removeChild method

Another useful method for removing nodes or elements is removeNode, which takes one
Boolean parameter. Setting the parameter as true tells the method to do a deep removal,
which means that all children are also removed. The following code demonstrates this:

var innerDiv = document.getElementById("innerDiv");
innerDiv.removeNode(true);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 33

Figure 1-21 shows that when this code is run in the browser, the innerDiv element has been
removed.

FIGURE 1-21  Using the removeNode method to remove the <div> node

Now, suppose that you want to change the content of the page more dramatically—per-
haps even by rewriting all the HTML content. This is completely possible with the techniques
you have seen so far, but you haven’t tried some methods yet: replaceNode and replaceChild.
These two methods operate in the same way as removeNode and removeChild in terms of the
parameters they take and which elements they affect. The difference, however, is that you can
replace the target element with a completely new element. The following code converts all
your inner paragraphs to anchor elements and adds line breaks, because you don’t get those
automatically as you do from the <p> element:

var innerDiv = document.getElementById("innerDiv");
var newDiv = document.createElement("div");
for (var i = 0; i < innerDiv.childNodes.length; i++) {
 var anchor = newDiv.appendChild(document.createElement("a"));
 anchor.setAttribute("href", "http://www.bing.ca");
 anchor.text = innerDiv.childNodes[i].textContent;
 newDiv.appendChild(document.createElement("br"));
}
innerDiv.replaceNode(newDiv);

This code produces the browser output as shown in Figure 1-22.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	34	 CHAPTER 1	 Implement and manipulate document structures and objects

FIGURE 1-22  Converting all the <p> elements to <a> elements

All your plain-text paragraphs now display as hyperlinks. Your original innerDiv element is
gone and no longer in the DOM. Your only reference to it is within the JavaScript code. You
would need to hang on to that reference if you intended to swap it back into the DOM later.
Further, because the code didn’t assign the new <div> element a unique id, the only way
to get a reference to it in the DOM is through your existing code reference. For this reason,
a recommended practice is to always give your new elements a unique id. If the JavaScript
variables go out of scope before you insert them into the document, you lose the references
to your elements completely.

In this section, you saw how to access HTML elements by using JavaScript to manipulate
the DOM in the browser. You now can retrieve references to the elements or nodes that make
up your HTML document as well as modify, add, and remove elements in the HTML document.
Next, you look at implementing media controls into your pages.

Implementing media controls
Embedding multimedia elements into webpages isn’t a new concept. This capability has been
around for a long time and has presented challenges in various situations. One key challenge
has often been dependence on a third-party object integrated with the browser to render the
media. In this section, you look at two new elements added to the HTML5 specification that
work with multimedia natively in the web browser and with JavaScript. You also examine the
<video> and <audio> elements.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 35

Using the <video> element
Embedding video into a webpage has become very popular, and many websites now include
a video element in their design. HTML5 has made including video in your webpages much
easier than it was previously. Here, you learn about the new <video> element provided by the
HTML5 standard and look at the available attributes and events you can use to control video
either declaratively, through static HTML, or dynamically, using JavaScript.

Embedding a video in the page is as simple as adding the following markup:

<video src="samplevideo.mp4" autoplay> </video>

That’s the bare minimum. However, you know that the bare minimum is rarely enough for
a professionally designed website. You need to work with more properties and events. You
also need to consider browser support for various video formats. First, you need to examine
the key attributes available to use on the <video> element, as listed in Table 1-4.

TABLE 1-4  Attributes available on the <video> element

Attribute Description

src This attribute specifies the video to play. It can be a local resource within your own
website or something exposed through a public URL on the Internet.

autoplay This attribute tells the browser to start playing the video as soon as it loads. If this
attribute is omitted, the video plays only when told to through player controls or
JavaScript.

controls This attribute tells the browser to include its built-in video controls, such as play and
pause. If this is omitted, the user has no visible way to play the content. You would
use autoplay or provide some other mechanism through JavaScript to play the video.

height/width These attributes control the amount of space the video will occupy on the page.
Omitting these causes the video to display in its native size.

loop This attribute tells the browser to continuously play the video after it completes. If
this attribute is omitted, the video stops after it plays through completely.

poster This attribute specifies an image to show in the place allocated to the video until the
user starts to play the video. Use this when you’re not using autoplay. It’s very useful
for providing a professional image or artwork to represent the video. If it’s omitted,
the poster appears in the first frame of the video.

With all this new information about the available attributes, you can provide a bit more
detail in your <video> element to control how you would like it to behave:

<video src="samplevideo.mp4" controls poster="picture.jpg" height="400" width="600">
</video>

The preceding <video> element specifies that it should initially display a poster image, sets
the height and width parameters, and indicates that the default controls should be available.
The absence of a loop attribute means that when the video is finished, it shouldn’t repeat
automatically. And the absence of an autoplay attribute tells the browser that you don’t want
the video to start playing automatically; instead, it should wait until the user invokes the play

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	36	 CHAPTER 1	 Implement and manipulate document structures and objects

operation with the controls or until you invoke the play operation with JavaScript. When you
do include the default controls, the user gets a basic set. Figure 1-23 shows what the default
controls look like in Internet Explorer.

FIGURE 1-23  The default Internet Explorer media controls

From left to right, the default controls provide a play button that changes to a pause but-
ton while the video is playing. A timer shows the current video position and how much time
remains in the video. A slider bar lets users navigate to a specific point in the video. The audio
control button pops out a volume slider bar when pressed, and finally, at the far right, is a
control that enables users to display the video at full-screen size.

So far, so good—for Internet Explorer users. But you also need to ensure that your video
will play successfully in other browsers. The problem is that not all browsers support all video
formats. Keep this in mind as you implement your <video> elements; what each browser
supports can (and will) change as well. You need to ensure that you provide options to the
browser so that it can choose which video format to play. If you don’t have all the appropriate
supported video formats and your page happens to get a visitor with a browser that can’t
play the video format you have, you also need to provide an alternative or at least the infor-
mation that the user’s browser doesn’t support this video. The following code demonstrates
this:

<video controls height="400" width="600" poster="picture.jpg">
 <source src="samplevideo.ogv" type="video/ogg"/>
 <source src="samplevideo.mp4" type="audio/mp4"/>
 <object>
 <p>Video is not supported by this browser.</p>
 </object>
</video>

This sample removed the src attribute from the <video> element and added child
<source> elements instead. The <video> element supports multiple <source> elements, so
you can include one for each video type. A browser goes through the <source> elements
from top to bottom and plays the first one that it supports.

Notice that the example also has an <object> element to cover the possibility that the
client browser has no support for the <video> element at all. In such cases, you could have a
Flash version of the video to play; but if no other version of the video is available to play, you
can just display a message that video isn’t supported, as shown in the code snippet. Browsers
that don’t support the <video> element ignore the element altogether but show the <object>
element that they do understand. This lets older browsers “fall back” to previous methods for
displaying video, ensuring that you can reach as many users as possible.

Finally, the <p> element is a last resort to provide at least some information to users that a
video is supposed to be playing here but that their browser doesn’t support it.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 37

EXAM TIP

If the browser supports the HTML5 video element, it doesn’t show the fallback. In this
case, make sure that you have the valid <source> element specified for that browser. If you
don’t, the video container shows an error in place of the control bar, saying that an invalid
link or file is specified.

Sometimes having more control over things is nice, or perhaps you just don’t like the look
and feel of the default controls. This is where JavaScript comes in. You can create your own
control bar and substitute your own control buttons to enable users to control the video.
The following example adds a few custom image elements to the page and wires up some
JavaScript to control the video:

<head>
 <style>
 img:hover {
 cursor: pointer;
 }
 </style>
 <script>
 var video;
 window.onload = function () {
 video = document.getElementById("sampleVideo");
 }

 function play() {
 video.play();
 }
 function pause() {
 video.pause();
 }
 function back() {
 video.currentTime -= 10;
 }

 </script>
</head>
<body>
 <table>
 <tr>
 <td>
 <video height="400" width="600" id="sampleVideo">
 <source src="samplevideo.mp4" type="audio/mp4"/>
 </video>
 </td>
 <td>

 </td>
 </tr>
 </table>
</body>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	38	 CHAPTER 1	 Implement and manipulate document structures and objects

This HTML produces the media controls shown in Figure 1-24.

FIGURE 1-24  A custom media control bar

As you can see, the code has created a little custom control bar and positioned it to the
right of the video frame. The <video> element offers many methods. Table 1-5 outlines the
more common ones.

TABLE 1-5  Methods and properties on the <video> object

Method/property Description

play() Plays the video from its current position.

pause() Pauses the video at its current position.

volume Allows the user to control the volume of the video.

currentTime Represents the current position of the video. Increase or descrease this value to
move forward or backward in the video.

You’ve learned all about how to display video in your webpages. Now turn your attention
to playing sounds using the <audio> element.

Using the <audio> element
The <audio> element is essentially identical to the <video> element. It has all the same at-
tributes and the same methods. The only real difference is how it displays in the browser.
Because no video is available to show, the <audio> element occupies no screen space. How-
ever, you can show the default controls—or you can again choose not to show the default
controls and to create your own mechanism to control the audio, either through custom user

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 39

interface elements or behind the scenes in JavaScript. Here is an example of what an <audio>
declaration looks like in your webpage:

<audio controls>
 <source src="sample.mp3" type="audio/mp3"/>
 <source src="sample.ogg" type="audio/ogg"/>
 <p>Your browser does not support HTML5 audio.</p>
</audio>

This HTML provides the output in Internet Explorer shown in Figure 1-25.

FIGURE 1-25  The default audio controls in Internet Explorer

Figure 1-25 shows the output of the <audio> element when you opt to use the built-in
controls. From left to right, you get a pause/play button, the counter, a progress bar, the total
time in the audio, and a volume slider bar. Because no other screen space is required as in the
video samples, the <audio> element has no height or width properties available. If you don’t
like the built-in audio control bar, you can choose not to include it in your declaration and
instead create a custom control bar that suits your needs.

The <audio> and <video> elements are very similar. The key point regarding these ele-
ments is that they provide a standardized way to represent media in HTML pages to simplify
reading the HTML code and know exactly what the page is supposed to be doing.

Now that you know how to use audio and video in your webpages, you can turn your
attention to the use of graphics.

Implementing graphics with HTML5 <canvas> and SVG
HTML5 provides a new mechanism to work with graphics in your webpages. The HTML5
specification introduces the <canvas> webpage element, which provides a blank canvas on
which you can draw dynamically. You can draw lines, text, and images on the canvas and
manipulate them with JavaScript.

Adding a canvas to your page is as simple as declaring one in the HTML. The <canvas>
element is similar to the <div> element. However, it’s a container for graphics as opposed to
text-based elements. Here is the markup for a <canvas> element:

<canvas id="drawingSurface" width="600" height="400">
Your browser does not support HTML5.
</canvas>

The HTML is very straightforward. You simply need to define a <canvas> and specify a
size. Also, if the user’s browser doesn’t support the <canvas> element, you can place fallback
text inside the <canvas> element to be displayed in its place. When you run this HTML in the
browser, you should notice absolutely nothing! This is because—just like with a <div> ele-
ment or any other container—the <canvas> element has no default visibility; in other words,

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	40	 CHAPTER 1	 Implement and manipulate document structures and objects

it’s visible, but it’s white with no borders, and thus it’s invisible on a blank HTML page. The
next example adds a simple style to your <canvas> element so that you can see its borders:

<style>
 canvas {
 border: 1px solid black;
 }
</style>

Now you can see your canvas, which should look Figure 1-26.

FIGURE 1-26  A blank <canvas> element

A blank canvas isn’t terribly exciting yet. But now that you have a basic canvas up and run-
ning, you can work through all the various methods to create graphics on the canvas. To do
that, you should create an onload event for your window (as you have in previous examples)
to encapsulate your code and cause the graphics to render when the page is loaded. To draw
on the canvas, you need to understand the coordinate system that the canvas uses.

The canvas provides a fixed (x,y) coordinate system in which the top-left corner of the can-
vas is (0,0). In this case, the bottom-left corner of the canvas is (0,400), the top-right corner
is (600,0), and the bottom-right corner is (600,400). You should be fairly used to this type of
system because it matches the browser window coordinate system, with (0,0) in the top-left
corner. However, the position of the canvas in the browser window is irrelevant to the draw-
ing methods you use to draw on the canvas. The coordinates for drawing on the canvas are
always based on the coordinates within the canvas itself, where the top-left pixel is (0,0).

As with any HTML element, to work with it through code you need to get a reference to it
in your JavaScript. Begin by writing the following code in your page:

window.onload = function () {
 var drawingSurface = document.getElementById("drawingSurface");
 var ctxt = drawingSurface.getContext("2d");
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 41

In the preceding code, you get a reference to your canvas element followed by a reference
to a “2d” context. The context is an object that provides the API methods you use to draw
on the canvas. Now, <canvas> supports only a 2d context, but you can expect to see a 3d
context in the future.

Having acquired a reference to the context, you can now start to look at the various
methods for drawing on your canvas.

Drawing lines
At the most basic level, you can draw lines on the canvas with the 2d context object you are
referencing. The context object provides the following methods for drawing lines, as listed in
Table 1-6.

TABLE 1-6  Methods for drawing lines

Method Description

beginPath Resets/begins a new drawing path

moveTo Moves the context to the point set in the beginPath method

lineTo Sets the destination end point for the line

stroke Strokes the line, which makes the line visible

With that information, in its simplest form, you can draw a line across your canvas like this:

ctxt.beginPath();
ctxt.moveTo(10, 10);
ctxt.lineTo(225, 350);
ctxt.stroke();

This code produces the line on the canvas shown in Figure 1-27.

FIGURE 1-27  A line drawn on the canvas

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	42	 CHAPTER 1	 Implement and manipulate document structures and objects

At the point where the line ends, you can continue drawing more lines by adding more
lineTo methods, as in the following example:

ctxt.beginPath();
ctxt.moveTo(10, 10);
ctxt.lineTo(225, 350);
ctxt.lineTo(300, 10);
ctxt.lineTo(400, 350);
ctxt.stroke();

Run this code and look at the output. You get a graphic that resembles Figure 1-28. You
might use straight lines in this way when plotting connected points on a line graph, for
example.

FIGURE 1-28  A polyline drawn on the canvas

Exploring the stroke method in more depth is worth the effort. If you were creating a chart
or a graph, you might want to change the color of your lines so that they stand out from the
axis. You might want to change the thickness. You do this by changing some properties on
the context object before calling the stroke method:

ctxt.lineWidth = 5;
ctxt.strokeStyle = '#0f0';

The lineWidth property accepts a value that determines the line width. The strokeStyle
property lets you change the line color. This property accepts all the common style formats
for specifying colors in HTML, including hexadecimal values or named colors. These changes
produce a new, more attractive output, as shown in Figure 1-29.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 43

FIGURE 1-29  The polyline rendered with a different color

You also can experiment with the lineCap property, which accepts a few values that control
how the end of the line will render. For example, you can set the lineCap property to round to
give the line a rounded cap. Applying a cap affects the length of the line. The cap is added to
the end of line, and its length matches what you have set for the line’s width. In this example,
the line has a width of 5. With a round cap set on the line, the total line length would be
extended by 5.

You’ve seen all you need to know about working with straight lines. Now turn your
attention to curves.

Drawing curves
Drawing curves is a little more involved because you have more parameters to consider.
Table 1-7 lists the methods used when working with curves on the HTML5 canvas.

TABLE 1-7  Methods for drawing curves

Method Description

arc A standard arc based on a starting and ending angle and a defined radius

quadradicCurveTo A more complex arc that allows you to control the steepness of the curve

bezierCurveTo Another complex arc that you can skew

Each drawing method can have styles applied to it, just like the line examples. You can
control the lineWidth, strokeStyle, and lineCap properties to change how your curves display.
Start off by creating some basic arcs on your canvas. The arc method takes the parameters
listed in Table 1-8.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	44	 CHAPTER 1	 Implement and manipulate document structures and objects

TABLE 1-8  Parameters required to draw an arc

Parameter Description

X, Y The first two parameters are the X and Y coordinates for the center of the circle.

radius The third parameter is the radius. This is the length of the distance from the
center point of the circle to the curve.

startAngle, endAngle The fourth and fifth parameters specify the starting and ending angles of the
arc to be drawn. This is measured in radians, not in degrees.

counterclockwise The final parameter specifies the drawing direction of the arc.

Add the following code to your page:

ctxt.beginPath();
ctxt.arc(150,100,75,0,2 * Math.PI, false);
ctxt.lineWidth = 25;
ctxt.strokeStyle = '#0f0';
ctxt.stroke();

ctxt.beginPath();
ctxt.arc(450, 100, 75, 1.5 * Math.PI, 2 * Math.PI, false);
ctxt.lineWidth = 25;
ctxt.strokeStyle = 'blue';
ctxt.stroke();

ctxt.beginPath();
ctxt.arc(150, 300, 75, 1 * Math.PI, 1.5 * Math.PI, false);
ctxt.lineWidth = 25;
ctxt.strokeStyle = '#0ff';
ctxt.stroke();

ctxt.beginPath();
ctxt.arc(450, 300, 75, .5 * Math.PI, 1 * Math.PI, false);
ctxt.lineWidth = 25;
ctxt.strokeStyle = '#f00';
ctxt.stroke();

This code sample draws four arcs: a full circle followed by three quarter circles, each with
a different style. Notice that some math formulas are specified in the parameters to the arc.
This math is necessary to get the value in radians because the parameters for startAngle and
endAngle are specified in radians, not in degrees. The code produces the drawing shown in
Figure 1-30.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 45

FIGURE 1-30  Drawing arcs on the canvas in different colors

The previous example demonstrated a simple arc. Now look at the next arc method, the
quadraticArc. The curve of a quadratic arc is evenly distributed from one end to the other
in terms of its distance from the center point. The quadraticCurveTo method allows you to
specify some additional parameters to alter the “steepness” of the curve—in other words,
to change the distance from the center point along the curve. Drawing a quadratic curve is
somewhat like drawing a straight line but then pinching it in the middle and pulling it away
to create a curve where the starting and ending points of the line stay fixed. The farther away
you pull the center point, the steeper the curve becomes. Here’s an example:

ctxt.beginPath();
ctxt.moveTo(10,380);
ctxt.quadraticCurveTo(300,-250,580,380);
ctxt.lineWidth = 25;
ctxt.strokeStyle = '#f00';
ctxt.stroke();

You first need use the moveTo method to tell the context where you want your curve to
start. Then, you pass the four parameters described in Table 1-9 to the quadraticCurveTo
method.

TABLE 1-9  Parameters required for the quadraticCurveTo method

Parameter Description

controlX, controlY These parameters define the control point, relative to the top left of the
canvas, that is used to “stretch” the curve away from the line formed by the
start and end points.

endX, endY This is the point where the curve should end.

The code sample produces the image in Figure 1-31.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	46	 CHAPTER 1	 Implement and manipulate document structures and objects

FIGURE 1-31  A quadratic curve output onto a canvas

As the control point moves farther away from the line formed by the start and end points,
you get a steeper curve. This example used a negative number to indicate that the control
point should be above the top of your canvas to stretch the curve to where you want it.

The final curve to look at is the Bezier curve. A Bezier curve is similar to the quadratic curve
except that it has two control points instead of just one. Having two points allows the Bezier
curve to create more complex curves. In both examples you have seen so far, the curve was
created around the context of a single point. The Bezier curve changes that. It’s easiest to see
in an example, and then I’ll explain the parameters. Create the following code:

ctxt.beginPath();
ctxt.moveTo(125, 20);
ctxt.bezierCurveTo(0, 200, 300, 300, 50, 400);
ctxt.lineWidth = 5;
ctxt.strokeStyle = '#f00';
ctxt.stroke();

The bezierCurveTo method follows a moveTo method call in the same way that
the quadraticCurveTo method did. You need to pass three sets of coordinates to the
bezierCurveTo method, as listed in Table 1-10.

TABLE 1-10  Parameters required for the bezierCurveTo method

Parameter Description

controlX, controlY The first two parameters specify the first control point that is used to stretch
out the curve.

Control2X, control2Y The second two parameters specify the second control point that is used to
stretch out the curve.

endX, endY The final two parameters specify the end point for the curve.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 47

The code sample produces the output shown in Figure 1-32. You can see that this curve is
skewed because of the two control points.

FIGURE 1-32  A Bezier curve drawn on a canvas

In the next section, you learn about using path methods to combine everything you’ve
looked at so far.

Using path methods
When using the context object to draw, you always need a starting point and an ending
point. The ending point for one stroke also can become the starting point for the next stroke.
You do this by calling the beginPath method on the context object and then drawing all
your lines before calling either the closePath method (which ends the line) or the beginPath
method (which starts a new line) again. Recall that the first arc example called the beginPath
method before drawing each arc. Had the code not done that, the line would have contin-
ued across the canvas from one arc to the next. But by calling the beginPath method again,
you reset the path’s starting point. So essentially, you can string together all the calls to the
various drawing methods to create a complex stroke. The stroke—no matter how simple or
complex—is called a path. Run the following code and see what kind of image you end up
with:

ctxt.beginPath();
ctxt.arc(300, 200, 75, 1.75 * Math.PI, 1.25 * Math.PI, false);
ctxt.lineTo(150, 125);
ctxt.quadraticCurveTo(300, 0, 450, 125);
ctxt.lineTo(353, 144);
ctxt.strokeStyle = "blue";
ctxt.lineCap = "round";
ctxt.lineWidth = 10;
ctxt.stroke();

This code produces the output shown in Figure 1-33.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	48	 CHAPTER 1	 Implement and manipulate document structures and objects

FIGURE 1-33  A custom path drawn on the canvas

Although this is still a simple example, you can get creative and put together images quite
nicely. Depending on your math skills, you can create some very complex graphics using
these methods.

Next, look at the other methods that exist for drawing shapes.

Using the rect method
Earlier, you saw how to draw circles using the arc method. And as you saw in the previous
section, you can draw custom shapes of any sort and size by using the beginPath method and
stringing together a series of drawing methods. But you don’t always need to do that; some
shapes are built in. In this section, you look at the built-in functionality to build rectangles.
Then you look at the functionality to fill your drawn shapes with colors and patterns. The
context object to which you have a reference has a method called rect. The rect method takes
the parameters listed in Table 1-11.

TABLE 1-11  Parameters required for drawing rectangles

Parameter Description

x,y The x-coordinate and y-coordinate define the starting position of the rectangle. This is
the top-left corner of the rectangle.

width This defines the width of the rectangle.

height This defines the height of the rectangle.

A simple call to the rect method, as in the following code, draws a rectangle:

ctxt.beginPath();
ctxt.rect(300, 200, 150, 75);
ctxt.stroke();

This code draws a rectangle as shown in Figure 1-34.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 49

FIGURE 1-34  A rectangle drawn on the canvas using the rect method

Notice that although the parameters passed in for the top-left corner were (300,200),
which is the center of your canvas, the rectangle is off center. To center your rectangle, you
would need to do a bit of math to calculate the center based on the size of your canvas as
well as the size of your desired rectangle. The following code should center your rectangle:

ctxt.beginPath();
var x, y;
x = 150;
y = 75;
ctxt.rect(300—(x/2), 200—(y/2), x, y);
ctxt.stroke();

Now that you can draw shapes and rectangles, you can look at how you would go about
filling your shapes with colors or patterns.

Using the fill method
In this section you examine how you can fill your shapes. You have drawn various types
of shapes, but so far they have been empty. Here you’ll see how to fill them with colors,
gradients, and patterns.

Filling a shape with a color is as simple as setting the fillStyle property to a color and
calling the fill method. Inserting the following code before calling the stroke method fills your
shape with a blue color:

ctxt.fillStyle = "blue";
ctxt.fill();

With respect to the rect method, you get a special fill method specifically for rect called
fillRect. With this method, you can create and fill your rectangle in one call:

ctxt.fillStyle = "blue";
ctxt.fillRect(300—(x / 2), 200—(y / 2), x, y);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	50	 CHAPTER 1	 Implement and manipulate document structures and objects

Using the fillRect method reduces the amount of code required. And it’s just as simple to
fill nonrectangular shapes, such as the complex Path graphic that you created earlier, with a
single call to the fill method:

ctxt.beginPath();
ctxt.arc(300, 200, 75, 1.75 * Math.PI, 1.25 * Math.PI, false);
ctxt.lineTo(150, 125);
ctxt.quadraticCurveTo(300, 0, 450, 125);
ctxt.lineTo(353, 144);
ctxt.strokeStyle = "blue";
ctxt.lineCap = "round";
ctxt.lineWidth = 10;
ctxt.fillStyle = "Green";
ctxt.fill();
ctxt.stroke();

You can see in Figure 1-35 that the logic of coloring in this complex shape is completely
handled by the browser.

FIGURE 1-35  Using the fill method to color in a complex object

That’s all it takes to fill a shape with a solid color. Filling shapes with a gradient requires a
few extra steps.

Creating a gradient involves using a new CanvasGradient object. You first call the
createLinearGradient method available on the context object to get a CanvasGradient object.
On that CanvasGradient object, you define the color stops that you want to blend to create
the gradient effect. Then you assign your CanvasGradient object to the fillStyle property of
the context. The following code creates and fills a rectangle with a linear gradient:

var ctxt = drawingSurface.getContext("2d");
ctxt.lineWidth = 3;
ctxt.rect(150, 150, 200, 125);
var gradient = ctxt.createLinearGradient(150, 150, 200, 125);
gradient.addColorStop(0, "Black");
gradient.addColorStop(0.5, "Gray");
gradient.addColorStop(1,"White");
ctxt.fillStyle = gradient;
ctxt.fill();
ctxt.stroke();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 51

This code creates the CanvasGradient object by passing in the start and end points of a
gradient line. You then add three color stops. The addColorStop method takes two parameters.
The first is a value from 0 to 1, where 0 is the starting point of the gradient line and 1 is the
ending point. The second parameter is the color to start filling with at that stop. This example
has three stops, so the gradient transitions through three colors. The gradient output is dis-
played in Figure 1-36.

FIGURE 1-36  The <canvas> element colored with a linear gradient

You can also create a radial gradient using the createRadialGradient method. This method
takes six parameters, which specify the center point and radius of two circles and the color
transitions through the stops along the cone formed by the two circles. The following code
produces a radial gradient in which the cone is pointed toward the viewer:

var ctxt = drawingSurface.getContext("2d");
ctxt.lineWidth = 3;
ctxt.rect(150, 150, 250, 175);
var gradient = ctxt.createRadialGradient(200, 200,5, 250, 250,100);
gradient.addColorStop(0, "Red");
gradient.addColorStop(.5, "Orange");
gradient.addColorStop(1, "Blue");
ctxt.fillStyle = gradient;
ctxt.fill();
ctxt.stroke();

Figure 1-37 shows the output of this gradient:

FIGURE 1-37  A radial gradient colored on a canvas

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	52	 CHAPTER 1	 Implement and manipulate document structures and objects

The last fill option to look at involves using a fill pattern. You need an external image,
which is applied as a pattern throughout the shape. For example, you can use a texture that
you created as a background to your canvas by using the following code:

var ctxt = drawingSurface.getContext("2d");
ctxt.lineWidth = 3;
ctxt.rect(150, 150, 200, 125);
var img = new Image();
img.src = "texture.png";
img.onload = function () {
 var pat = ctxt.createPattern(img, "repeat");
 ctxt.fillStyle = pat;
 ctxt.fill();
 ctxt.stroke();
}

Figure 1-38 shows the output of this code.

FIGURE 1-38  The canvas filled with a pattern drawn on it

The preceding code calls the createPattern method and passes it a reference to an Image
object and a repeat pattern. The repeat pattern can be no-repeat, repeat-x, or repeat-y, but
it defaults to repeat if you don’t specify anything. You need to assign an event handler to the
onload event of the Image object to ensure that you draw the pattern only after the image
loads. Otherwise, the code could run before the picture is rendered, and the pattern won’t
display.

This section has covered a lot about how to work with shapes and fill them. All your graphics
have been created by using code to manually draw shapes. Next, you see how to draw exist-
ing graphics from external files on your canvas, and then you look at drawing text.

Drawing images
Drawing images on a canvas is just as straightforward as the other drawing methods you’ve
seen. To draw an image on a canvas, you use the drawImage method of the context object.
This method takes an Image object and some (x,y) coordinates to define where the image
should be drawn. Just like with the rectangle, the image’s top-left corner is drawn at the
specified (x,y). The default size of the image is the actual image size, but as you will see right

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 53

after, you can also resize the image as you draw it. To simply draw the image, create the
following code:

var drawingSurface = document.getElementById("drawingSurface");
var ctxt = drawingSurface.getContext("2d");
var img = new Image();
img.src = "orange.jpg";
img.onload = function () {
 ctxt.drawImage(img, 0, 0);
 ctxt.stroke();
}

This code produces a <canvas> element with the image drawn on it, as shown in
Figure 1-39.

FIGURE 1-39  An image drawn on a canvas

If you want to resize the image, you can replace the drawImage method call with the
following line:

ctxt.drawImage(img, 0,0,img.width * .5, img.height * .5);

This reduces the image size by 50 percent.

Now look at how you can draw text on your canvas.

Drawing text
Drawing text on the canvas involves adding a few additional tools to your chest from the
context object, using the strokeText method and the font property. You see how to apply
color to your text and, finally, how to manage its alignment.

In its simplest form, drawing text requires only the following code:

ctxt.strokeText("1. Text with default font", 100, 100);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	54	 CHAPTER 1	 Implement and manipulate document structures and objects

Remember that you need to make sure the window has finished loading and you need to
get a context object. Here’s the full code for this example:

window.onload = function () {
 var drawingSurface = document.getElementById("drawingSurface");
 var ctxt = drawingSurface.getContext("2d");
 ctxt.strokeText("1. Text with default font", 100, 100);
}

That’s it. The strokeText call draws the specified text into the specified coordinates on the
canvas. The parameters specify what text to draw, and the (x,y) coordinates specify where
drawing should begin. The strokeText method draws in the default font style. You can easily
change the font property of the context object to enhance the appearance of your text. For
example, running the following code changes the font size to 24 and the font family to Arial:

ctxt.font = "24px arial";
ctxt.strokeText("2. Text with altered font", 100, 125);

To color your text, you could add this code:

ctxt.font = "24px arial";
ctxt.strokeStyle = "Red";
ctxt.strokeText("3. Text with altered colored font", 100, 160);

When you run the preceding code, notice that your text is outlined. This is the default
behavior when you increase the font size; it’s drawn as outlined. To draw solid-colored text,
add the following code, which sets the fillStyle property and calls the fillText method instead
of the strokeStyle and StrokeText methods:

ctxt.font = "24px arial";
ctxt.fillStyle = "Red";
ctxt.fillText("4. Text with altered colored font", 100, 185);

You can also set the alignment of your text within the canvas. For example, to ensure your
text is centered, add this code:

ctxt.font = "24px arial";
ctxt.textAlign = "center";
ctxt.fillStyle = "Red";
ctxt.fillText("5. Text with altered colored font Centered.", drawingSurface.width / 2,
drawingSurface.height / 2);

By setting the textAlign property to the value center, you are telling the context to consider
the specified (x,y) coordinate as the center point of the string instead of the beginning point
of the string. So, you divide the canvas width and height by two to get the center point of the
canvas, and you get a string centered horizontally and vertically.

Figure 1-40 shows the progression of your text:

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 55

FIGURE 1-40  Progression of text with changing styles

The canvas is a strong utility for presenting graphics dynamically in the browser. However,
it’s not the only graphical tool available. In the next section, you look at using Scalable Vector
Graphics.

Scalable Vector Graphics (SVG)
Scalable Vector Graphics (SVG) is an XML-based language for creating two-dimensional
graphics. It’s implemented by using tags defined by the SVG XML namespace and embedded
in HTML5 documents within opening and closing <svg> elements.

SVG objects don’t lose any quality as users zoom in or out. You can access SVG objects
via the DOM, and—similar to HTML elements—SVG elements support attributes, styles,
and event handlers. The <svg> element provides a container in which to render graphics;
SVG renders inline with the page’s layout. Here’s an example of an SVG graphic with event
handlers:

<!DOCTYPE html>
<html>
 <head>
 <title>Test Web Page</title>
 <script language="javascript">
 function Red(evt) {
 var circle = evt.target;
 circle.setAttribute("style", "fill: red");
 }

 function Green(evt) {
 var circle = evt.target;
 circle.setAttribute("style", "fill: green");
 }
 </script>
 </head>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	56	 CHAPTER 1	 Implement and manipulate document structures and objects

 <body>
 <svg>
 <circle id="Circle" cx="50" cy="50" r="50" fill="green" onmouseover="Red(evt)"
 onmouseout="Green(evt)"/>
 </svg>
 </body>
</html>

This code produces the output shown in Figure 1-41. The JavaScript event handlers turn
the circle red when the mouse hovers over it and back to green when the mouse is moved
out of the circle.

FIGURE 1-41  A circle drawn using SVG

All the shape-drawing and line-drawing functionality you saw in the <canvas> element
discussion exists for SVG as well, although the syntax is different, of course. The following
code produces a slightly more elaborate graphic.

<svg>
 <rect id="lightStandard" x="100" y="100" width="60" height="200" fill="black"/>
 <circle id="redLight" cx="129" cy="145" r="25" fill="red"/>
 <circle id="amberLight" cx="129" cy="205" r="25" fill="yellow"/>
 <circle id="greenLight" cx="129" cy="265" r="25" fill="green"/>
</svg>

The image in Figure 1-42 shows the output of this code:

FIGURE 1-42  Multiple shapes drawn using SVG

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 57

In this example, the <rect> element was used to create the background rectangle, and a
series of <circle> elements were used to create the lights. Each SVG shape requires the same
types of parameters as their canvas counterpart, and the same rules apply. The <rect> ele-
ment needs an (x,y) coordinate to establish where it should be drawn, along with a width and
height to establish the size. The same is true for each circle, except that you specify the radius
for the size. The fill attribute sets the color to be used to fill the shape.

SVG also supports the same basic shape-drawing functions as the canvas context. The
following code segment shows the use of the polyline, polygon, line, and ellipse and produces
the output shown in Figure 1-43:

<svg>
 <polygon points="10,15 30,35 10,85 100,85, 70,35,100,15" fill="purple"/>
 <polyline points="10,150 30,170 50,132 62,196 78,165 96,170"

 style="stroke:orange; fill:none; stroke-width:5;"/>
 <line x1="150" y1="100" x2="150" y2="150" style="stroke:blue;stroke-width:3"/>
 <ellipse cx="250" cy="150" rx="30" ry="55" fill="green"/>
 <text x="10" y="10" style="stroke: black;stroke-width:1;">

 Examples of SVG Shapes and Text</text>
</svg>

FIGURE 1-43  Text, a line, a polygon, an ellipse, and a polyline drawn in different colors

EXAM TIP

In some cases, using SVG graphics is simpler than using the <canvas> element. As the
examples have shown, you can create SVG images declaratively directly within the HTML
itself. However, as you increase the number of objects in an SVG rendering, performance
can become a concern. In cases where performance is a consideration, using the <canvas>
element is a preferable approach.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	58	 CHAPTER 1	 Implement and manipulate document structures and objects

SVG also supports rendering existing graphics in the form of external image files, as shown
here:

<svg id="mySVG">
 <image href="orange.jpg" width="250" height="100"/>
</svg>

Thought experiment
Creating a game

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You were hired to create a game. For the first stage of the game, you must make a
ball move from the left side of the screen to right side. How can you achieve this
with the HTML5 <canvas> element? How about with SVG? You demonstrate this
stage to stakeholders, and they love it. For the next stage, when the ball is clicked, it
must split into two balls. As the number of balls increases due to being clicked, what
considerations need to be taken into account? Would using SVG or the <canvas>
element be the better solution for this game?

Objective summary
■■ JavaScript is a powerful tool that enables developers to manipulate the DOM

programmatically in the browser.

■■ HTML5 supports rich media controls to incorporate video by using the <video>
element and audio by using the <audio> element.

■■ The <video> element supports multiple media formats by using the <source> element.

■■ The HTML5 <canvas> and <svg> elements support a rich API to create both simple
and complex graphics in the browser.

■■ Both the <canvas> and <svg> graphics engines can draw text, lines, shapes, fonts, fills,
and gradients.

■■ The <canvas> element is drawn on via JavaScript by getting a reference to the context.

■■ The <svg> element renders graphics by using a declarative syntax.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.2: Write code that interacts with UI controls	 CHAPTER 1	 59

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following JavaScript methods can’t be used to select an element in the
DOM?

A.	 getElementById

B.	 querySelector

C.	 getElementByClassName

D.	 queryAll

2.	 Which line of JavaScript successfully retrieves only the image element with the ID
myDog from the following HTML? Choose all that apply.

<form>
 <div id="main" class="mainStyle">
 <p id="dogs">
 This is a web page about dogs. Here is my dog picture:

 Here is a picture of my friend’s dog:

 </p>
 </div>
</form>

A.	 document.getElementbyId(“myDog”);

B.	 <p>.getChildNode(“img”);

C.	 document.getElementbyId(“dogs).querySelector (“thumb”);

D.	 document.querySelectorAll(“thumb”);

3.	 To hide an element in the DOM and still be able to add it back later, what should you
do?

A.	 Nothing, because the DOM is always available in a static form.

B.	 Keep a reference to the removed node to be able to add it back.

C.	 Call the document.restoreNodes method.

D.	 You can’t add an element back after it’s removed.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	60	 CHAPTER 1	 Implement and manipulate document structures and objects

4.	 When implementing the HTML5 video element, how do you ensure that the rendering
of the element can function in different browsers?

A.	 You need to do nothing, because HTML5 is now a standard specification.

B.	 Specify all the source video types in the src attribute of the video element.

C.	 Include the <source> element for each video type so that each browser can play
the version that it supports.

D.	 Include the <object> element for each video type so that the browser can play the
version that it supports.

5.	 When drawing on the HTML5 <canvas> element, what method is used on the context
to begin drawing at a new point?

A.	 moveTo

B.	 lineAt

C.	 beginPath

D.	 stroke

6.	 When performance is critical for an HTML5 graphics application, what should you use?

A.	 <canvas> using a declarative syntax to create the graphics

B.	 <svg> using a declarative syntax to create the graphics

C.	 <canvas> using JavaScript to create the graphics

D.	 <svg> and <canvas> combination to leverage the best performance of both

Objective 1.3: Apply styling to HTML elements
programmatically

The section covers applying styles to the HTML elements on the page dynamically, using
JavaScript. When you retrieve element references by using methods such as getElementById,
you can then manipulate those elements, including their styles.

This objective covers how to:
■■ Change the location of an element

■■ Apply a transform

■■ Show and hide elements

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Apply styling to HTML elements programmatically	 CHAPTER 1	 61

Changing the location of an element
By using the methods to retrieve an element from the DOM in JavaScript, you can apply styles
dynamically through code that can change the element’s position on the page. How elements
are laid out on the page can affect how elements behave when they are repositioned.

A few options determine how HTML elements are positioned on a webpage. By default,
all HTML elements flow statically from left to right in the same order that they are declared
in the HTML page. However, CSS provides a mechanism to specify some advanced options in
element position. You can position elements by using absolute positioning or relative position-
ing. With absolute positioning, the element is placed in the exact location specified, relative to
its container’s borders. However, with relative positioning, the element is positioned relative
to its immediate left sibling’s coordinates. You can apply four properties individually or in
combination to control the position of an element: Top, Left, Right, and Bottom. Each property
takes a distance parameter that specifies the relative distance of the object from a reference
point based on the positioning attribute specified. When using absolute or relative position-
ing, the default border or margin settings are ignored because the object is positioned where
the positioning attributes direct the element to be.

The code in Listing 1-3 demonstrates this.

LISTING 1-3  HTML and JavaScript to illustrate positioning

<!DOCTYPE html>
<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8"/>
 <title></title>
 <style>
 html, body {
 height: 100%;
 width: 100%;
 }
 img {
 height: 150px;
 width: 225px;
 }
 </style>
 <script>
 window.onload = function () {
 var top = document.getElementById("topText");
 var left = document.getElementById("leftText");
 var pos = document.getElementById("positioning");
 document.getElementById("btnPosition").onclick = function () {
 var img = document.getElementById("orange2");
 img.style.position = pos.value;
 img.style.left = left.value + "px";
 img.style.top = top.value + "px";
 }
 }
 </script>
 </head>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	62	 CHAPTER 1	 Implement and manipulate document structures and objects

 <body>
 <table style="width: 100%; height: 100%; border: 1px solid black;">
 <tr>
 <td style="vertical-align: top; width: 80%">

 </td>
 <td style="vertical-align: top;">Left:
 <input type="text" id="leftText"/>

 Top:
 <input type="text" id="topText"/>

 Position:
 <select id="positioning">
 <option>relative</option>
 <option>absolute</option>
 </select>

 <input type="button" id="btnPosition" value="Update"/>
 </td>
 </tr>
 </table>
 </body>
</html>

When the code is rendered in the browser, the default position is in effect, as shown in
Figure 1-44.

FIGURE 1-44  The default position of two images

All positioning attributes that have been discussed are available declaratively in the style
attribute of the HTML element but can also be accessed programmatically and manipulated
via JavaScript. The webpage is enhanced to provide some end-user functionality to control
the positioning of the two images. The code in Listing 1-3 provides an HTML page with the
two images and some input controls to control the positioning of the second image. You
can enter the top and left positions as well as whether to position relative to the first orange
picture or to position as absolute to the parent table element.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Apply styling to HTML elements programmatically	 CHAPTER 1	 63

When top and left are set to 50px and positioning is relative, you’ll see the result shown in
Figure 1-45.

FIGURE 1-45  Positioning the second image relative to its neighboring element

Keeping the values the same but changing the positioning to absolute changes the posi-
tioning of the elements, as shown in Figure 1-46.

FIGURE 1-46  Positioning the second image absolute to its parent element.

You can employ yet another mechanism to change the appearance of an HTML element:
transforms, which you examine next.

Applying a transform
Applying transforms is a way to change an object on the webpage. Transforms enable you to
change an element’s appearance. You can make an element larger or smaller, rotate it, and
so on. Quite a few transform methods are available. To add a transform to an element, you
declare it in the CSS for the element by adding the transform property as follows:

.rota {transform: rotate(90deg);}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	64	 CHAPTER 1	 Implement and manipulate document structures and objects

This code applies the rotate method to an object when you add the .rota CSS class to the
object’s styles collection. As mentioned, various transform methods are available, and you’ll
examine each in turn. Use the following code for all the examples in this section:

<!DOCTYPE html>
<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8"/>
 <title></title>
 <style>
 #orange1 {
 height: 150px;
 width: 225px;
 }
 .trans {
 transform: scale(1) ;
 }
 </style>
 <script>
 window.onload = function () {
 document.getElementById("orange1").onclick = function () {
 this.classList.add("trans");
 }
 }
 </script>
 </head>
 <body>

 </body>
</html>

This code creates a single image object to which you’ll apply the transformations; however,
the transformations can work successfully against any HTML element. The image also is as-
signed an event handler for the click event. This suffices for demonstration purposes. You can
use any supported event to trigger a transformation. In the examples that follow, you’ll need
to replace the .trans CSS class in the preceding code with the appropriate transform methods
to demonstrate them. You’ll be prompted to replace the code when needed.

Using the rotate method
The rotate transform method enables you to rotate an object by a specified number of
degrees. The method accepts a single parameter that specifies the number of degrees. In
the previous code used for the scale transformation, replace the transform method with the
following:

transform: rotate(90deg);

Now, run the webpage in the browser. Click the image to see the transform take effect. In
this case, the image is rotated clockwise by 90 degrees (see Figure 1-47). If you instead want
to rotate the image counterclockwise, you can specify a negative number of degrees.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Apply styling to HTML elements programmatically	 CHAPTER 1	 65

FIGURE 1-47  The effect of the rotate transformation on an image

The transform also supports the rotateX and rotateY methods, which accept a single
parameter in degrees to specify an angle around the x-axis or y-axis in which to rotate. You
can, for example, use these methods to flip an element vertically or horizontally by specifying
180deg as the parameter. In this case, the element rotates 180 degrees along the specified
axis—which essentially results in the image being flipped or mirrored along that axis.

Using the translate method
The translate method lets you move an HTML element by changing its relative X and Y position
on the page. You implement the translate method by specifying the translate method on the
transform property. In the example listing, replace the transform method with the following:

transform: translate(50px,0px);

The translate method moves the HTML element to which it’s applied by 50 pixels in the
X direction and 0 pixels in the Y direction relative to where it now resides (see Figure 1-48).
Again, translateX and translateY methods are available if the desired effect is to move the
object around the x-axis or y-axis.

FIGURE 1-48  The effect of the translate method applied to an image

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	66	 CHAPTER 1	 Implement and manipulate document structures and objects

Using the skew method
You can skew an HTML element using the skew method of the transform property. Skewing
slants the object so that it’s not parallel to the vertical or horizontal axis. In the example code,
replace the transform property with the following code line. Figure 1-49 shows the effect

transform: skew(10deg, 10deg);

FIGURE 1-49  The effect of the skew method on an image

Using the scale method
The scale method enables you to resize elements by a specified ratio. The scale method takes
one parameter: a decimal value that represents the percentage to scale. Specifying a value
greater than 1 makes the object larger; specifying a value less than 1 but greater than 0
makes the object smaller. Specifying a value of –1 flips the object over its horizontal axis. In
the sample code, replace the transform property with the following:

transform: scale(1.5);

This scale transform increases the size of the element by 50 percent, essentially multiplying
the existing height and width values by 1.5. The object scales out from its absolute center
so that it expands in all directions; it doesn’t just extend down and to the right. Figure 1-50
shows the result of a scale transform.

FIGURE 1-50  The effect of the scale transform on an image

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Apply styling to HTML elements programmatically	 CHAPTER 1	 67

Combining transformations
Transformations individually lend great flexibility to what you can accomplish by changing
the appearance of HTML elements, but the transform style isn’t limited to specifying a single
transformation method. You can combine the methods to apply multiple effects to the ele-
ment. In the sample code, change the transform property to the following code:

transform: translate(50px,0px) scale(1.5) skew(10deg, 10deg);

In this code, three effects are applied. Order matters. The effects are applied in the order
that they are specified in the transform property. In this case, the translate property is applied
first, and then the translated object is scaled. Finally, the resulting object is skewed. The effect
on the HTML element is that it is moved 50 pixels along the x-axis, scaled by 50 percent, and
then skewed 10 degrees.

Showing and hiding elements
You can show and hide elements declaratively in the HTML markup or programmatically by
modifying the object’s CSS properties through JavaScript. You can create the CSS properties
that show or hide an element directly in an object’s style property or in a CSS style, and it is
added to the element’s style collection. This section’s examples use the code from Listing 1-2,
updated as follows:

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
…
 <script>
 window.onload = function () {
 document.getElementById("btnHideAnElement").onclick = function () {
 if (document.getElementById("innerDiv").style.display == 'inline') {
 document.getElementById("innerDiv").style.display = 'none';
 }
 else {
 document.getElementById("innerDiv").style.display = 'inline';
 }
 }
 }
 </script>
…
 <button type="button" id="btnHideAnElement" >Show/Hide Element</button>
 </form>
 </body>
</html>

This code modifies the script block and adds a new button to the bottom of the page. The
button is connected to an onclick event after the window finishes loading. In this event, you
modify programmatically the visibility of the HTML elements.

The innerDiv element defaults to hidden when the page is loaded. When the button is
clicked, the code evaluates the state of the display CSS property to determine whether the
element is now visible or hidden. Depending on the result, the property is toggled. The

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	68	 CHAPTER 1	 Implement and manipulate document structures and objects

display property accepts two possible values. A value of inline tells the browser to show the
item, while a value of none means the browser should hide the item.

The second property available for controlling element visibility is called visibility. This
property accepts four possible values, as outlined in Table 1-12.

TABLE 1-12  Values available for the visibility property

Value Effect

visible Sets the property to visible to show the element

hidden Hides the element

collapse Collapses the element where applicable, such as in a table row

inherit Inherits the value of the visibility property from the parent

Some of these values have interesting behaviors. When you use the display CSS property
and set it to the value of none, the HTML element is hidden. But hiding the element in this
way also removes it from the layout. All the surrounding elements realign themselves as
though the element was not there at all. When display is set to inline, the element is shown
again and all the surrounding elements move out of the way, back to where they were
originally.

The visibility CSS property behaves slightly differently. Setting the visibility property to
hidden hides an element, but the hidden element’s surrounding elements act as though
it’s still there. The space that the element occupied is maintained intact, but the element’s
content is hidden. When the property is set back to visible, the element reappears exactly
where it was, without affecting any surrounding elements. The collapse value, on the other
hand, acts more like the display property. If you specify collapse on something such as a table
row, the table rows above and below collapse and take over the space that the collapsed row
was occupying. When you set the visibility property back to visible, the surrounding elements
move out of the way to show the element. This is useful for situations where you want to have
content that can be collapsed or displayed one item at a time to preserve space, such as on
an FAQ, where the answer to a question is shown when a user clicks the question but then
collapsed when the user clicks a different question.

EXAM TIP

If you need to preserve the page layout when altering visibility, use the visibility property
with the hidden value. If you don’t need to preserve the layout, you can either set the
display property to none or set visibility to collapse.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Apply styling to HTML elements programmatically	 CHAPTER 1	 69

Thought experiment
Creating a dynamic survey

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You have been tasked with building a webpage that requires a user to answer a
series of questions. However, the questions are dynamic, based on the user’s answer
to a previous question. The user should see only relevant questions. Take the follow-
ing question flow as the rules for this page:

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	70	 CHAPTER 1	 Implement and manipulate document structures and objects

And the following HTML5 page:

<html>
 <head>
 <meta charset="utf-8"/>
 <title></title>
 </head>
 <script>
 ...
 </script>
 <body>
 <header>
 A dynamic Questionnaire.
 </header>
 <section>
 <article>
 <hgroup>
 <h1>Questionnaire</h1>
 <h2>Answer the questions in order as they
 appear.</h2>
 </hgroup>
 <div id="Question1">
 1.
 </div>
 <div id="Question2">
 2.
 </div>
 <div id="Question3">
 3.
 </div>
 <div id="Question4">
 4.
 </div>
 <div id="Question5">
 5.
 </div>
 <div id="Question6">
 6.
 </div>
 <div id="Question7">
 7.
 </div>
 <div id="Question8">
 8.
 </div>
 <div id="Question9">
 9.
 </div>
 <div id="Question10">
 10.
 </div>
 </article>
 </section>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.3: Apply styling to HTML elements programmatically	 CHAPTER 1	 71

Objective summary
■■ You can use CSS to define transformation effects.

■■ You can apply transformations via JavaScript to manipulate the DOM with effects such
as rotate, skew, scale, and translate.

■■ The visibility property provides options to control an element’s visibility within the page.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Absolute positioning positions an object relative to what?

A.	 The top-left corner of the browser window.

B.	 The top-left corner of its parent element.

C.	 Centered inside the window.

D.	 Centered inside its parent element.

2.	 Which transformation enables you to change the size of an element?

A.	 rotate

B.	 skew

C.	 translate

D.	 scale

3.	 Which syntax preserves the layout of the page when hiding an element in the DOM?

A.	 display=’hidden’

B.	 display=’inline’

C.	 visibility=’none’

D.	 visibility=’hidden’

 </body>
</html>

Create all the JavaScript necessary to show and hide the required elements,
depending on the answer to each question. Assume that the answer to each
question is a radio button selection with only Yes/No options.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	72	 CHAPTER 1	 Implement and manipulate document structures and objects

Objective 1.4: Implement HTML5 APIs

JavaScript APIs have provided some new powerful functionality, such as the ability to store
more data locally and make that data available to the webpage through the Web Storage API.
The AppCache API allows you to take web applications offline. The Geolocation API provides
methods to work with global positioning within the application.

This objective covers how to:
■■ Use the storage API

■■ Use the AppCache API

■■ Use the Geolocation API

Using the storage API
WebA Storage is a new API for storing webpage data locally. Web Storage, described in this
section, replaces the concept of cookies.

NOTE  BROWSER SUPPORT

Of course, you must consider your audience’s browser support for HTML5 and Web Storage
before you choose to use it exclusively.

Two forms of Web Storage exist: local and session storage. Local storage is persistent; data
stored in local storage is available to the webpage even if the user closes the browser com-
pletely and then reopens it to your site. Session storage is available only for the duration of
the current session, so if the user closes the browser, session storage is automatically cleaned
up and is no longer available. The Web Storage API is available as a global object. To access
local storage, use the localStorage object; to access session storage, use the sessionStorage
object.

EXAM TIP

The localStorage and sessionStorage objects provide exactly the same API. All the examples
shown in this section work exactly the same with either object. The only difference is the
lifetime of the storage. Remember that sessionStorage is cleared when the session is closed,
whereas localStorage is still be accessible after a session closes and a new session opens.

Table 1-13 lists the API methods and their usage. Web Storage is implemented as name
value pairs and stored as strings. Any data that you can put into a string format can be stored
in Web Storage. This isn’t as limiting as it sounds. You’ll see some examples of storing complex
objects.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 73

TABLE 1-13  Methods available on storage objects

Method Description

setItem Adds a key/value pair into storage. If no item with the specified key exists, the item is
added; if that key does exist, its value is updated.

getItem Retrieves data from storage based on a specified key value or index.

clear Clears all storage that has been saved. Use this method to clear out the storage as
needed.

key Retrieves the key at a specified index. You can use the resultant key to pass as a
parameter to one of the other methods that accepts a key.

removeItem Removes the specified key/value pair from storage.

In addition to the methods described in Table 1-13, the storage objects expose a length
property which returns the number of key/value pairs in storage. Use the sample code in
Listing 1-4 to explore the Web Storage API.

LISTING 1-4  Exploring the Web Storage API

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8"/>
 <title></title>
 <style>
 section {
 margin-top: 15px;
 }
 </style>
 <script>
 window.onload = function () {
 document.getElementById("btnAdd").onclick = function () {
 }

 document.getElementById("btnRemove").onclick = function () {
 }

 document.getElementById("btnClear").onclick = function () {
 }

 function LoadFromStorage() {
 }
 }
 </script>
 </head>
 <body>
 <section>
 Key:
 <input type="text" id="toStorageKey"/>
 Value:
 <input type="text" id="toStorageValue"/>

 </section>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	74	 CHAPTER 1	 Implement and manipulate document structures and objects

 <section>
 <button type="button" id="btnAdd">Add To Storage</button>
 <button type="button" id="btnRemove">Remove from Storage</button>
 <button type="button" id="btnClear">Clear Storage</button>
 </section>
 <div id="storage">
 <p>Current Storage Contents</p>
 </div>
 </body>
</html>

The code in Listing 1-4 creates text boxes to accept a key and a value, respectively. Buttons
let you add items to storage, remove an item, or completely clear the storage. Each capability
is implemented in turn. To display the contents of the storage, the page contains a div that
shows the contents of the storage appended to it. The LoadFromStorage method is called for
each operation to refresh the page with the data available in the storage. All the following
examples use local storage, but again, they would work the same way with session storage.
If you want to test these examples using session storage, simply replace the localStorage
reference with a reference to sessionStorage.

You first need to implement the LoadFromStorage method so that when the page loads,
you can see any items that have already been placed into storage. Enter the following code
into the LoadFromStorage function in the script block:

window.onload = function () {
 LoadFromStorage();
 document.getElementById("btnAdd").onclick = function () {
…
function LoadFromStorage() {
 var storageDiv = document.getElementById("storage");
 var tbl = document.createElement("table");
 tbl.id = "storageTable";
 if (localStorage.length > 0) {
 for (var i = 0; i < localStorage.length; i++) {
 var row = document.createElement("tr");
 var key = document.createElement("td");
 var val = document.createElement("td");
 key.innerText = localStorage.key(i);
 val.innerText = localStorage.getItem(key.innerText);
 row.appendChild(key);
 row.appendChild(val);
 tbl.appendChild(row);
 }
 }
 else {
 var row = document.createElement("tr");
 var col = document.createElement("td");
 col.innerText = "No data in local storage.";
 row.appendChild(col);
 tbl.appendChild(row);
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 75

 if (document.getElementById("storageTable")) {
 document.getElementById("storageTable").replaceNode(tbl);
 }
 else {
 storageDiv.appendChild(tbl);
 }
}

Notice that this code added a call to the LoadFromStorage method to the top of
the window.onload event, so that localStorage is checked after the page loads. The
LoadFromStorage method takes any available elements in local storage and displays them in
an HTML table. This code takes advantage of the length property to determine whether any
local storage values need to be displayed. If not, the page displays a message about no data
in local storage. Add the following code to the button onclick events to start manipulating
localStorage:

document.getElementById("btnAdd").onclick = function () {
 localStorage.setItem(document.getElementById("toStorageKey").value,
 document.getElementById("toStorageValue").value);
 LoadFromStorage();
}
document.getElementById("btnRemove").onclick = function () {
 localStorage.removeItem(document.getElementById("toStorageKey").value);
 LoadFromStorage();
}
document.getElementById("btnClear").onclick = function () {
 localStorage.clear();
 LoadFromStorage();
}

The preceding code implements each button’s onclick event. A user can now add items
to local storage and see what’s in storage. The user can continue adding to local storage in
this application until the storage is full. Availability of local storage is limited, and the storage
available isn’t consistent across browsers. As of this writing, the documentation states that
Microsoft Internet Explorer 10 supports up to about 10 MB of storage. However, that could
change and may not be the same in other browsers; some now support only 5 MB of storage.
Keep this in mind when designing web applications that take advantage of the Web Storage
API.

Run the preceding example and add the following items to localStorage:

("Red","FF0000"), ("Green","00FF00"), ("Blue","0000FF").

Figure 1-51 shows the output on the screen after adding these items to the local storage.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	76	 CHAPTER 1	 Implement and manipulate document structures and objects

FIGURE 1-51  Storing items in and retrieving them from web storage

Now, if you close the browser and then reopen your page, the items are still available in
local storage. Try replacing all uses of localStorage with sessionStorage. This time notice that
closing the browser automatically clears out any data in the storage.

The benefit to using the Web Storage API instead of cookies is that the data resides
locally and stays local. The data doesn’t get sent back and forth to and from the server, as
is the case with cookies. Data stored in web storage is organized by root domain. The space
allotment is available on a per–root domain basis. For example, domains such as localhost or
microsoft.com each get their own secure web storage space.

As defined by the API, web storage allows storage only of key/value pairs where the key
and the value component are stored as a string. If you need to store more complex objects in
web storage, you can use a few techniques. For example, add the following code right before
the first call to LoadFromStorage in the onload event:

var customer = new Object();
customer.firstName = "Rick";
customer.lastName= "Delorme";
customer.shirtSize = "XL";
localStorage.setItem("cart1", JSON.stringify(customer));
LoadFromStorage();

This code creates a custom object to represent a customer browsing the site and sets that
customer’s shirt size. This information is to be kept and used locally, so it doesn’t need to be
posted to the server. Local storage is a great solution for this. However, to store the custom
object in local data, you need a method to convert the custom object to a string that matches
the local storage model. This is where JavaScript Object Notification (JSON) can come in
handy. You can serialize the object into a JSON string, give it a key, and then store it in web
storage. When you run this application now, it shows the customer object represented as a
JSON string in Figure 1-52.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 77

FIGURE 1-52  Web storage contents

The availability of local web storage can improve both end-user experience and
performance of your web applications by saving round trips to the server to retrieve or store
temporary data. You must consider the local web storage as temporary. Even when you’re
using localStorage as opposed to sessionStorage, you should think of the storage as temporary
and design your applications so that they can fall back on default values and behavior if the
user purges the web storage. Web storage provides a way to make data available locally and
even persist across browser sessions. These techniques work with a live connected website.
If you want to make an application available offline, in a disconnected way, you can use the
AppCache API, which is covered next.

Using the AppCache API
The ability to continue to work with web applications when disconnected from an Internet
source has become particularly important in today’s mobile world. This section talks about
how to create an application that works when disconnected by using the Application Cache
API, also commonly called the AppCache API.

The AppCache API makes content and webpages available even when a web application
is in offline mode. AppCache stores files in the application cache in the browser. Just as with
Web Storage, the amount of data the browser can store locally is limited for offline use. Two
components make up the AppCache API: the manifest file and a JavaScript API to support it.

Using AppCache manifest
Specifying that a page should be available for offline use is as easy as adding an attribute to
the HTML element in the page. Here’s an example:

<html manifest="webApp.appcache">
…
</html>

The manifest attribute on the html element tells the browser that this webpage needs to
be available offline. The value of the manifest attribute points to a manifest file. The name of
the file is a convention more than a requirement; you can name the file anything, but the file
extension is usually .appcache.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	78	 CHAPTER 1	 Implement and manipulate document structures and objects

EXAM TIP

If you really want to change the file extension, you need to configure the web server so
that your chosen file extension is returned with a MIME type of text/cache-manifest.

The application cache manifest file must list each and every file and resource required to
be stored for offline use. When the browser parses the manifest attribute of the html element,
it downloads the manifest and stores it locally. It also ensures that it downloads all the files
listed in the manifest so that they are available offline. The manifest file contains three sec-
tions: CACHE, NETWORK, and FALLBACK. Each section might appear just once, multiple times
in the file, or not at all. Each serves a specific purpose in how application caching functions
when dealing with the resources in specific scenarios. A typical manifest file looks like this:

CACHE MANIFEST
My Web Application Cache Manifest
v.1.0.0.25

#Cache Section. All Cached items.
CACHE
/pages/page1.html
/pages/page2.html

#Required Network resources
NETWORK:
login.html

#Fallback items.
FALLBACK:
login.html fallback-login.html

The first line in a manifest file must be CACHE MANIFEST. The manifest file, as with any
code file, can have comment lines added to it for additional explanations, as denoted by the
symbol. The CACHE section lists all the resources that must be cached offline. This must
include all CSS files, JPG files, video and audio files, and any other resource required for the
page to function correctly. If you omit an item from the manifest file, it won’t be cached,
which can result in unexpected behavior when the application is run offline.

The NETWORK section declares any resources that must be available from the Internet.
These items can’t be cached. Anything that the page requires from the Internet, such as
embedded third-party elements, must be listed here. If such a resource isn’t listed here, the
browser won’t know to check on the Internet for it when in offline mode. When the browser
is in offline mode, it doesn’t attempt to go to the Internet for anything unless it’s listed in the
NETWORK section.

The FALLBACK section enables you to provide fallback instructions to the browser in
the event that an item isn’t available in the cache and the browser is in offline mode. In the

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 79

example file, if login.html isn’t available in the cache, render fallback-login.html. You can use
shortcuts in the FALLBACK section to provide more general redirects, such as the following:

/resources /resource.jpg

This tells the browser that if the browser is offline and can’t access anything in the
resources folder, it should replace any references to items in the resources folder with
resource.jpg. Note that resource.jpg is cached because it’s specified in the FALLBACK section.
You don’t need to also specify resource.jpg in the CACHE section.

Using the AppCache API
As with Web Storage, the application cache is available in JavaScript as a global object. The
following code gets a reference to the AppCache global object:

var appCache = window.applicationCache;

When you’re using the application cache to make pages available offline, one of the more
useful things you can do when the page is loaded is verify its status. You achieve this by
evaluating the status property of the AppCache object. The status property could be one of
the values listed in Table 1-14.

TABLE 1-14  The application cache status property

Status Description

Uncached The web application isn’t associated with an application manifest.

Idle The caching activity is idle, and the most up-to-date copy of the cache is being used.

Checking The application manifest is being checked for updates.

Downloading The resources in the application manifest are being downloaded.

UpdateReady The resources listed in the manifest have been successfully downloaded.

Obsolete The manifest can no longer be downloaded, so the application cache is being
deleted.

After you know the cache status, two methods on the AppCache object can be useful.
Table 1-15 lists these.

TABLE 1-15  Methods available with the applicationCache object

Method Description

swapCache Indicates that the cache be replaced with a newer version.

update Tells the browser to update the cache if an update is available.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	80	 CHAPTER 1	 Implement and manipulate document structures and objects

When the update method is called, an update to the cache is prepared. When that’s ready
to download, the status of the application cache changes to UpdateReady. When this is set, a
call to the swapCache method tells the application to switch to the most recent cache.

EXAM TIP

The call to the update method is asynchronous. Therefore, you must handle the
onupdateready event to determine when the update has completed the download process.

In addition to the properties and methods, the AppCache object can raise a series of
events that you can handle. The application cache typically operates in the background, and
you won’t need these events. However, in some cases handling some of the events and forc-
ing an update can be useful. Table 1-16 lists the available events.

TABLE 1-16  Events available from the applicationCache object

Event Description

onchecking The browser is checking for an update to the application manifest, or the
application is being cached for the first time.

onnoupdate The application manifest has no update available.

ondownloading The browser is downloading what it has been told to do per the manifest file.

onprogress Files are being downloaded to the offline cache. This event fires periodically to
report progress.

oncached The download of the cache has completed.

onupdateready The resources listed in the manifest have been newly redownloaded, and the
swapCache method might be called.

onobsolete A manifest file is no longer available.

onerror An error has occurred. This could result from many things. Appropriate logging is
necessary to get the information and resolve.

Most of these events might not be used often, if at all. The most common scenario is to
handle the onupdateready method and then make a call to the swapCache method, as in this
example:

window.onload = function () {
 var appCache = window.applicationCache;
 appCache.oncached = function (e) { alert("cache successfully downloaded."); };
 appCache.onupdateready = function (e) { appCache.swapCache(); };
}

Using the application cache is more about configuration than about coding. However, it’s
important that you’re aware the API is available for advanced scenarios where you need more
control over the process, or when you need to receive timely information about the process,
such as by handling the onprogress event.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 81

Using the Geolocation API
Location services have become a large part of most people’s lives. From routing and
navigation to just finding nearby points of interest or checking into their favorite social
community sites, more and more people are using some form of location services. Loca-
tion services depend on the Global Positioning System (GPS), IP addresses, and other device
characteristics. You can take advantage of geolocation in web applications by leveraging
browsers that support the Geolocation API.

You can get a reference to the Geolocation API from the window.navigator property, as
follows:

var geoLocator = window.navigator.geolocation;

This code saves a reference to the Geolocation API in a variable to provide shorthand
access to the API during future use. A good practice is to ensure that the client’s browser
supports the Geolocation API by making sure that the reference is actually present.

The Geolocation API supports three key methods that you use to interact with it:
getCurrentPosition, watchPosition, and clearWatch.

Using the getCurrentPosition method
Here’s an example of using the getCurrentPosition method:

getCurrentPosition(positionCallback, [positionErrorCallback], [positionOptions])

You use getCurrentPosition to get exactly what its name indicates—the current position
of the user or the device in which the application is running. This method takes one required
parameter and two optional parameters. The first parameter is a callback method that the API
calls after the current position is determined. The second parameter is optional, but it’s also a
callback function called when an error occurs. The callback method you specify here should
handle any errors that can occur when trying to get the current position. The last optional
parameter is a special object called PositionOptions, which lets you set some special options
that control how the getCurrentPosition method behaves. Table 1-17 lists the possible values.

TABLE 1-17  Properties available on the PositionOptions object

Property Description

enableHighAccuracy This causes the method to be more resource intensive if set to true. The
default is false. If true, the getCurrentPosition method tries to get as close
as it can to the actual location.

timeout This specifies a timeout period for how long the getCurrentPosition method
can take to complete. This number is measured in milliseconds and defaults
to zero. A value of zero represents infinite.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	82	 CHAPTER 1	 Implement and manipulate document structures and objects

Property Description

maximumAge If this is set, the API is being told to use a cached result if available, rather
than make a new call to get the current position. The default is zero, so a
new call is always be made. If maximumAge is set to a value and the cache
isn’t older than the allowable age, the cached copy is used. This value is
measured in milliseconds.

Listing 1-5 shows the getCurrentPosition method in use, with all parameters specified.

LISTING 1-5  Using the getCurrentPosition method

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8"/>
 <title></title>
 <script>
 window.onload = function () {
 var geoLocator = window.navigator.geolocation;
 var posOptions = {enableHighAccuracy: true,timeout: 45000};
 geoLocator.getCurrentPosition(successPosition, errorPosition,
 posOptions);
 }
 function successPosition(pos) {
 alert(pos);
 }
 function errorPosition(err) {
 alert(err);
 }
 </script>
 </head>
 <body>
 <div id="geoResults">
 <p>Current Location is:</p>
 </div>
 </body>
</html>

When the code runs in the browser, some interesting things can happen. First, browser
security starts; users are asked whether they want to allow this application to determine their
location. In Internet Explorer, the message looks like the image in Figure 1-53.

FIGURE 1-53  The security warning presented by Internet Explorer when accessing the Geolocation API

If the user chooses to allow the application to proceed, everything is great. Otherwise, the
method throws an exception.

For purposes of demonstrating the code, select Allow For This Site from the drop-down list
so that the page can proceed. It might take a few seconds, but the call returns and shows a
message box that a position object exists as passed to the success callback method.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 83

Both the success and error callback methods receive one parameter from the Geolocation
API. The success method receives a position object, whereas the error method receives
an error object. The position object exposes two properties: coords and timestamp. The
timestamp property indicates the time at which the coords were received. The coords property
is itself a coordinates object that contains the latitude, longitude, altitude, heading, and speed
of the device’s current position and/or relative to the last position acquired. The positionError
object contains two properties: one for the code and one for the message. You can use these
objects in Listing 1-5 by adding the following fragments:

<script>
 function successPosition(pos) {
 var sp = document.createElement("p");
 sp.innerText = "Latitude: " + pos.coords.latitude +
 " Longitude: " + pos.coords.longitude;
 document.getElementById("geoResults").appendChild(sp);
 }
 function errorPosition(err) {
 var sp = document.createElement("p");
 sp.innerText = "error: " + err.message; + " code: " + err.code;
 document.getElementById("geoResults").appendChild(sp);
 }
</script>

Figure 1-54 shows the output from running this code successfully.

FIGURE 1-54  Displaying current location as retrieved by the Geolocation API

Using the watchPosition method
The second method available on the geolocation object is the watchPosition method, which
provides a built-in mechanism that continuously polls for the current position. Here’s an
example of using the method:

geoLocator.watchPosition(successCallBack,errorCallback,positionOptions)

The watchPosition method takes the same set of parameters as the getCurrentPosition
method but returns a watchPosition object:

var watcher = geoLocator.watchPosition...

After running this code, the watcher variable holds a reference to the watchPosition
instance being invoked, which can be useful later. The method calls the success callback
method every time the Geolocation API detects a new location. The polling continues forever
unless it you stop it. This is where the watcher object comes in handy; you can cancel polling by

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	84	 CHAPTER 1	 Implement and manipulate document structures and objects

calling the clearWatch method. You could call this method in either the success or the error
callback—for example, to cancel polling when you have captured enough position informa-
tion or when you want to pause polling for a period of time:

geoLocator.clearWatch(watcher);

Listing 1-6 shows the full solution code for the watchPosition example.

LISTING 1-6  Using the Geolocation API to monitor position

var watcher;
var geoLocator;
window.onload = function () {
 geoLocator = window.navigator.geolocation;
 var posOptions = {enableHighAccuracy: true,timeout: 45000};

 watcher = geoLocator.watchPosition(successPosition, errorPosition, posOptions);
}
function successPosition(pos) {
 var sp = document.createElement("p");
 sp.innerText = "Latitude: " + pos.coords.latitude + " Longitude: "
 + pos.coords.longitude;
 document.getElementById("geoResults").appendChild(sp);
 geoLocator.clearWatch(watcher);
}

function errorPosition(err) {
 var sp = document.createElement("p");
 sp.innerText = "error: " + err.message; + " code: " + err.code;
 document.getElementById("geoResults").appendChild(sp);
}

Figure 1-55 shows the output of this code on a mobile device.

FIGURE 1-55  Multiple positions being recorded by the watchPosition method

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.4: Implement HTML5 APIs	 CHAPTER 1	 85

Thought experiment
Combining the JavaScript APIs

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Consider an application such as a running or walking utility that measures the dis-
tance traveled. One feature of this application is to play back a completed route to
users if they so choose. How would you use the Geolocation API and Web Storage
API in combination to save the data points as users travel the route so the applica-
tion can play them back later? (Assume that you’re interfacing with map software
on which to draw the lines.)

Objective summary
■■ The new Web Storage API enables you to store data locally on the client computer.

■■ Web Storage supports both localStorage and sessionStoroage.

■■ Data in Web Storage is stored as name and value pairs.

■■ The AppCache API provides a way to make webpages available when users are offline.

■■ The AppCache manifest defines what’s available offline.

■■ The Geolocation API provides a way to integrate location services into a webpage.

■■ The Geolocation API provides two methods: getPosition and watchPosition.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 When using the Web Storage API, where should you store data to ensure that it’s
cleared when the user closes the browser?

A.	 localStorage

B.	 cookieStorage

C.	 sessionStorage

D.	 A hidden input element

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	86	 CHAPTER 1	 Implement and manipulate document structures and objects

2.	 What do you need to do to designate a page as available offline?

A.	 Specify in JavaScript as document.offLine=true.

B.	 Specify the manifest attribute on the form element.

C.	 Specify the manifest attribute on the HTML element.

D.	 Tell users to switch to offline mode using their browser. No code is required.

3.	 Which of the following aren’t valid sections of the AppCache manifest?

A.	 Cache manifest

B.	 Session manifest

C.	 Network manifest

D.	 Fallback manifest

4.	 Which event is fired by the AppCache object when the cache download is complete?

A.	 oncached

B.	 onupdateready

C.	 ondownloading

D.	 onchecking

5.	 When using the Geolocation API, how do you configure the ability to use cached data?

A.	 Set the enableCache property to true on the PositionOptions object.

B.	 Set the maximumAge property to a non-zero value on the PositionOptions object.

C.	 Set the timeout property of the PositionOptions object.

D.	 Using the cache is always on to save bandwidth, so no configuration is required.

Objective 1.5: Establish the scope of objects and
variables

A key component of any programming language is how it uses variables, and JavaScript is
no exception. To use variables effectively, you must understand their scope and lifetime.
Declaring variables and instantiating objects consumes resources. The primary system re-
source used for variables is memory. The more memory an application uses, the greater the
potential that usage of other resources will increase also—such as battery power to support
the additional memory use. When applications drain the battery, users are less likely to use
those applications.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.5: Establish the scope of objects and variables	 CHAPTER 1	 87

This objective covers how to:
■■ Establish the lifetime of variables and variable scope

■■ Avoid using the global namespace

■■ Leverage the this keyword

Establishing the lifetime of variables and variable scope
Variables begin their life with a declaration. The remainder of their life within the application
depends on where the variables are declared.

To declare a variable in JavaScript, you use the var keyword.

var myVariable;

You can declare many variables concurrently. For example, the following code declares
three variables:

var x, y, z;

You can also initialize your variables inline with the declaration, giving them immediate
nondefault values:

var x =0.0, y=0.0, z=0.0

Until a variable is initialized, it’s not really “alive”—it has a value of undefined. After a vari-
able is available for use, it’s considered to be “in scope.” The duration over which the variable
remains in scope depends on where the variable is declared. A variable that has global scope
is available throughout the webpage. A variable with local scope is available only within a
specified context, as Listing 1-7 shows.

LISTING 1-7  An example to demonstrate variable scope

<html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8"/>
 <style>
 div {
 width: 100px;
 height: 100px;
 border: 1px solid black;
 }
 </style>
 <script>
 var globalVar = "global";
 window.onload = function () {
 var localVar = "local";
 document.getElementById("Div1").onclick = function () {
 var insideDiv1Click;
 //Do some logic here...

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	88	 CHAPTER 1	 Implement and manipulate document structures and objects

 };
 document.getElementById("Div2").onclick = function () {
 };
 document.getElementById("Div3").onclick = function () {
 };
 function AFunction() {
 var x;
 }
 function BFunctionWithParam(p) {
 }
 }
 </script>
 </head>
 <body>
 <div id="Div1"></div>
 <div id="Div2"></div>
 <div id="Div3"></div>
 </body>
</html>

In Listing 1-7, notice that the <script> block creates a section of script available to the
entire page. The first line in the script section is the variable globalVar, which is considered
global to the entire page. Any JavaScript anywhere on this page could access this variable. At
the next level, the code implements a window.onload event handler. Inside this event handler,
the first line declares a variable called localVar, which is local to the onload event handler.
Inside the onload event handler, the code has access to the globalVar variable.

Now things start to get interesting.

The onload event handler accesses the DOM to wire up some other event handlers.
Inside these event handlers, the code has access to both localVar and globalVar variables.
The localVar variable is local to the onload event, but because the other event handlers are
declared within the onload event handler, they also have access to local variables declared in
the onload event handler. Update the Div1 onclick handler to this code:

document.getElementById("Div1").onclick = function () {
 var insideDiv1Click = "insideDiv1";
 alert(globalvar);
 alert(localVar);
 alert(insideDiv1Click);
};

When this code runs and a user clicks the Div1 element, all three alerts successfully display
the value of each variable, which means they are all in scope.

Now, update the Div2 onclick handler with this code, the same as was placed into Div1:

document.getElementById("Div2").onclick = function () {
 alert(globalVar);
 alert(localVar);
 alert(insideDiv1Click);
 };

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.5: Establish the scope of objects and variables	 CHAPTER 1	 89

When you run this code and click Div2, the globalVar variable is in scope, the localVar
variable is in scope, but the insideDiv1Click variable isn’t in scope. That variable lives only
within the Div1 onclick handler, so it’s in scope only while that function runs. This example
raises an undefined exception when it tries to access the insideDiv1Click variable.

As a final example, update the code for Div3 and other functions as follows:

document.getElementById("Div3").onclick = function () {
 var insideDiv3 = "Div3";
 AFunction();
 BFunctionWithParam(insideDiv3);
};
function AFunction() {
 var x;
 alert(insideDiv3);
}
function BFunctionWithParam(p) {
 alert(p);
 alert(localVar);
}

In this code, the variable insideDiv3 is local to the onclick event handler for Div3.
The onclick event handler has access to the globalVar and localVar variables just like
the other event handlers did. The event handler for Div3 also calls the AFunction and
BFunctionWithParam methods. The AFunction method attempts to access the insideDiv3
variable. Unfortunately, that variable lives only within the scope of the Div3 onclick handler.
The functions called from the Div3 click event function don’t inherit or have access to the
local variables of the Div3 method. To access the local variables declared in the Div3 event
handler from another function, you need to pass them as parameters to those functions.

You can also see an illustration of passing a local variable as a parameter to another
function in the code. After the call to the AFunction method, the event handler calls the
BFunctionWithParam method. This function expects a single parameter named p. The onclick
event handler passes the value of the insideDiv3 variable to the method. Now, the p variable is
a local variable to the BFunctionWithParam method, so it can show the value of the insideDiv3
variable. This is the only way to make a local variable from one function accessible to another
function—by passing a parameter.

Next, the BFunctionWithParam method attempts to access the localVar variable. It assumes
it would have access, but it doesn’t for the same reason the AFunction method doesn’t have
access to the insideDiv3 variable. The localVar variable is accessible only to code within the
onload event handler in which it’s declared. For functions outside that scope to have access to
it, you need to pass it as a parameter. One more thing to consider with respect to the lifetime
and scope of variables is hierarchy.

If you plan to use the values of globalVar or localVar variables in the onclick event han-
dlers for the various div elements, you must not declare any variables at the local level with
the same name. Locally scoped variables override higher-level scoped variables of the same

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	90	 CHAPTER 1	 Implement and manipulate document structures and objects

name. Note that they don’t overwrite them, they override them—meaning that you can’t
access the overridden values. The following code demonstrates this point:

window.onload
…
var scaleX = 0.0;
…
 document.getElementById("Div4").onclick = function () {
 var scaleX = -3;
 alert(scaleX);
 }
function scaleDiv() {
 //code to scale the Div by a factor of scaleX
}

In this code, if your intention is to use the scaleX variable declared globally within the
scaleDiv function, the results should be unexpected. That’s because the function assigned to
the onclick event handler also declares a variable named scaleX. The value in the alert window
within the onClick function is –3, not 0.0, and when the scaleDiv function accesses the scaleX
variable, the value is 0.0. Scoping problems such as these highlight why you must always pro-
vide meaningful names to variables. Meaningful names can help prevent accidentally naming
variables the same thing.

Avoiding using the global namespace
The global namespace is where all the native JavaScript libraries live. In Internet Explorer, the
window object references the global namespace. Everything this object exposes is global.
The global namespace has far more functionality than this book can cover; however, you’ve
already seen some examples of the objects in the global namespace used in this chapter,
including the Web Storage API and the Geolocation API. The global namespace includes other
nested namespaces, such as Math, WebSocket, and JSON.

The global namespace is available to all code within an application session. With the
increasing number of third-party libraries in use, and as applications become more complex
and require the use of such libraries, the potential for naming conflicts increases. Names of
classes within a namespace must be unique. If multiple developers define a namespace with
the same name, the JavaScript runtime can’t identify which namespace they intended to use.
This is why keeping your objects out of the global namespace is important.

One strategy to avoid name collisions is to create your own namespaces for your JavaScript
libraries. One pattern to consider using to create unique namespace names is the name of
the domain in reverse, such as com.microsoft. Because domain names are unique, this pattern

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.5: Establish the scope of objects and variables	 CHAPTER 1	 91

helps reduce the possibility of naming collisions. The following code demonstrates this strat-
egy to create a namespace for a library developed for a bookstore:

var com = {};
com.Bookstore = {};
com.Bookstore.Book = {
 title: 'my book',
 genre: 'fiction'
};
com.Bookstore.Author = {
 firstName: 'R',
 lastName: 'D'
}

By creating the objects in this way, you can be reasonably certain that if another developer
creates a useful library to manage books that you want to include in your site, you won’t have
to worry about a naming collision between your Book and Author objects and those provided
by the other library. When developing reusable JavaScript libraries, never implement your
objects in the global namespace.

Leveraging the this keyword
The keyword this is a special term that allows JavaScript developers to reference the contain-
ing object directly. The following code snippet demonstrates the context of the this keyword:

<script>
 //Here, "this" references the global namespace
 this.navigator.geolocation
 window.onload = function () {
 //Here, "this" references the window object
 this...
 document.getElementById("aDiv").onclick = function()
 {
 //Here, "this" references the DIV element
 this…
 }
 }
</script>

In this code snippet, the first this reference is in the global namespace—so it provides a
direct reference to the global namespace. As you move down through the code, the context
of the this keyword changes. In the onload event for the window, this refers to the window
object (yes, that’s in the global namespace, but keep reading). Within the onclick function,
the this keyword refers to the div element returned from the getElementById method. The
this keyword always refers to the object that contains the currently running code. That is its
context.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	92	 CHAPTER 1	 Implement and manipulate document structures and objects

Thought experiment
Building a custom object library

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You need to create multiple websites that all leverage the same backend database.
You will use AJAX to make server requests for data. You want to create a custom
library that can be used among the various websites. You are concerned about
naming objects because you know that many other libraries are integrated with the
overall solution.

How can you design your library so that it doesn’t conflict with other libraries in
use?

Objective summary
■■ Variables are undefined until they are initialized.

■■ Variables are scoped and accessible depending on where they are declared. If they are
inside a function, for example, they are local to the function.

■■ Passing parameters is the only way to make a local variable available in another
function.

■■ The global namespace shouldn’t be used because it’s shared by all.

■■ You should apply a namespace to custom objects to prevent conflicts in the global
namespace.

■■ The this keyword provides direct access to the object that raised the event.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 In JavaScript, how do you determine the scope of a variable?

A.	 The scope of a variable is global within the context of the page.

B.	 The scope of a variable depends on where inside the script it’s declared.

C.	 The scope of a variable changes depending on the type it represents.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.6: Create and implement objects and methods	 CHAPTER 1	 93

2.	 Why is it important to avoid creating custom JavaScript objects in the global
namespace?

A.	 The global namespace is reserved for the browser.

B.	 The global namespace is available to all applications in the session, and using it
could result in a naming conflict.

C.	 The global namespace creates a security risk to users’ systems.

3.	 What JavaScript keyword in an event handler can be easily used to reference the object
that raised the event?

A.	 The it keyword provides a reference to the object.

B.	 The document.current property provides a reference to the object.

C.	 The this keyword provides a reference to the object.

D.	 No way is available other than to use a selector query to retrieve the object from
the DOM.

Objective 1.6: Create and implement objects
and methods

JavaScript is an object-oriented programming language, which means that to develop
applications in JavaScript effectively, you must understand how to work with objects.
Essentially, two types of objects exist in JavaScript:

■■ Native JavaScript objects, which are provided with JavaScript itself

■■ Custom objects, which developers create to represent their own data constructs and
behaviors

In some cases, creating an entirely new object isn’t necessary. You can base objects on
other objects (if they are a subtype of that object) by using object inheritance, in which one
object inherits all the attributes and behaviors of another object but can also implement
additional aspects that are unique to it.

Objects encapsulate functionality and state information that is relevant for them. The
functionality is provided in the form of methods, whereas state information is provided in the
form of properties. This objective examines working with objects in JavaScript.

This objective covers how to:
■■ Implement native objects

■■ Create custom objects and custom properties for native projects using proto-
types and functions

■■ Implement inheritance

■■ Implement native methods and create custom methods

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	94	 CHAPTER 1	 Implement and manipulate document structures and objects

Implementing native objects
Native objects are available to developers directly through JavaScript. JavaScript provides a
large number of objects that provide functionality to make developers’ lives easier. Although
covering every native object in JavaScript is out of scope for this book and this exam, you will
be expected to be able to create and work with native JavaScript objects.

Some native objects are available statically, which means you don’t need to create an
instance of them. Others require you to create an instance. You can find both types among
objects in the global namespace. One example of a static object is Math, which is available in
the global namespace and provides a great deal of functionality without you having to create
an instance:

var squareValue = Math.sqrt(144);

Other objects, such as Array shown in the following code, require you to create an instance
to work with them:

var listofPrimeNumbers = new Array(1, 2, 3, 5, 7, 11, 13, 17, 19, 23);

This code introduces the new keyword, which you use to instantiate an object. This tells the
runtime to allocate a new object of the type specified. In this case, a new Array object is being
requested. The list after the Array object type is called the object’s constructor. This informa-
tion can be passed into the object as parameters to construct the initial state of the object.
Some objects have many constructors to choose from, with differing sets of parameters. The
addition of multiple constructors is called an overloaded constructor.

JavaScript also provides wrapper objects. These wrap up native types, for example. Native
types are defined as integer, string, char, and so on. When a variable is declared like this,

var txt = "my long string";
var num = 5;

you can access method on the variable like this:

var index = txt.indexOf("long",0);
var exp = num.toExponential(5);

The underlying types for string and integer don’t natively have methods or functionality;
however, the JavaScript runtime creates a wrapper object for them dynamically so that some
useful methods are available. For example, you could create the following string and number
variables with the new keyword, but that’s not very common.

var txt = new String("my long string");
var num = new Number(5);

The syntax reviewed thus far applies to both native objects and custom objects. Custom
objects are created by the developer, whereas native objects are provided by core JavaScript.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.6: Create and implement objects and methods	 CHAPTER 1	 95

Creating custom objects
Creating custom objects is standard practice when working with information in custom appli-
cations. Because JavaScript is an object-oriented language, you should apply proper object-
oriented practices when developing JavaScript applications. In almost all cases, this involves
creating custom objects to encapsulate functionality within logical entities.

For example, the following code creates a book object. This is a dynamic object, meaning
that it’s created inline with a variable declaration.

var book = {
 ISBN: "55555555",
 Length: 560,
 genre: "programming",
 covering: "soft",
 author: "John Doe",
 currentPage: 5
}

The object created represents a book. It provides a way to encapsulate into a single ob-
ject the properties that apply to a book—in this case, a book entity. The code specifies five
properties. When using the book variable, you can access all the properties just as with any
other property; if desired, you could output to the screen by placing the values into the DOM.
The properties of an object represent its state, whereas the methods of an object provide
its behavior. At this point, the book object has only properties. To give the book object some
behavior, you can add the following code:

var book = {
 ISBN: "55555555",
 Length: 560,
 genre: "programming",
 covering: "soft",
 author: "John Doe",
 currentPage: 5,
 title: "My Big Book of Wonderful Things",
 flipTo: function flipToAPage(pNum) {
 this.currentPage = pNum;
 },
 turnPageForward: function turnForward() {
 this.flipTo(this.currentPage++);
 },
 turnPageBackward: function turnBackward() {
 this.flipTo(this.currentPage--);
 }
}

In the book object, three methods have been added: turnPageForward, turnPageBackward,
and flipTo. Each method provides some functionality to the book object, letting a reader move

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	96	 CHAPTER 1	 Implement and manipulate document structures and objects

through the pages. The interesting parts of this code are the function declarations them-
selves. For example, when you look at the code for the flipTo function, you might think that
the function is called FlipToAPage because that’s what was declared. However, this isn’t the
case. The methods are called using the alias property that assigned the function. When using
the code, the runtime knows that it’s a method, not a property, and it expects the method to
be called with parentheses:

//This line throws an exception because the object does not support this method
book.FlipToAPage(15);
//This line works because this is what the method has been named.
book.flipTo(15);

Creating objects inline as the book object is in the previous code sample is useful only
when it is used in the page where it’s defined, and perhaps only a few times. However, if you
plan to use an object often, consider creating a prototype for it so that you can construct
one whenever you need it. A prototype provides a definition of the object so that you can
construct the object using the new keyword. When an object can be constructed, such as with
the new keyword, the constructor can take parameters to initialize the state of the object, and
the object itself can internally take extra steps as needed to initialize itself. The following code
creates a prototype for the book object:

function Book() {
 this.ISBN = "55555555";
 this.Length = 560;
 this.genre= "programming";
 this.covering = "soft";
 this.author = "John Doe";
 this.currentPage = 5,
 this.flipTo = function FlipToAPage(pNum) {
 this.currentPage = pNum;
 },
 this.turnPageForward = function turnForward() {
 this.flipTo(this.currentPage++);
 },
 this.turnPageBackward = function turnBackward() {
 this.flipTo(this.currentPage--);
 }
}
var books = new Array(new Book(), new Book(), new Book());
books[0].Length
…

EXAM TIP

JavaScript consists of objects. Everything in JavaScript is an object. Each object is based on
a prototype. Whenever you create a new instance of an object, that instance is based on
the object’s prototype.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.6: Create and implement objects and methods	 CHAPTER 1	 97

In the preceding code, the Book object is constructed so that you can create one with
default properties set. Then, the code creates an Array containing a list of books. You can
access each element of the array to initialize each Book object as it’s needed.

Accessing each Book element to provide initialization values isn’t terribly efficient. It would
be more convenient if the Book object supported more than one constructor. That way, you
could create a blank book or create one with specific unique properties. This is where proto-
typing comes in handy. The following code creates a prototype containing two constructors
that support the needs of any users of the Book object:

function Book()
{
 //just creates an empty book.
}

 function Book(title, length, author) {

 this.title = title;
 this.Length = length;
 this.author = author;

 }

 Book.prototype = {
 ISBN: "",
 Length: -1,
 genre: "",
 covering: "",
 author: "",
 currentPage: 0,
 title: "",

 flipTo: function FlipToAPage(pNum) {
 this.currentPage = pNum;
 },

 turnPageForward: function turnForward() {
 this.flipTo(this.currentPage++);
 },

 turnPageBackward: function turnBackward() {
 this.flipTo(this.currentPage--);
 }
 };

 var books = new Array(new Book(), new Book("First Edition",350,"Random"));

With this new code, you can create an empty Book object by using the constructor with no
parameters, or you can create a Book object by using specific parameters to initialize some
fields.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	98	 CHAPTER 1	 Implement and manipulate document structures and objects

Objects can contain other objects as needed. In this example, the Author property could
easily be factored into a new prototype, making it more extensible and encapsulating the
information related to an author. Add the following code to the Book prototype:

Book.prototype = {
 ISBN: "",
 Length: -1,
 genre: "",
 covering: "",
 author: new Author(),
 currentPage: 0,
 title: "",

…
}
function Author(){
}
function Author(firstName, lastName, gender)
{
 this.firstName = firstName;
 this.lastName = lastName;
 this.gender = gender;
}
Author.prototype = {
 firstName:"",
 lastName:"",
 gender:"",
 BookCount: 0
}
var books = new Array(new Book(),
 new Book("First Edition",350, new Author("Random","Author","M"))
);

Now, the book’s Author is a custom object instead of just a string. This provides for more
extensibility in the design. If you later decide that you need to add information about the
author, you can simply add the property or properties to the Author prototype.

EXAM TIP

You can add properties to a prototype dynamically rather than use the preceding method. The
following code achieves the same outcome. Using such code is just a matter of preference.

Book.prototype.ISBN = "";
Book.prototype.Length = 350;
Book.prototype.genre = "";
Book.prototype.covering = "";
Book.prototype.author = new Author();
Book.prototype.currentPage = 0;
Book.prototype.title = "";

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.6: Create and implement objects and methods	 CHAPTER 1	 99

Implementing inheritance
In object-oriented programming, inheritance is a fundamental concept. In standard object-
oriented programming, classes are created in a relational hierarchy, so that the attributes and
functionality of one entity can be reused within another entity without having to re-create all
the code. In object-oriented parlance, if an entity satisfies the “is-a” relationship question, it’s
a candidate for inheritance. For example, an organization is made up of employees, in which
an employee entity has certain attributes (properties) and behaviors (methods). Management,
executives, and staffers are all types of employees. A staffer “is-a” employee. So in an object-
oriented design, a staffer object would inherit from an employee. This type of inheritance is
quite easy to build in full-fledged object-oriented languages. However, JavaScript is a special
situation because it doesn’t use classes. As you saw in the previous sections, everything is
an object; a custom object is made up of properties where some properties are native types
and some properties are assigned to functions to implement methods. This section examines
object inheritance as it works in JavaScript.

Building on the code used in the previous section, this section explains object inheritance.
In the preceding code sample, you created an object called Book. But many types of books
exist. To extend the definition of Book, you must separate the differences in functionality
between, for example, pop-up books and other books. Pop-up books have some extra func-
tionality, such as displaying the pop-up on the current page and perhaps playing a sound. In
other words, while a pop-up book “is-a” type of book, it also has this extra functionality that
doesn’t apply to all books. In this case, it would be useful to inherit from Book so that all the
basic attributes and behaviors of a book are available without you having to re-create them.
Then you could add the specific functionality for pop-up books.

You can extend the Book object in a couple of ways. (Extending is another way of thinking
about inheritance—an object is extended into another object.) Here’s the first way to extend
an object:

var popupBook = Object.create(Book.protoType,{ hasSound: {value:true},
 showPopUp:{ value: function showPop() {
 //do logic to show a popup
 }
 }
});

Object.create is a method available from the Object class in the global namespace. The
create method takes two parameters: the object you want to create and a list of property
descriptors.

The first parameter expects to receive the prototype of the object to create or null. If
null is specified, the object uses only those functions or properties specified in the second
parameter. If an object prototype is specified, as in the case Book.prototype, the object
is created with all the properties and functions declared on that object prototype. This is
another reason designing code in a proper object-oriented way is important—so that you can
leverage this type of functionality to keep code more readable and maintainable.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	100	 CHAPTER 1	 Implement and manipulate document structures and objects

The second parameter enables you to add properties or behaviors to the object being
created. Essentially, you define this additional prototype information inline with the object
creation. This example adds the property hasSound, which has a default value specified as
false. You could also specify additional information here, such as whether the property is
read-only and whether it’s enumerable. Creating objects this way is similar to the inline ex-
ample in the beginning of the earlier section on custom objects. Again, such an approach isn’t
very modular or reusable. For every instance of a pop-up book, you’d need to declare the
additional property and method. So again, for objects that you might want to reuse often,
extending the Book prototype is better.

Extending the Book prototype is much the same as creating a new prototype. You need
only one line of code to tell JavaScript to inherit the functionality and attributes of another
object. You do this by initializing the prototype to the parent object:

function PopUpBook() {
 Book.call(this);
}
PopUpBook.prototype = Book.prototype;
PopUpBook.prototype.hasSound = false;
PopUpBook.prototype.showPopUp = function ShowPop() { };

In this way, PopUpBook now extends the implementation of the Book object and adds its
own functionality for reuse. The function PopUpBook makes a method call to Book.call(..). This
is a call to the constructor of the super class (the class being inherited from). If the super class
has a constructor that takes parameters, this method would enable you to pass the parameter
values to the super-class constructors for object initialization.

Thought experiment
Creating synergy between custom objects and native objects

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

In this objective you’ve seen the use of native objects and custom objects. How
would you bring those two worlds together? In JavaScript, inheriting from native
objects is not fully supported. However, what if you wanted to add functionality to
native objects by extending them? How would you go about doing this?

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 1.6: Create and implement objects and methods	 CHAPTER 1	 101

Objective summary
■■ Everything in JavaScript is an object—even functions.

■■ JavaScript supports native objects and custom objects.

■■ Objects are created with the new keyword.

■■ Access methods and properties on objects with the dot notation: object.method or
object.property.

■■ You can create custom objects dynamically or by using prototypes.

■■ Prototypes provide for object definition reuse, whereas dynamic objects require
attributes and methods defined for each use.

■■ Inheritance is achieved in JavaScript through the extension of prototypes.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 In JavaScript, which of the following isn’t a native object?

A.	 Function

B.	 Array

C.	 Integer

D.	 Person

2.	 Which of the following snippets shows the correct way to create a custom book object?

A.	 var book = “Title: ‘My book about things’” + “Author: ‘Jane Doe’” + “ Pages: 400”;

B.	 var book = {Title: “My book about things”, Author: “Jane Doe”, Pages: 400};

C.	 var book = (Title= “My book about things”, Author= “Jane Doe”= Pages: 400);

D.	 var book = new {Title: “My book about things”, Author: “Jane Doe”, Pages: 400};

3.	 Inheritance is accomplished in JavaScript through the use of which construct?

A.	 inherits keyword

B.	 implements keyword

C.	 this keyword

D.	 Prototypes

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	102	 CHAPTER 1	 Implement and manipulate document structures and objects

Answers

This section contains the solutions to the thought experiments and answers to the objective
review questions in this chapter.

Objective 1.1: Thought experiment
The following HTML shows the conversion of the page to HTML5:

<html>
 <head>
 <title></title>
 </head>
 <body>
 <table>
 <tr>
 <td colspan="3">
 <header>
 <h1>A Thoughtful Experiment</h1>
 </header>
 </td>
 </tr>
 <tr>
 <td>
 <nav>
 Home
 Page 1
 Page 2
 Page 3
 </nav>
 </td>
 <td>
 <section>
 <article>
 <hgroup>
 <h1>An Article regarding thought is presented here.</h1>
 <h2>Thought as a provoking element.</h2>
 </hgroup>

 <aside>Here are some reference materials.</aside>
 </article>
 </section>
 </td>
 <td>
 <section id="profile">

 </section>
 </td>
 </tr>
 <tr>
 <td>
 <footer>
 This page is copyright protected.
 </footer>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 1	 103

 </td>
 </tr>
 </table>
 </body>
</html>

Objective 1.1: Review
1.	 Correct answer: D

A.	 Incorrect: The <article> element is a new HTML5 semantic element.

B.	 Incorrect: The <footer> element is a new HTML5 semantic element.

C.	 Incorrect: The <hgroup> element is a new HTML5 semantic element.

D.	 Correct: The <input> element isn’t new in HTML5. However, new input types have
been introduced to the specification.

2.	 Correct answer: A

A.	 Correct: The <hgroup> element is expected to contain any or all of the <h1> to
<h6> elements.

B.	 Incorrect: The <header> element is used separately to define the header section
of an <article> element or a <section> element.

C.	 Incorrect: The <nav> element is used to define a menu structure. It wouldn’t be
included inside an <hgroup> element.

D.	 Incorrect: The <hgroup> element is expected to contain only the <h1> to <h6>
elements.

3.	 Correct answer: C

A.	 Incorrect: The <div> element doesn’t provide any additional context to a search
engine.

B.	 Incorrect: The <header> element is contained inside an <article> element and will
help but isn’t the main element to provide search engine optimization.

C.	 Correct: The <article> element tells the search engine that specific content in this
area is relevant to what users are searching for. This element provides for the best
search engine optimization.

D.	 Incorrect: The <article> element is specifically used for SEO.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	104	 CHAPTER 1	 Implement and manipulate document structures and objects

4.	 Correct answer: C

A.	 Incorrect: <div> elements flow left to right and top to bottom and don’t provide
any structure.

B.	 Incorrect: The <p> element denotes a paragraph. This element doesn’t provide
any layout structure to the page.

C.	 Correct: You use the <table> element to provide a structured layout, using its
rows and columns elements as needed to create the desired layout.

D.	 Incorrect: The <form> element is used to denote an area where the user can sub-
mit data. The <form> element doesn’t provide any mechanism to control layout.

Objective 1.2: Thought experiment
This thought experiment speaks directly to performance. As the number of balls increases,
the demand on the graphics engine and local resources such as CPU and memory becomes
more intense. The <canvas> element is better designed to perform this duty. From a coding
perspective, this experiment provides insight into capturing events from the canvas, calcu-
lating the location of the click in relation to the balls on the screen, and creating new balls
dynamically as they get clicked. These computations need to occur quickly as the graphics
are redrawn. The implementation of such a game would be too involved for the scope of
this book. However, the notion of performance is an important concept to be clear on with
respect to graphics rendering.

Objective 1.2: Review
1.	 Correct answer: D

A.	 Incorrect: The getElementById method retrieves an element by its unique id.

B.	 Incorrect: The querySelector method retrieves a single element that matches the
specified selector.

C.	 Incorrect: The getElementsByClassName method retrieves all the elements that
have the specified CSS class assigned to them.

D.	 Correct: The queryAll method isn’t available to search the DOM.

2.	 Correct answer: A

A.	 Correct: document.getElementbyId(“myDog”); retrieves only the single image with
the ID myDog.

B.	 Incorrect: <p>.getChildNode(“img”); isn’t a valid syntax.

C.	 Incorrect: document.getElementbyId(“dogs).querySelector (“thumb”); fails
because the page has no element named “dogs”.

D.	 Incorrect: document.querySelector.querySelectorAll(“thumb”); is incorrect
because it returns all the elements on the page with the specified class name.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 1	 105

3.	 Correct answer: B

A.	 Incorrect: The DOM is dynamic and changes physically when items are removed
from it.

B.	 Correct: When an element is removed and needed again, a reference to the
removed node must be kept to be able to add it back.

C.	 Incorrect: No such method exists.

D.	 Incorrect: A node can be added back to the DOM if a reference was kept. This is
accomplished by using the various methods available to insert nodes in the DOM.

4.	 Correct answer: C

A.	 Incorrect: Different browsers support different media formats. Use the <source>
element to provide the media in the various formats.

B.	 Incorrect: The src attribute allows you to specify only one source video. This
doesn’t work across multiple browsers unless the video format is supported across
the browsers.

C.	 Correct: The <source> elements specify multiple video formats so that the
browser can choose the correct one.

D.	 Incorrect: The <object> element is supported to provide a fallback mechanism in
the event that the browser doesn’t support the HTML5 <video> element.

5.	 Correct answer: C

A.	 Incorrect: The moveTo method moves the current context to a new point but
doesn’t begin a drawing.

B.	 Incorrect: The lineAt method draws a line within the current positional context.

C.	 Correct: The beginPath method tells the context to start a new drawing from its
current point.

D.	 Incorrect: The stroke method tells the context to draw the graphics that are
applied to the context.

6.	 Correct answer: C

A.	 Incorrect: The <canvas> element doesn’t support any declarative elements.

B.	 Incorrect: The <svg> element has poorer performance than the <canvas>
element when a lot of graphic refresh is required.

C.	 Correct: The <canvas> element provides superior performance compared to the
<svg> element.

D.	 Incorrect: The <canvas> and <svg> elements combined don’t provide better
performance. The <canvas> element provides superior performance when the
graphics require a lot of refreshing.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	106	 CHAPTER 1	 Implement and manipulate document structures and objects

Objective 1.3: Thought experiment
To complete this thought experiment, you must get a reference to the DOM via JavaScript
and set up events for the click to each radio button. When an event is created for notification
of the selection of each radio button, the questions can be shown/hidden as needed. Setting
the display CSS attribute of the elements so that the questions present in flow is key. The
desired effect is for the surrounding elements to behave as though the element is no longer
part of the DOM. Setting display=none achieves this effect.

Objective 1.3: Review
1.	 Correct answer: B

A.	 Incorrect: The element isn’t positioned relative to the browser window.

B.	 Correct: Absolute positioning positions the element relative to its parent element.

C.	 Incorrect: The element doesn’t center within the window.

D.	 Incorrect: Absolute positioning doesn’t center an element.

2.	 Correct answer: D

A.	 Incorrect: The rotate transform spins an object clockwise or counterclockwise.

B.	 Incorrect: The skew transform slants an object.

C.	 Incorrect: The translate transform moves an object.

D.	 Correct: The scale transform changes the size of an object.

3.	 Correct answer: D

A.	 Incorrect: Display=’hidden’ isn’t a valid option.

B.	 Incorrect: Display=’inline’ shows an object that previously wasn’t showing.

C.	 Incorrect: Visibility=’none’ isn’t a valid option.

D.	 Correct: Visibility=’hidden’ hides an element, and its surrounding elements remain
in place as though the element was still there.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 1	 107

Objective 1.4: Thought experiment
This is a simple example of the power available when combining the HTML5 APIs. You can use
the Web Storage API to store the location points as they occur from the Geolocation API by
using the watchPosition method. The following code demonstrates the storage of the data:

<script>
 var watcher;
 var geoLocator;
 var positions = 0;
 window.onload = function () {
 geoLocator = window.navigator.geolocation;
 var posOptions = { enableHighAccuracy: true, timeout: 45000 };
 watcher = geoLocator.watchPosition(successPosition, errorPosition,
posOptions);
 }
 function successPosition(pos) {
 //on each position, store it into local storage sequentially.
 //Then it can be retrieved sequentially
 //in order to redraw the route on a map.
 var p = "Lat: " + pos.coords.latitude + " Long: " + pos.coords.longitude;
 localStorage.setItem(position, p);
 }
 function errorPosition(err) {
 var sp = document.createElement("p");
 sp.innerText = "error: " + err.message; + " code: " + err.code;
 document.getElementById("geoResults").appendChild(sp);
 }
</script>

Objective 1.4: Review
1.	 Correct answer: C

A.	 Incorrect: localStorage is persistent even after the session closes.

B.	 Incorrect: cookieStorage doesn’t exist in the Web Storage API.

C.	 Correct: sessionStorage clears when the session closes.

D.	 Incorrect: A hidden input element isn’t a valid solution to meet the requirement.

2.	 Correct answer: C

A.	 Incorrect: The offLine property isn’t a valid JavaScript option.

B.	 Incorrect: You wouldn’t specify the manifest on the <form> element.

C.	 Correct: Specifying the manifest attribute on the HTML element is the correct
action.

D.	 Incorrect: The browser’s offline option doesn’t invoke the AppCache API.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	108	 CHAPTER 1	 Implement and manipulate document structures and objects

3.	 Correct answer: B

A.	 Incorrect: Cache manifest lists all resources that must be cached offline.

B.	 Correct: Session manifest isn’t a valid option.

C.	 Incorrect: Network manifest specifies any resources that must be available from
the Internet.

D.	 Incorrect: Fallback manifest enables you to tell the browser what to do when
resources aren’t available offline.

4.	 Correct answer: A

A.	 Correct: The oncached event is fired when the download completes.

B.	 Incorrect: The onupdateready event is fired when items in the manifest are newly
downloaded and the swapCache method can be called.

C.	 Incorrect: The ondownloading event is fired when the browser is downloading.

D.	 Incorrect: The onchecking event is fired when the browser is checking for updates.

5.	 Correct answer: B

A.	 Incorrect: The enableCache property doesn’t exist.

B.	 Correct: Set the maximumAge property to a non-zero value on the
PositionOptions object.

C.	 Incorrect: The timeout property specifies how long to wait for a response before
firing the timeout event.

D.	 Incorrect: The cache maximumAge defaults to 0, so caching is off by default.

Objective 1.5: Thought experiment
In this experiment, you took a look at a real-world scenario where the addition of JavaScript
libraries could potentially conflict with other libraries already in use. This is a case for using
namespaces to scope the library with a unique fully qualified name to ensure that it’s distinct
from any other. Review the objective on the use of the global namespace to ensure that you
understand this concept for the exam.

Objective 1.5: Review
1.	 Correct answer: B

A.	 Incorrect: Variables are global only if declared in the global space.

B.	 Correct: The scope of a variable depends on where inside the script it’s declared.

C.	 Incorrect: A variable’s type doesn’t affect its scope.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 1	 109

2.	 Correct answer: B

A.	 Incorrect: The global namespace isn’t reserved for the browser.

B.	 Correct: Because the global namespace is available to all applications in the
session, using it could result in a naming conflict.

C.	 Incorrect: The global namespace doesn’t create a security risk to the user’s system.

3.	 Correct answer: C

A.	 Incorrect: The it keyword doesn’t exist.

B.	 Incorrect: The document.current keyword doesn’t provide the reference.

C.	 Correct: The this keyword provides a reference to the object.

D.	 Incorrect: The this keyword provides a direct shortcut to the element that raised
the event.

Objective 1.6: Thought experiment
To extend a native object, you must add functionality to its prototype. This isn’t ideal object
orientation in all cases; however, it does provide another avenue to achieve the desired
results. JavaScript objects are dynamic, meaning that the prototype can be modified to add
functionality to them. In this example, you extend the Array object to provide a sum method
that returns the sum of all the elements in the array.

For this type of example, type safety is a concern. Arrays can hold any type of data. True
inheritance would allow you to create a special type of array to hold only numbers. In this
code, you can add validation to ensure that the values in the array are numeric or add only
the numeric values. However, for the sake of demonstrating the extension of the object, this
sample omits that validation. The following code shows how you can extend the Array object
to support a sum method by adding a new method to its prototype:

Array.prototype.sum = function () {
 var res = 0;
 for (var i = 0; i < this.length; i++)
 res += this[i];
 return res;
};
var x = new Array(2);
x[0] = 5;
x[1] = 6;
document.write(x.sum());

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	110	 CHAPTER 1	 Implement and manipulate document structures and objects

Objective 1.6: Review
1.	 Correct answer: D

A.	 Incorrect: Functions are objects in JavaScript.

B.	 Incorrect: Arrays are objects in JavaScript.

C.	 Incorrect: Integers are objects in JavaScript.

D.	 Correct: People aren’t native JavaScript objects.

2.	 Correct answer: B

A.	 Incorrect: This code segment produces a string.

B.	 Correct: This code segment creates a dynamic object.

C.	 Incorrect: This segment is incorrect because (..) was used instead of {}, along with
= instead of :.

D.	 Incorrect: The new keyword isn’t used when creating a dynamic object.

3.	 Correct answer: D

A.	 Incorrect: The inherits keyword isn’t a JavaScript construct.

B.	 Incorrect: The implements keyword isn’t a JavaScript construct.

C.	 Incorrect: The this keyword doesn’t provide inheritance.

D.	 Correct: Prototypes are used to create inheritance trees in JavaScript.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 111

C H A P T E R 2

Implement program flow
Being able to manipulate the Document Object Model (DOM), create animations, and use
the various application programming interfaces (APIs) provided by the JavaScript library is
a great skill to have. To leverage the power of the user experience fully, however, you need
to provide users with certain website functions only under certain conditions, a concept
known as program flow. Without program flow, JavaScript programs would process from
top to bottom in the order in which the code was written. This is useful in some cases, but in
most situations in which a dynamic user experience is required, logic needs to be processed
conditionally. Program flow can be conditional, iterative, or behavioral:

■■ Conditional program flow is based on evaluating state to make a decision as to which
code should run.

■■ Iterative flow is the ability to process lists or collections of information systematically
and consistently.

■■ Behavioral flow can be defined as an event or callback in which specific logic should
be applied based on user engagement with the web application or the completion of
another task.

Flow can—and almost always will—include a combination of all three.

Another special type of program flow involves exception handling. Exception handling
constructs provide the ability to run specific logic in the case of an error in the program.

Objectives in this chapter:
■■ Objective 2.1: Implement program flow

■■ Objective 2.2: Raise and handle an event

■■ Objective 2.3: Implement exception handling

■■ Objective 2.4: Implement a callback

■■ Objective 2.5: Create a web worker process

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	112	 CHAPTER 2	 Implement program flow

Objective 2.1: Implement program flow

For the exam, you need to understand both conditional and iterative program flow. Condi-
tional program flow enables an application to examine the state of an object or variable to
decide which code path to process. The commands you use to apply the concept of condi-
tional flow are the if…else statement, the switch statement, and the ternary operator.

This objective covers how to:
■■ Evaluate expressions, including using switch statements, if/then statements, and

operators

■■ Work with arrays

■■ Implement special types of arrays

■■ Use advanced array methods

■■ Implement iterative control flow

Evaluating expressions
To use a conditional flow statement, you must evaluate some data against some condition,
which you do by using conditional operators. You can use logical operators to combine
conditional operators. Combining operators is useful when more than one condition must
be met—or at least one condition from a set of conditions must be met—before processing
specific logic. Table 2-1 outlines the available operators.

TABLE 2-1  Conditional and logical operators

Operator Type Description

> Conditional Evaluates whether the value on the left is greater than the value on the right

< Conditional Evaluates whether the value on the right is greater than the value on the left

>=,<= Conditional Evaluates the same as > or < but with the additional logic that the values can
also be equal

!= Conditional Evaluates whether the values aren’t equal

== Conditional Evaluates whether the values are equal independent of the underlying data type

=== Conditional Evaluates whether the values are equal both in value and underlying data type

&& Logical The AND logical operator, in which the expressions on both sides must
evaluate to true

|| Logical The OR logical operator, in which at least one expression on either side must
evaluate to true

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 113

Use these operators to evaluate data and to make decisions. For example, if a website
requires that its users be a minimum age to sign up for an account, the logic on the sign-up
page might include something like this:

if(users age >= minimum age)
{
 //allow sign-up.
}

Using if statements
Use the if statement to evaluate state to control the direction in which the code will run. The
if statement can stand alone, as shown in the preceding snippet, or be combined with else to
form more complex constructs:

if(exp1, exp2, exp3…expn){
 //true logic
}else {
 //false logic
}

This if statement starts on a new line with the keyword if. In parentheses following the if
statement is a series of one or more expressions, separated by logical operators when more
than one expression is provided. The code block immediately following the if statement
conditional expression runs only when the expression evaluates to true. When the expression
evaluates to false, the block immediately following the else keyword runs.

The else keyword is optional. An if statement can exist as a standalone statement when no
logic is available to run when the expression evaluates to false.

EXAM TIP

Two conditional operators are available for checking equality: == (equality operator) and ===
(identity operator). Checking for equality with the == operator will ignore the underlying
data type, whereas the === identity operator will consider data type. Look at the following
example:

var n = 2000, s = '2000';
alert(n == s);
alert(n === s);

The first expression, which uses the equality operator, evaluates to true because the string
is cast to a number for the purpose of the evaluation. The second expression, which uses
the identity operator, evaluates to false because the string ‘2000’ isn’t equal to the integer
2000.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	114	 CHAPTER 2	 Implement program flow

Conditional statements such as the if statement can be nested, like in the following
example:

var userAge = 10, gender = 'M';
var minimumAge = 11;
if (userAge > minimumAge) {
 if (gender == 'M') {
 //do logic for above age male
 }
 else {
 //do logic for above age female.
 }
} else if (gender == 'M') {
 //do logic for underage male
} else {
 //do logic for underage female.
}

In this example, the logic tests whether a user is older than a specified age. If the user is
over the specified age, the logic in the true branch runs. At that point, another if statement
evaluates the user’s gender. If the user’s age is younger than the required minimum, the false
branch is processed. Here an else if statement performs additional conditional processing on
the false branch based on the gender. Again, the code processes a specific branch depending
on whether the user is male or female.

You aren’t limited in how deeply you can nest if statements, but nesting them too deeply
can make the code quite messy and difficult to read.

The following example examines the background color of an element and processes
specific behavior based on the color:

var canvas = document.getElementById("canvas1");
if (canvas.style.backgroundColor == 'green') {
 alert('proceed');
} else if (canvas.style.backgroundColor == 'yellow') {
 alert('slow down/safely stop');
} else if (canvas.style.backgroundColor == 'red') {
 alert('stop');
}

This code retrieves a reference to a page element called canvas1 and then evaluates that
element’s background color to determine an appropriate action to take. In some places,
whether by law or preference, yellow sometimes means “proceed faster.” In that case, the
code could be adapted to use the OR logical operator:

var canvas = document.getElementById("canvas1");
if (canvas.style.backgroundColor == 'green' || canvas.style.backgroundColor == 'yellow')
{
 alert('proceed');
} else if (canvas.style.backgroundColor == 'red') {
 alert('stop');
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 115

This code provides the “proceed” instruction when the color is green OR yellow.

EXAM TIP

When using the logical OR operator in an if statement, the JavaScript engine knows that it can
proceed if any of the statements are true. As such, it evaluates the expressions from left to
right until it finds one that’s true. As soon as it does, it won’t evaluate any further expressions
but will immediately jump into the true code block. In the preceding example, if the back-
ground is green, the check for whether the background is yellow would never be evaluated.

Structuring code this way is syntactically correct. However, lengthy if statements can
prove difficult to read and even harder to maintain. If your if statements are becoming quite
long—for example, if the previous code example had to test for 15 different colors—a switch
statement might be more appropriate.

Using switch statements
The switch statement provides a construct in which you can test a list of values for equality (as
with the == operator). The following example demonstrates a switch statement:

switch (canvas.style.backgroundColor) {
 case 'yellow':
 alert('slow down');
 break;
 case 'green':
 alert('proceed');
 break;
 case 'red':
 alert('stop');
 break;
 default:
 alert('unknown condition');
 break;
}

The switch statement consists of several parts. The first is the switch keyword itself,
followed by parentheses surrounding an expression to evaluate. This particular example
evaluates the background color of the canvas element.

Following the switch line is a series of case statements enclosed in braces. The case state-
ment provides the values to evaluate against. This example provides three cases to evaluate:
one for each of the possible red, green, and yellow background colors.

Each case statement contains a required break keyword. This keyword denotes the end of
that particular case statement. Only the first case that evaluates to true in a switch statement
will be processed. Omitting the break keyword will cause unexpected behavior.

The last piece of the switch statement is the optional default keyword, which serves as a
failsafe. If none of the case statements evaluate to true, the default statement provides a way
to handle the situation. You might not want to take any action when none of the case state-
ments evaluates to true—in which case you can omit the default statement. However, it does

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	116	 CHAPTER 2	 Implement program flow

enable you to handle the scenario where one of the conditions should have been reached but
wasn’t, possibly due to bad data being passed into a method or a valid case being missed.
Including a default to account for both of those scenarios is good practice.

You can’t force logical flow in a switch statement to move from one case to the next by
omitting the break keyword; in other words, only one conditional block is processed within a
switch statement. This means that logically, you can’t use the AND logical operator. However,
you can leverage the OR logical operator. The following code demonstrates a case in which
you want the same code to run for both the green and yellow background conditions:

switch (canvas.style.backgroundColor) {
 case 'yellow':
 case 'green':
 alert('proceed');
 break;
 case 'red':
 alert('stop');
 break;
 default:
 alert('unknown condition');
 break;
}

In this code, multiple case statements are stacked onto each other. If any of the stacked case
statements evaluates to true, the code block following that case statement is processed, thus
implying a logical OR. You don’t need to explicitly use the logical OR operator (||) to leverage
logical OR semantics.

IMPORTANT  A VALID SWITCH STATEMENT

The values used in the case statement for the purposes of the evaluation must be ex-
pressed as a constant. For example, switching on an integer value to determine whether
it’s divisible by another number won’t work because the case would require an expression
instead of a constant value. For example, case x / 10: would be an invalid case statement.
However, the switch statement itself can accept an expression to evaluate against all cases
inside the switch block.

Using ternary operators
The ternary operator is essentially a shorthand mechanism for an if statement. The syntax of
the ternary operation is

<expression> ? <true part>: <false part>

When the expression evaluates to true, the true part runs; otherwise, the false part runs.
This code demonstrates using the ternary operator to check the background color of the
canvas:

canvas.style.backgroundColor == 'green' ? document.write('proceed') :
document.write('stop');

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 117

Working with arrays
Arrays are JavaScript objects and are created just like any other JavaScript object, with the
new keyword:

var anArray = new Array();
var anArray = new Array(5);
var anArray = new Array('soccer', 'basketball', …, 'badminton');

This code example shows an Array object being instantiated and demonstrating the three
available constructors. The first line creates an empty Array object without a default size. The
second line creates an Array object with a default size. Each value in the array is undefined
because nothing is assigned to it yet. The last example creates an array initialized with data. In
addition to the object constructors, you can create an array as follows:

var anArray = ['soccer', 'basketball', …,'badminton'];

Under the hood, JavaScript converts the anArray variable to the Array object type. After
creating an array, you can access its elements by using square brackets following the variable
name, as shown in this example:

var anArray = new Array(5);
anArray[1] = 'soccer';
alert(anArray[1]);

You access elements within an array by their indexed position. This example accesses the
element at index position 1 and assigns a value to it. Arrays in JavaScript are zero-based,
which means that the first element in the array is at index zero, not at index one. The last
element is at index Array.length –1—in the preceding example, 5–1=4. Hence, the array
element indexes are 0, 1, 2, 3, and 4.

EXAM TIP

Sizing arrays is very dynamic. In the preceding example, even though the array is initially
declared to have a length of 5, if you try to access the 10th element, the array automatically
resizes to accommodate the requested length. The following example demonstrates this
concept:

var anArray = new Array(5);
alert(anArray.length);
anArray[9] = ‘soccer’;
alert(anArray.length);

A multi-dimensional array can contain other arrays. The following code demonstrates this:

var multiArray = new Array(3);
multiArray[0] = new Array(3);
multiArray[1] = new Array(3);
multiArray[2] = new Array(3);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	118	 CHAPTER 2	 Implement program flow

This example creates a two dimensional 3 × 3 array. Each array isn’t required to be the
same size; this example was just coded that way. Accessing the elements of a two-dimensional
array is much the same as accessing a one-dimensional array, but you use two indexes:

multiArray[1][2] = 'ball sport';

This example assigns a value to the first index of the first dimension and the second index
of the second dimension, as illustrated in Figure 2-1.

FIGURE 2-1  Layout of a two-dimensional array

Because arrays are objects, they expose a number of powerful methods to make working
with them easier. The following sections explain each available method and property.

Using the length property
The length property provides information on how long the array is—that is, how many ele-
ments the array has allocated at the time the property is evaluated. This property is useful for
situations in which you need to iterate over an array or to show users how many items are in
the array at a specific point in time, such as in a queue. The following example shows how to
access the length property:

var anArray = new Array(5);
alert(anArray.length);

Many functions enable you to manipulate array contents quickly and easily.

EXAM TIP

Some array methods affect the Array object directly, whereas other methods return a new
Array object. For the exam, you must understand when each case is applicable.

Using the concat method
The concat method combines two or more arrays into one array:

var sports = new Array('football', 'cricket', 'rugby', 'tennis', 'badminton');
var moreSports = new Array('soccer', 'basketball', 'hockey');
var combinedSports = sports.concat(moreSports);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 119

The array returned by the concat method and stored in the combinedSports variable
contains all the elements from both arrays in sequence. The contents of the moreSports array
appear after the elements of the sports array in this example.

Using the indexOf and lastIndexOf methods
The indexOf method provides a way to find the index of a known element. The following code
sample demonstrates this:

var sports = new Array('soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby',
'tennis', 'badminton');
var index = sports.indexOf('football', 0);

This example calls the indexOf method to determine the index of the element ‘football’.
The indexOf method accepts two parameters: what to search for and the index at which to
begin searching. This example searches the entire array, so the search starts at index 0. The
result from this call to the indexOf method is 3, because the element is found in the fourth
position. If the element being sought isn’t found, the method returns a value of –1.

The indexOf method uses the identity operator to check for equality, which means that
if an array contains strings such as ‘1’, ‘2’, and ‘3’ and you’re searching for the integer 3, the
result is –1 because the equality operation returns false for all elements in the array. The
indexOf method searches in ascending index order. To search in descending order—that is,
to search from the end of the array to the beginning—use the lastIndexOf method, which
accepts the same parameters.

Using the join method
The join method joins all the elements in an array into a single string separated by a specified
string separator. For example, to convert an array of strings into a comma-separated list, you
could use the following code:

var sports = new Array('soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby',
'tennis', 'badminton');
var joined = sports.join(',');

The join method accepts a string as a parameter, which is the string used as a delimiter
to separate the values in the array. The result is a string of all the elements separated by the
string passed into the join method.

Using the reverse method
The reverse method reverses the sequence of all elements in the array. This example reverses
the sports array:

var sports = new Array('soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby',
'tennis', 'badminton');
sports.reverse();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	120	 CHAPTER 2	 Implement program flow

The method reverses all the items so that ‘soccer’ becomes the last item in the array and
‘badminton’ becomes the first item.

Using the sort method
The sort method sequences the items in the array in ascending order. In the sports array, the
sort would be alphabetical, as shown in the following example:

var sports = new Array('soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby',
'tennis', 'badminton');
alert(sports.indexOf('soccer'));
sports.sort();
alert(sports.indexOf('soccer'));

The result is that the sports array is now sorted. The alert boxes show the index of the
‘soccer’ element before and after the sort, demonstrating that the element has moved from
position 0 to position 6 in the array.

Using the slice method
The slice method takes out one or more items in an array and moves them to a new array.
Consider the following array with the list of sports:

var sports = new Array('soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby',
'tennis', 'badminton');
var someSports = sports.slice(1, 2);

The slice method takes two parameters: the indexes where the slice operation should
begin and end. The ending index isn’t included in the slice. All copied elements are returned
as an array from the slice method. In this example, because ‘basketball’ is at index 1 and the
ending index is specified at index 2, the resulting array someSports contains only one element:
‘basketball’.

Using the splice method
The splice method provides a way to replace items in an array with new items. The following
code demonstrates this:

var sports = new Array('soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby',
'tennis', 'badminton');
var splicedItems = sports.splice(1, 3, 'golf', 'curling', 'darts');

The splice method returns an array containing the items that are spliced out of the source
array. The first parameter is the index in the array where the splice operation should start.
The second parameter is the number of items to splice, starting from the index specified in
the first parameter. The optional last parameter lists items that are to replace the items being
spliced out. The list doesn’t have to be the same length as the items being spliced out. In
fact, if the last parameter is omitted, the spliced items are simply removed from the array and
not replaced. In this example, three items are replaced, starting at index 1. So, ‘basketball’,
‘hockey’, and ‘football’ are replaced with ‘golf’, ‘curling’, and ‘darts’.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 121

Implementing special types of arrays
JavaScript doesn’t natively provide a custom object to represent specialized collections or
arrays. Instead, methods are provided on the Array object that allows you to implement
various types of specialized collections such as a queue or a stack.

A queue is essentially a first-in-first-out type of collection. Whenever items are added to
the list, they should go at the end of the line. In contrast, a is a last-in-first-out type of collec-
tion in which the last item put on the stack is the first item you can take out of the stack. The
array methods that facilitate this type of behavior are pop, push, shift, and unshift.

Using the pop and push methods
The pop and push methods provide stack functionality. The push method appends the speci-
fied items to the end of the array. The pop method removes the last item from the array. The
following code demonstrates the push method:

var sports = new Array();
sports.push('soccer', 'basketball', 'hockey');
sports.push('football');

This code creates an Array object, and then inserts (pushes) three items into the array.
The items are added to the stack in the same order in which they appear in the parameter
list. Next, the code pushes one additional item onto the stack. The pop method removes and
returns the last item in the array:

var nextSport = sports.pop();

When this code runs, the nextSport variable holds the value ‘football’ because that was the
last value added to the array.

NOTE  USING PUSH AND POP ON ANY ARRAY

You can use the pop and push methods in any context to add and remove items from the
end of an array. The stack concept is useful but isn’t a confining mechanism that limits use
of these methods to just stack arrays.

Using the shift and unshift methods
The shift and unshift methods work in the exact opposite way from the pop and push
methods. The shift method removes and returns the first element of the array, whereas the
unshift method inserts new elements at the beginning of the array. The following code uses
the shift and unshift methods:

var sports = new Array();
sports.unshift('soccer', 'basketball', 'hockey');
sports.unshift('football');
var nextSport = sports.shift();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	122	 CHAPTER 2	 Implement program flow

The net result of this code is exactly the same as for the pop and push code, except the
operations occur at the front of the array instead of the end. In other words, this example still
illustrates the stack functionality of “last in, first out.”

Taken together, the two concepts you’ve just seen (pop/push and shift/unshift) can be
combined to create the concept of a first-in-first-out queue. The following code demonstrates
using a queue in which the front of the line is the beginning of the array and the end of the
line is the end of the array:

var sports = new Array();
sports.push('soccer');
sports.push('basketball');
sports.push('hockey');
var get1 = sports.shift();
sports.push('golf');
var get2 = sports.shift();

This code first pushes some items into the array. This means that each item is added to the
end of the array. When an item is needed from the array, the shift method gets the first item
out of the beginning of the array—the item at index 0. You can easily implement the opposite
mechanism by using the unshift and pop methods, which would achieve the same results but
enter and retrieve items from the opposite ends of the array from this example.

Using advanced array methods
This section examines some of the more advanced array methods. These methods all involve
the use of a callback, which you’ll examine in more detail in Objective 2.4, “Implement a call-
back.” If callbacks are a new concept to you, you should study that objective before complet-
ing this section.

The Array object exposes methods that enable you to process custom logic on every single
element in the array. The following sections demonstrate each method.

Using the every method
The every method lets you process specific logic for each array element to determine whether
any of them meet some condition. Look at following code:

var evenNumbers = new Array(0, 2, 4, 6, 8, 9, 10, 12);
var allEven = evenNumbers.every(evenNumberCheck, this);
if (allEven) {
 …
} else {
…
}
function evenNumberCheck(value, index, array) {
 return (value % 2) == 0;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 123

In this code, assume that the evenNumber array is created with a list of what you expected
to be all even numbers. To validate this, you can use the every method.

The every method takes two parameters:

■■ The name of the function that should be processed for each element

■■ An optional reference to the array object

The evenNumberCheck function called for each item in the array returns true or false for
each item, depending on whether it meets the desired criteria. In this example, the value
is tested to ensure that it’s an even number. If it is, the function returns true; otherwise, it
returns false. As soon as the every method gets the first false result for any item in the array,
it exits and returns false. Otherwise, if all elements in the array return true, the every method
returns true. In the preceding code sample, an if statement was added to evaluate the return
value of the every method and take an appropriate action. In this example, the evenNumber-
Check function returns false on the sixth item in the array, because 9 is an odd number, so the
test for even fails.

Using the some method
The some method works very much like the every method. The difference is that some checks
only whether any item in the array meets the criteria. In this case, the some method returns
true if the called function returns true for any single element. If all elements in the array re-
turn false, the some method returns false. By this definition, you can use some to achieve the
exact opposite of the every method when the some method returns false. The following code
is updated from the previous example so that it uses the some method:

var evenNumbers = new Array(0, 2, 4, 6, 8, 9, 10, 12);
var allEven = evenNumbers.some(evenNumberCheck, evenNumbers);
if (allEven) {
 …
} else {
 …
}
function evenNumberCheck(value, index, array) {
 return (value % 2) == 0;
}

With the code updated to use the some method, the return result isn’t true, because some
of the values in the array are even numbers. Had this result returned false, you would know
that all the elements in the array were odd numbers.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	124	 CHAPTER 2	 Implement program flow

Using the forEach method
The forEach method enables an application to process some logic against each item in the
array. This method runs for every single item and doesn’t produce a return value. forEach has
the same signature as the other methods you’ve seen so far in this section. The following code
demonstrates the forEach method:

var sportsArray = ['soccer', 'basketball', 'hockey', 'football', 'cricket', 'rugby'];
sportsArray.forEach(offerSport);
function offerSport(value, index, array) {
 var sportsList = document.getElementById("sportsList");
 var bullet = document.createElement("li");
 bullet.innerText = value;
 sportsList.appendChild(bullet);
}

In this sample, the code assumes that a list element on the HTML page is ready to be filled
with the list of sports, each formatted as a child node. Each element in the list is passed to the
function and added as an element. The array elements aren’t sorted in this case. You can
chain the methods together to ensure that the elements are, for example, alphabetized:

sportsArray.sort().forEach(offerSport);

Like with all the advanced methods shown thus far, the elements are passed to the func-
tion in ascending index order. So you could call the sort method and chain it together with
the forEach method to ensure that the elements are displayed to the user in order.

Using the filter method
The filter method provides a way to remove items for an array based on some processing
done in the callback function. The filter method returns a new array containing the elements
that are included based on a return value of true or false from the callback function. In the
even number example, you can use the filter method to scrub the array and ensure that the
program continues to use only an array that contains even numbers, as demonstrated here:

var evenNumbers = new Array(0, 2, 4, 6, 8, 9, 10, 12);
var allEven = evenNumbers.filter(evenNumberCheck, evenNumbers);

//work with the even numbers....

function evenNumberCheck(value, index, array) {
 return (value % 2) == 0;
}

In this example, the evenNumberCheck method is the same as the one used previously.
However, rather than use the every or any method to determine the quality of the data with
respect to containing only even numbers, the filter method simplifies the removal of the
odd numbers. You can use any logic in the callback function to process the element and
determine whether it should be included in the returned array, such as pattern matching or a
database lookup.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 125

Using the map method
The map method enables you to replace values in the array. Every element in the array is
passed to a callback function. The callback function’s return value replaces the value for the
position in the array that was passed in. The following example demonstrates having every
number in an array rounded off appropriately:

var money = [12.8, 15.9, 21.7, 35.2];
var roundedMoney = money.map(roundOff, money);
…
function roundOff(value, position, array) {
 return Math.round(value);
}

This example provides the square of a series of numbers:

var numbers = [1, 2, 3, 4, 5, 6, 7, 8];
var squares = numbers.map(squareNumber, numbers);
…
function squareNumber(value, position, array) {
 return value * value;
}

Using the reduce and reduceRight methods
The reduce and reduceRight methods are recursive. Each result of the callback function is
passed back into the callback method as the previous return value along with the current
element to be passed in. This provides some interesting scenarios. The reduce method pro-
cesses the elements of the array in ascending order, whereas the reduceRight processes the
elements of the array in descending order. The following example demonstrates using the
reduce method to calculate a factorial:

var numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
var factorials = numbers.reduce(factorial);
function factorial(previous, current) {
 return previous * current;
}

In this function, the factorial for 10 is calculated. In the math world, it’s denoted as 10!

EXAM TIP

Some advanced functions enable you to change the source array, whereas others don’t.
This is an important aspect to keep clear.

Implementing iterative control flow
You’ve seen how to use if statements to control program flow. Another concept you can use
to control the flow of JavaScript programs is iterative flow control, which enables you to loop
over a block of code many times. You’ve already seen some iterative operations when you

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	126	 CHAPTER 2	 Implement program flow

reviewed the advanced methods on the array object that use callbacks. There, the iterative
flow control was built into the various array methods. In this section, you’ll examine the native
iterative control statements, including for and while loops.

Using the for loop
The for loop is useful in cases in which a block of code should run based on a deterministic
number of items. In some cases, you might want to iterate over a list of items in an array
or list; in other cases, you might want to run a block of code a specific number of times to
perform some type of animation or to create a specific number of objects.

The syntax of the for loop is as follows:

for(<counter>;<expression>;<counter increment>)
{
 <code to run>
}

The for loop needs three elements: a counter, an expression, and an increment.

■■ The counter variable holds the current number of times the loop has run. You need to
initialize the counter appropriately, such as to 1 or 0.

■■ The expression element evaluates the counter against some other value. Its purpose is
to set a limit to the number of times the for loop runs. For example, if you wanted the
loop to run 10 times, you could initialize the counter to 0, and the expression would be
counter < 10. Doing so would ensure that the loop would run only while the expres-
sion returns true, that is, while the counter variable is less than 10. As soon as the
counter equals 10, loop processing would stop, and code processing would continue
after the for loop.

■■ With the counter increment, the for loop must be told how to adjust the counter vari-
able after each loop iteration. The increment can be positive or negative depending on
how the loop is set up. You can set the increment so that the loop counts sequentially,
or use mathematical operators to increment by a different value.

The code or body of the loop is a block of code surrounded by curly braces. This code
section runs for each loop iteration. The following code samples demonstrate various ways to
use a for loop.

First, here’s a simple for loop that runs a block of code 10 times:

for (var i = 0; i < 10; i++) {
 document.write(i);
}

Notice that because the counter is starting at 0, the expression is to be less than 10. If the
counter is to start at 1, the expression would be <= 10. This is important to keep an eye on.
The counter increment uses the addition shorthand ++ to increase the counter by one on
each iteration. The following code goes in the reverse order:

for (var i = 10; i > 0; i--) {
 document.write(i);
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 127

In addition to using the increment or decrement operators, you can multiply or divide the
counter value. The following code prints out a set of numbers that increase by a factor of 2 up
to 100:

for(var i= 1; i<100;i*=2){
 document.write(i);
 document.write("
");
}

The expression piece of the for loop doesn’t need to be a hard-coded value, like what has
been shown so far. Instead, you can derive the expression from the length of an object or
another variable, as in this example:

var alphabet = 'abcdefghijklmnopqrstuvwxyz';
for (var i = 0; i < alphabet.length; i++) {
 document.write(alphabet[i]);
 document.write("
");
}

Because a string is just an array of characters, this code can iterate over the string and print
each character to the screen. The length of the string determines how many times the loop
runs.

Using the for…in loop
The for…in loop is a method for iterating over an object’s properties. Take the following
example:

var person = { firstName: "Jane", lastName: "Doe", birthDate: "Jan 5, 1925", gender:
"female" };
for (var prop in person) {
 document.write(prop);
}

This for loop prints out the name of each property on the custom person object. If you
want the loop to print the property values instead, each property needs to be accessed via
the property indexer of the object, as in this example:

var person = { firstName: "Jane", lastName: "Doe", birthDate: "Jan 5, 1925", gender:
"female" };
for (var prop in person) {
 document.write(person[prop]);
}

Using the while loop
The while loop lets you run a code block until some condition evaluates to false. The construct
of the while loop is as follows:

while(<expression>){
 <code block>
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	128	 CHAPTER 2	 Implement program flow

The expression is something that evaluates to a Boolean. While the expression is true, the
while loop continues to run. The code that runs is contained within the code block inside the
braces. The condition must be true for the while loop to run at all. Because the while loop
doesn’t use an incrementer like the for loop does, the code inside the while loop must be able
to set the expression to false as appropriate; otherwise, the loop will be an endless loop. You
might actually want to use an endless loop, but you must ensure that the processing of the
loop doesn’t block the application’s main thread. The following code demonstrates a while
loop:

var i = 0;
while (i < 10) {
 //do some work here.
 i++;
}

In this code, the while loop runs until the variable i equals 10. The expression can hold just
about anything as long as it evaluates to a Boolean.

The preceding example is fairly deterministic in that you know the loop will run 10 times.
However, in some situations a block of code should run until something else changes that
could be outside the loop’s control. Suppose that an application is moving traffic through an
intersection. This type of application could move traffic as long as the traffic signal is green.
The following code demonstrates this:

var canvas = document.getElementById("canvas1");
while (canvas.styles.backgroundColor == 'green') {
 //move traffic
}

This while loop will never end until the canvas background is no longer green. The loop
depends on logic elsewhere in the application to change the background color of the canvas,
such as a timer that controls how long the traffic signal stays green or red.

One other form of the while loop is the do…while loop.

Using the do…while loop
The key difference between the while loop and the do…while loop is that do…while always
runs at least the first time. In contrast, the while loop first evaluates the expression to
determine whether it should run at all, and then continues to run as long as the expres-
sion evaluates to true. The do…while loop always runs once because in this form of loop,
the expression logic is at the bottom. The do…while loop achieves this with the following
structure:

do{
 <code block>
}while(<expression>)

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.1: Implement program flow	 CHAPTER 2	 129

This code processes the code block, and then while an expression is true, continues to
process this code block. The following code segment demonstrates this:

var canvas = document.getElementById("canvas1");
do {
 //stop traffic
}while(canvas.styles.backgroundColor == 'red')

In this code segment, the logic to stop traffic runs one time. Then, it evaluates the
expression that checks whether the background of the canvas is red. The loop continues to
run as long as this expression evaluates to true.

Short-circuiting the loops
Two mechanisms enable you to short-circuit a loop. The break keyword exits the current loop
completely, whereas the continue keyword breaks out of the code block and continues to the
next iteration of the loop.

EXAM TIP

The break keyword breaks out of only the currently running loop. If the loop containing
the break is nested inside another loop, the outer loop continues to iterate as controlled by
its own expression.

Thought experiment
Identifying subtleties in syntax

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Various constructs perform the same function but with a different syntax. For
example, the real difference between a switch statement and nested if…else state-
ments is minimal. Also, the while and for loops both evaluate a condition to know
whether the loop should proceed.

1.	 When is a for loop better than a while loop?

2.	 How is the readability of the code affected?

Objective summary
■■ The for and for…in iterate for a known length of values.

■■ The while and do…while loops run until a Boolean condition is set to false.

■■ Arrays provide a mechanism in which to create lists of things.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	130	 CHAPTER 2	 Implement program flow

Objective review
1.	 Which of the following keywords provide iterative control flow?

A.	 if statement

B.	 switch statement

C.	 for

D.	 break

2.	 Which of the following array methods combines two arrays?

A.	 join

B.	 combine

C.	 split

D.	 concat

3.	 Which iterative control syntax can guarantee that the loop is processed at least once?

A.	 for…in loop

B.	 while loop

C.	 do…while loop

D.	 for loop

4.	 Which keyword is used to exit a loop?

A.	 continue

B.	 break

C.	 stop

D.	 next

Objective 2.2: Raise and handle an event

The browser provides dynamic behavior through events. Actions processed by the browser
user can trigger an opportunity for your code to react and create an experience for the user.
This opportunity is presented in the form of an event. The DOM elements natively provide
events that can be handled, and you can implement custom events on custom objects.

Events typically follow a naming convention. When looking at what events are available on
a particular object, you can identify those events as properties that start with the prefix on.
For example, some common events are onkeypress or onblur. For events to function, you need
to “wire them up” by assigning an event handler. The event handler is a JavaScript function
that’s called when an action triggers the event. Events are firing all the time in the browser;

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 131

however, it is whether or not a handler is assigned that determines whether or not you can
run your own code when the event is triggered.

This objective covers how to:
■■ Use events, including handling an event by using an anonymous function and

declaring and handling bubbled events

■■ Handle DOM events, including OnBlur, OnFocus, and OnClick

■■ Create custom events

Using events
The reason an API provides events is so that developers can inject their own processing amid
all the action taking place in a program. JavaScript enables you to do exactly this throughout
the DOM. This section discusses the ability to hook up to these events.

The idea of hooking up an event is to tell the browser that when a certain event occurs,
it should call a specified function. The function assigned to an event is said to be an event
listener listening for that event. The need, then, is to assign a function to an event to listen for
when that event occurs.

You can hook up an event in three ways:

■■ Declare it directly in the HTML markup.

■■ Assign the function to the event property of the element object through JavaScript.

■■ Use the newer add and remove methods on the element object to associate event
handlers.

When assigning event handlers through JavaScript, you have two choices: provide a
named function and assign an anonymous function. The difference between these two will be
examined.

To get started, you need to understand the concept of a single object common to all DOM
event handlers, and that’s the event object itself.

Event objects
In general, the event object is a common object available within event handlers that provides
metadata about the event. For example, if keyboard events are being handled, you might
want to know which key was pressed. If mouse events are being handled, you might want to
know which mouse button was pressed. The event object contains all these properties.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	132	 CHAPTER 2	 Implement program flow

The event object is accessed within an event handler function, using the window object as
shown:

var evnt = window.event;

The event object is a property of the window object. In this example, a reference to the
event object is assigned to a variable but also can be used directly. Within the context of the
current event handler, the event object contains the pertinent information—that is to say, the
respective properties are set. For example, in a keydown event, the details of the keyboard
state are available, but the mouse buttons aren’t because they aren’t relevant to a keydown
event.

NOTE  ACCESSING THE EVENT CONTEXT

In Internet Explorer, the window event is the method required to access the event ob-
ject. However, in some browsers, the event object is passed to the event function as a
parameter.

Declarative event handling
Handling events declaratively in the HTML markup is possible by setting up an event handlers
line within the HTML elements. This is effectively no different than assigning a value to any
other property or attribute of the HTML element. Look at the following HTML sample:

<html>
 <head>
 <script>
 function onloadHandler() {
 alert("hello event.");
 }
 </script>
 </head>
 <body onload="onloadHandler();">
 …
 </body>
</html>

In this HTML markup, the onload attribute of the body element is assigned JavaScript to
run. The onload event fires when the document itself is fully loaded into the browser. When
the document is loaded, the onload event fires, which calls the onloadHandler function and in
turn shows the alert box. Any events that will be looked at through this objective can be set
up this way directly in the HTML markup. Next, you see how to set up events programmati-
cally by assigning the function to the event property in JavaScript.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 133

Assignment event handling
Assigning the event function to the event property through JavaScript is another way to set
up event handlers. This method has been around for a long time and is still widely used. For
the preceding example of the onload event, the following changes are required to reflect
assigning an event handler through JavaScript:

<html>
 <head>
 <script>
 window.onload = onloadHandler();

 function onloadHandler() {
 alert("hello event.");
 }

 </script>
 </head>
 <body >
 ...
 </body>
</html>

In this code, the HTML element for the body is cleaned up and the onload event is as-
signed in JavaScript. The window object isn’t the same as the body element, but it demon-
strates the concept of assigning code that needs to run as soon as the page is loaded. Notice
that the assignment of the onloadHandler is in the script block but not inside any function.
For this to succeed, the window object must exist. Since the window object is a global object
it will exist. However, to access elements of the page, the page must be loaded or the script
must run after the renderer processes the HTML. For example, if the page has a canvas and
the functionality to enable users to draw on it with a mouse, the event handlers for the mouse
activities would have to be assigned either at the bottom of the page or within the window’s
onload event. The onload event is triggered when the entire page is loaded, so it’s possible to
get a reference to the page elements and hook up the event handlers.

A more common way to do this is to assign an anonymous function to the window’s
onload event and hook up all the necessary events. The concept of an anonymous function is
discussed shortly. It’s used throughout the book as shown here:

window.onload = function () {
 //do event setup in here.
}

Using the addEventListener and removeEventListener methods
addEventListener and removeEventListener are the two preferred methods to hook up a func-
tion to an event and then to remove it later as needed. The addEventListener method accepts
two required parameters and one optional parameter:

addEventListener(<event name>,<event function>,<optional cascade rule>)

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	134	 CHAPTER 2	 Implement program flow

The event name is the name of the event to be handled. The event name will be as you’ve
seen in the previous examples except without the on prefix. For example, the name of the
onload event is just load. The event function is the one that should run when the event occurs,
the listener. The optional cascade rule provides some flexibility in how the events move through
nested DOM elements. This is examined in more detail later in the discussion on event bub-
bling.

The removeEventListener takes exactly the same parameters. What this implies is that more
than one event listener can be added for the same event and then removed. Thinking in the
context of a complicated program such as a game, you might need to turn on and off specific
event handlers for the same event. Consider the following example:

<script>
 window.addEventListener("load", onloadHandler, false);
 window.addEventListener("load", onloadHandler2, false);
 window.addEventListener("load", onloadHandler3, false);

 function onloadHandler() {
 alert("hello event 1.");
 }
 function onloadHandler2() {
 alert("hello event 2.");
 }
 function onloadHandler3() {
 alert("hello event 3.");
 }
 </script>

Each event fires in the order in which it was added when the window is finished loading. To
remove the onloadHandler2 event, all that’s needed is a call to the removeEventListener:

window.removeEventListener("load", onloadHandler2, false);

When handling DOM events, the custom events you create are not a replacement for the
built-in functionality provided by the DOM element. The handling of the event allows you to
do some custom logic or manipulation, but when event handling is complete, the processing
returns back to the JavaScript API, which processes its own implementation for the event. If
this isn’t desirable, you can stop the event processing.

Using anonymous functions
In the examples so far, event handlers have been assigned via named functions. The advan-
tage to using named functions is that you can later remove event listeners as needed. You
can’t identify anonymous functions after they are assigned as event listeners to manipulate
them. In the example in the preceding section, three event listeners were added to the same
event, and then one event was removed. This was possible only because the name of the
event listener function was known.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 135

As expected, an anonymous function has no name. It’s completely anonymous and can’t
be called from other code segments. Look at the following example:

window.onload = function () {
 }

This example is used throughout the book to ensure that the page is fully loaded before
accessing elements in the DOM; otherwise, the elements wouldn’t be available. The onload
event for the window object is being assigned an anonymous function. This function doesn’t
have a name and can’t be called by any other code. The inner implementation of the window
object runs this function when raising the onload event.

In JavaScript, functions are objects that can be assigned to variables. This is how the
anonymous function event listener works. It assigns a function object to the onload property
of the window object, which in turn handles the event when the window is completely loaded.
You can use anonymous functions in most cases where a function is expected as a parameter
also. Take the following code sample:

window.addEventListener("load",
function () {
 document.getElementById("outer").addEventListener("click", outerDivClick, false);},
false);

In this sample, the addEventListener method is used. But instead of passing in the func-
tion name to call when the event is triggered, an anonymous function is passed in. The only
potential problem with this approach is the ability to later remove the event listener with the
removeEventListener method. That the following code would work might seem logical:

window.removeEventListener("load",
function () {
 document.getElementById("outer").addEventListener("click", outerDivClick, false); },
false);

But this isn’t the case. Because the event listeners that the addEventListener method adds are
stored by their signatures, this removeEventHandler method can’t know the signature of the
previous anonymous function. Even passing in the exact same anonymous implementation
doesn’t work because this isn’t the same anonymous function; it’s a new one and therefore
doesn’t match the signature of the added one.

Canceling an event
The ability to cancel event processing can be useful when you want to completely over-
ride the implementation of the native functionality of a DOM element. A perfect example
is if it was required to override the inherent functionality of an anchor element. An event
listener would be set up for the click event. Then in the click event, via the event object, the

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	136	 CHAPTER 2	 Implement program flow

returnValue property is set to false or the function itself can return false. This tells the runtime
to stop any further processing of the event. The following code demonstrates this:

window.onload = function () {
 var a = document.getElementById("aLink");
 a.onclick = OverrideAnchorClick;
}
function OverrideAnchorClick() {
 //do custom logic for the anchor
 window.event.returnValue = false;
 //or
 //return false;
}

In this case, when the anchor is clicked, the custom event handler runs but no further logic
is processed. Hence, the navigation typically provided by the <a> element is prevented from
running. Another aspect to consider is the order in which events run when you are working
with a nested DOM element. In this case, the concept that is dealt with is event bubbling.

Declaring and handling bubbled events
Event bubbling is the concept that applies when the HTML document has nested elements.
Consider the following HTML example:

<style>
 #outer {
 width: 200px;
 height: 200px;
 background-color: red;
 }
 #middle {
 width: 50%;
 height: 50%;
 position: relative;
 top: 25%;
 left: 25%;
 background-color: green;
 }
 #inner {
 width: 50%;
 height: 50%;
 position: relative;
 top: 25%;
 left: 25%;
 background-color: blue;
 }
</style>
<script>
 window.onload = function () {
 document.getElementById("outer").addEventListener("click", outerDivClick, false);
 document.getElementById("middle").addEventListener("click", middleDivClick, false);
 document.getElementById("inner").addEventListener("click", innerDivClick, false);
 document.getElementById("clearButton").addEventListener("click", clearList);
 }
 function outerDivClick() {

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 137

 appendText("outer Div Clicked");
 }

 function middleDivClick() {
 appendText("middle Div Clicked");
 }
 function innerDivClick() {
 appendText("inner Div Clicked");
 }
 function appendText(s) {
 var li = document.createElement("li");
 li.innerText = s;
 document.getElementById("eventOrder").appendChild(li);
 }
 function clearList() {
 var ol = document.createElement("ol");
 ol.id = "eventOrder";
 document.getElementById("bod").replaceChild(ol,document.
 getElementById("eventOrder"));
 }
</script>
<body id="bod">
 <div id="outer">
 <div id="middle" >
 <div id="inner">
 </div>
 </div>
 </div>
 <ol id="eventOrder">
 <button type="button" id="clearButton">Clear</button>
</body>

When this HTML is rendered in the browser, the result is three nested div elements, as
shown in Figure 2-2. In this code are three div elements stacked on top of each other. The
styling is applied to provide a visual distinction between the boxes. When a div box is clicked,
the click event fires. The event listener code in the assigned handler outputs the name of the
clicked div to an ordered list so that the order in which the events are clicked is identified.

FIGURE 2-2  Three nested <div> elements to display the effect of event bubbling

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	138	 CHAPTER 2	 Implement program flow

The last parameter of the addEventListener method accepts an optional Boolean parameter.
This parameter allows you to specify the cascading or bubbling effect of the event—that is to
say, in which order the event processing occurs. The click event for each div has an event listener
assigned. In the preceding example, the three div elements are nested. A user who clicks the
inside or middle div also clicks the parent div because the div elements share the same physical
space on the screen. When the blue inside box is clicked, the following output is displayed:

1. inner Div Clicked
2. middle Div Clicked
3. outer Div Clicked

One click event triggered all three events to fire. This concept is called event bubbling.
Clicking directly on the middle green div produces the following output:

1. middle Div Clicked
2. outer Div Clicked

Finally, clicking the red outer div produces this output:

1. outer Div Clicked

The event has bubbled up to the top. If you prefer to have the events handled in the
opposite order—that is, to have them cascade down—the last parameter specified by the
addEventListener method is specified as true. With this change made, as follows,

document.getElementById("outer").addEventListener("click", outerDivClick, true);
document.getElementById("middle").addEventListener("click", middleDivClick, true);
document.getElementById("inner").addEventListener("click", innerDivClick, true);

the screen output is now as follows:

1. outer Div Clicked
2. middle Div Clicked
3. inner Div Clicked

The order of the event processing has reversed to be cascading instead of bubbling.

The cascading or bubbling effect of the events is convenient when you want it. However, the
design of the webpage could involve nested elements, but each element’s click event should
run only if the element is directly clicked. In this case, you can use a property of the event object
called cancelBubble. If this property is set to true, the event bubbling or cascading stops with
the event listener that sets it. This stops only the bubbling or cascading behavior. The code to
cancel the bubbling of the event is added to the inner div element’s event listener:

function innerDivClick() {
 appendText("inner Div Clicked");
 window.event.cancelBubble = true;
}

Now, when the inner div is clicked, the output is as follow:

1. inner Div Clicked

The bubbling of the event up to the middle div and outer div has been prevented.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 139

Handling DOM events
The DOM provides a large number of built-in events. The most common events used on a
more day-to-day basis are covered in this section. The DOM provides these events via the
JavaScript API. Functions can be specified as event listeners, and custom behavior can be
implemented onto webpages based on the event occurring. These events apply to most DOM
elements.

Change events
A change event occurs when the value associated with an element changes. This most
commonly occurs in input elements such as text-based inputs and others such as the range
element. An example of the change event in action is shown here:

<script>
 window.onload = function () {
 document.getElementById("aRange").addEventListener("change", rangeChangeEvent);
 }

 function rangeChangeEvent() {
 document.getElementById("rangeValue").innerText = this.value;
 }

</script>
…
<body>
 <input id="aRange" type="range" max="200" min="0" value="0"/>
 <div id="rangeValue"></div>
</body>

In this example, as the range slider control changes with the mouse dragging it from one
side to the other, the div displays the value of the slider bar.

EXAM TIP

This example uses the this keyword. In this context, the this keyword provides a direct
reference to the element that created the event. In this way, this provides shortcut access
to the element rather than gets a reference via one of the document search methods.

With the text input control, the same type of code can be processed:

…
document.getElementById("aText").addEventListener("change", rangeChangeEvent);
…
<body>
 <input id="aRange" type="range" max="200" min="0" value="0"/>
 <input id="aText" type="text"/>
 <div id="rangeValue"></div>
</body>

Now when the text value of the text box changes, the div shows the value. The text box
change event is raised when the cursor leaves the text box, not as each character is typed.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	140	 CHAPTER 2	 Implement program flow

Focus events
Focus events occur when an element receives or loses the focus. Table 2-2 lists the available
events related to focus.

TABLE 2-2  The DOM focus events

Event Description

focus Raised when the element receives the focus

blur Raised when the element loses the focus

focusin Raised just before an element receives the focus

focusout Raised just before an element loses the focus

The number of focus events provide very good flexibility in how the focus of any particular
DOM element is handled with respect to the timing. The blur event is commonly used to vali-
date form fields. You can use the focus() method to set the focus to any element that causes
the focus event hierarchy to occur. The following code shows how to use the blur event:

<script>
 window.onload = function () {
 document.getElementById("firstNameText").focus();
 document.getElementById("firstNameText").addEventListener("blur", function () {
 if (this.value.length < 5) {
 document.getElementById("ruleViolation").innerText =
'First Name is required to be 5 letters.';
 document.getElementById("ruleViolation").style.color = 'red';
 this.focus();
 }
 });
 }
</script>

Keyboard events
Keyboard events occur when keys are pressed on the keyboard. The keyboard events in
Table 2-3 are available to be captured.

TABLE 2-3  Available keyboard events

Event Description

keydown Raised when a key is pushed down

keyup Raised when a key is released

keypress Raised when a key is completely pressed

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 141

The following example listens for the keydown event on the text box and shows the
keycode for the pressed key:

document.getElementById("firstNameText").addEventListener("keydown", function () {
 document.getElementById("outputText").innerText = window.event.keyCode;
});

Code such as this can be used to filter out invalid characters from being entered into a text
box. With keyboard events, extra properties are available on the event object to help out.
For example, you might need to know whether the Shift key or Control key was also being
pressed. Table 2-4 lists the event object properties for keyboard events.

TABLE 2-4  Event object properties for keyboard events

Property Description

altKey A Boolean value to indicate whether the Alt key was pressed

keyCode The numeric code for the key that was pressed

ctrlKey A Boolean value as to whether the Control key was pressed

shiftKey A Boolean value as to whether the Shift key was pressed

EXAM TIP

In some cases, depending on the key, only the keydown event fires. The arrow keys are such
an example: keydown fires but not keyup or keypress.

You can use properties such as ctrlKey with the keyCode event to give the users something
similar to hotkey functionality to automatically navigate the focus to specific fields:

document.onkeydown = function () {
 if (window.event.ctrlKey && String.fromCharCode(window.event.keyCode) == 'F')
 document.getElementById("firstNameText").focus();
 if (window.event.ctrlKey && String.fromCharCode(window.event.keyCode) == 'L')
 document.getElementById("lastNameText").focus();
 return false;
}

Mouse events
The DOM provides extensive exposure to mouse activity through the mouse events. Table 2-5
describes the available mouse events.

TABLE 2-5  Available mouse events

Event Description

click Raised when the mouse performs a click

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	142	 CHAPTER 2	 Implement program flow

Event Description

dblclick Raised when the mouse performs a double-click

mousedown Raised when the mouse button is pressed down

mouseup Raised when the mouse button is released

mouseenter or
mouseover

Raised when the mouse cursor enters the space of an HTML element

mouseleave Raised when the mouse cursor leaves the space of an HTML element

mousemove Raised when the mouse cursor moves over an HTML element

The mouse events provide additional information on the event object. Table 2-6 lists the
applicable properties of the event object.

TABLE 2-6  Properties of the mouse event

Property Description

clientX The x or horizontal position of the mouse cursor relative to the viewport boundaries

clientY The y or vertical position of the mouse cursor relative to the viewport boundaries

offsetX The x or horizontal position of the mouse cursor relative to the target element

offsetY The y or vertical position of the mouse cursor relative to the target element

screenX The x or horizontal position of the mouse cursor relative to the upper-left corner of the
screen

screenY The y or vertical position of the mouse cursor relative to the upper-left corner of the screen

The following code demonstrates capturing each coordinate set:

window.onload = function () {
 document.getElementById("yellowBox").addEventListener("click", yellowBoxClick);
}
function yellowBoxClick() {
 document.write("Client X: " + window.event.clientX + " ClientY: "
 + window.event.clientY);
 document.write("
");
 document.write("offsetX: " + window.event.offsetX + " offsetY: "
 + window.event.offsetY);
 document.write("
");
 document.write("screen X: " + window.event.screenX + " screenY: "
 + window.event.screenY);
}

This code assumes a div called yellowBox that raises its click event when the mouse clicks it.
You can easily change the event to mousedown or mouseup to achieve the same outcome.

The mouseenter and mouseleave events indicate when the mouse cursor position has
entered or left the area covered by a particular element, respectively. The following code

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 143

demonstrates applying a transformation to the div element on the mouseenter and removing
it on the mouseleave:

<style>
 .scale {
 transform:scale(1.5);
 }
</style>
<script>
window.onload = function () {
 document.getElementById("yellowBox").addEventListener("mouseenter",
 yellowBoxEnter);
 document.getElementById("yellowBox").addEventListener("mouseleave",
 yellowBoxLeave);
 }
 function yellowBoxEnter() {
 this.classList.add("scale");
 }
 function yellowBoxLeave() {
 this.classList.remove("scale");
 }
</script>
<body>
 <div id="yellowBox" style="width: 50%;height:50%;margin: 0 auto;
 background-color:yellow;"></div>
</body>

When the mouse moves over the yellow-filled div, the div scales up. When the mouse is
moved off the div, it returns to the original size.

Drag-and-drop functionality
Drag-and-drop functionality enables users to pick up an element with the mouse and place it
in another location. Table 2-7 lists the events related to drag-and-drop functionality.

TABLE 2-7  Events available to drag and drop

Event Description

drag Raised continuously while the element is being dragged

dragend Raised on the element being dragged when the mouse is released to end the drop
operation

dragenter Raised on a target element when a dragged element is dragged into its space

dragleave Raised on a target element when a dragged element leaves its space

dragover Raised continuously on the target element while the dragged element is being
dragged over it

dragstart Raised on the element being dragged when the drag operation is beginning

drop Raised on the target element when the dragged element is released

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	144	 CHAPTER 2	 Implement program flow

A lot happens in a drag-and-drop operation, starting with the dragstart event. The drag
event continues to fire while the element is being dragged. As the element is dragged over
other elements, each of those other elements’ dragenter, dragover, and dragleave events fire.
When the element finishes being dragged, its dragend event fires and the drop event of a
target element fires. You can use all these events in combination to provide visual feedback to
users that the drag operation is occurring and what might be a potentially valid drop location.

The following HTML demonstrates this functionality:

<head>
 <style>
 .dropped {
 width: 50%;
 height: 50%;
 position: relative;
 top: 25%;
 left: 25%;
 background-color:black;
 }
 .over {
 transform: scale(1.1);
 }
 .bucket {
 width: 100px;
 height: 100px;
 margin: 10px 10px 10px 10px;
 position:absolute;
 }
 .chip {
 width:20px;
 height:20px;
 position:absolute;
 }
 div:first-of-type {
 background-color: red;
 }
 div:nth-of-type(2) {
 background-color: green;
 left:25%;
 }
 div:nth-of-type(3) {
 background-color: blue;
 left:50%;
 }
 #chip {
 background-color: black;
 width:50px;
 height:50px;
 }
 .begin {
 position:absolute;
 left: 150px;
 top: 150px;
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 145

 </style>
</head>
<body>
 <div id="bucket1" class="bucket"></div>
 <div id="bucket2" class="bucket"></div>
 <div id="bucket3" class="bucket"></div>
 <div id="chip" draggable="true" class="chip"></div>
</body>

The concept is that three buckets are defined by using div elements, and a chip is defined.
The user can drag the chip into any one of the three buckets. For the chip to be able to be
dragged, it must be draggable.

To begin the drag event, the dragstart must be handled:

var chip = document.getElementById("chip");
chip.addEventListener("dragstart", function ()
{ window.event.dataTransfer.setData("Text", this.id); });

In this handler, the dataTransfer object setData method is used to store what exactly is
being transferred. In this case, the ID of the source object is specified.

Next, the desired target element’s event listeners must be set up. The following code
shows this:

var b1 = document.getElementById("bucket1");
b1.addEventListener("dragenter", function () {
 b1.classList.add("over");
 window.event.returnValue = false;
});
b1.addEventListener("dragleave", function () {
 b1.classList.remove("over");
});
b1.addEventListener("dragover", function () {
 window.event.returnValue = false;
});
b1.addEventListener("drop", function () {
 window.event.returnValue = false;
 var data = event.dataTransfer.getData("Text");
 var d = document.getElementById(data);
 d.classList.remove("begin");
 d.classList.add("dropped");
 this.appendChild(d);
});

In this code, the dragenter event listener is established so that the user gets a visual cue
with a transform that the element can be dropped onto. In the same token, the dragleave
event listener is set up to remove the effect. The dragover event is set to be ignored by
canceling it. This is only because div elements can’t be dragged and dropped by default.

The last piece is the drop event handler. With this event handler, the drop is received. The
dataTransfer object’s getData method is called to retrieve what’s being dropped. The ID of the
source element gets a reference to the element and places it inside the target. The same code
can be repeated for the other two buckets, and then the chip can be dragged into each bucket.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	146	 CHAPTER 2	 Implement program flow

NOTE  DRAG-AND-DROP SUPPORT

For elements that don’t support drag-and-drop functionality by default, the default event
mechanism must be canceled. This is why event.returnValue is set to false.

Creating custom events
DOM events provide a great deal of functionality. In some cases, you might want to create
a custom event to use more generically. To create a custom event, you use the CustomEvent
object.

To use custom events, you first need to create one by using the window.CustomEvent
object:

myEvent = new CustomEvent(
 "anAction",
 {
 detail: { description: "a description of the event",
 timeofevent: new Date(),
 eventcode: 2 },
 bubbles: true,
 cancelable: true
 }
);

The CustomEvent object constructor accepts two parameters:

■■ The first parameter is the name of the event. This is anything that makes sense for what
the event is supposed to represent. In this example, the event is called anAction.

■■ The second parameter is a dynamic object that contains a detail property that can
have properties assigned to it containing information that should be passed to the
event handler. Also, the parameter provides the ability to specify if the event should
bubble and whether the event can be canceled.

The next step is to assign the event to an element on the page by using the
addEventListener method:

document.addEventListener("anAction", customEventHandler);

Finally, the event is raised by using the dispatchEvent method:

document.dispatchEvent(myEvent);

A function called customEventHandler must exist for all this to work:

function customEventHandler() {
 alert(window.event.detail.description);
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.2: Raise and handle an event	 CHAPTER 2	 147

EXAM TIP

As of this writing, Internet Explorer doesn’t support this functionality. Custom events work
correctly in other browsers, though. Be aware of how custom events work for the exam,
however, because they are part of the official skills being measured.

Thought experiment
Creating an event-full webpage

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Consider an application where fields become auto-populated based on user input in
other fields. Auto-population is seen sometimes on forms that require users to fill in
their address. When the postal code is entered, the city, country/region, and so on
are populated based on that information. How would you apply the proper event
to a form that contains text boxes, check boxes, option buttons, slider bars, and so
on, so that as the form is filled in, other fields are populated automatically? Perhaps
when a field is filled automatically, its value triggers other fields to be populated.
How can you implement the solution, considering the timing of when events are
triggered?

Objective summary
■■ Events provide a way to interact with users when they perform actions on the

webpage.

■■ Events cascade or bubble through the entire DOM hierarchy.

■■ Focus events occur when an object gets or loses focus.

■■ Keyboard events occur when keyboard keys are pressed on a focused object.

■■ Mouse events occur when the mouse clicks an object or the pointer is moved over or
off an object.

■■ Drag-and-drop functionality provides a way to move elements from one container to
another.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	148	 CHAPTER 2	 Implement program flow

Objective review
1.	 Which of the following isn’t a supported way to add an event handler to a DOM

element?

A.	 Declaring within the HTML element by assigning the event attribute to a JavaScript
function

B.	 Setting the attribute in CSS to a valid JavaScript function

C.	 Dynamically through JavaScript by assigning a JavaScript function to the object's
event property

D.	 Dynamically through JavaScript via the assign/remove event listener methods

2.	 Which of the following isn’t an attribute of an anonymous function?

A.	 Anonymous functions can’t be called by any other code.

B.	 Anonymous functions have a clearly defined name.

C.	 Anonymous functions can be passed as parameters.

D.	 Anonymous functions can’t be assigned to a DOM element declaratively.

3.	 Which code line would successfully cancel an event?

A.	 window.event.returnValue = false;

B.	 return false;

C.	 window.event.Return();

D.	 window.Stop();

4.	 Which event occurs when a DOM element receives the cursor?

A.	 focus

B.	 change

C.	 keydown

D.	 mouseleave

5.	 Which option provides the correct sequence of events in a drag-and-drop operation?

A.	 dragstart, drag, dragenter, drop

B.	 dragstart, drag, dragenter, dragstop

C.	 drag, dragstart, drop, dragenter

D.	 drag, dragstart, dragenter, dragstop

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement exception handling	 CHAPTER 2	 149

Objective 2.3: Implement exception handling

That a program can deal with errors and unknown conditions is critical in any software
development. JavaScript is no exception and provides structured error-handling constructs to
deal with these situations.

Structured error handling in JavaScript is achieved with the try…catch…finally construct.
Good defensive programming also includes checking for null values, where appropriate, to
prevent errors. In addition to handling errors, code can raise custom errors as needed to send
error information back to a running program from custom objects or libraries.

This objective covers using the try…catch…finally construct, evaluating for the null
condition, and raising custom errors.

This objective covers how to:
■■ Implement try-catch-finally blocks, including setting and responding to error

codes and throwing exceptions

■■ Check for null values

Implementing try…catch…finally constructs
The try…catch…finally construct handles exceptions that occur during program processing. It
enables you to see what kind of error occurred and to do what’s appropriate with it. If try…
catch…finally isn’t implemented in the program, the errors would be treated as unhandled
and could cause the browser to crash or, at a minimum, display many annoying message
boxes to users, such as this one shown in Figure 2-3 that is caused from this code:

window.dosomeunsupportedmethod();

FIGURE 2-3  An unhandled exception error dialog box

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	150	 CHAPTER 2	 Implement program flow

With errors like this, users will likely stop coming to the website or using the application.
To prevent such issues, you need to wrap the code in a try block:

try{
 window.dosomeunsupportedmethod();
} catch (e) {
 alert("Browser does not support the desired functionality.");
}

By using the try…catch block, you can handle the error condition gracefully. The users see
a standard alert and the webpage continues to run as usual. This example code results in the
message shown in Figure 2-4.

FIGURE 2-4  A clean message box to show errors

The try…catch block is divided into two parts. The first part, the try portion, says, “Try to
do this work.” If anything goes wrong when trying to do the work, the catch block receives
an exception object with information about the error. Any code inside the try portion of the
try…catch block is protected against encountering an unhandled error.

The catch block is where the error can be handled as appropriate for the application. The
catch block receives a parameter that is an exception object. Table 2-8 shows the properties
for the exception object.

TABLE 2-8  Properties available on the exception object

Property Description

message A textual description of the error that occurred

number A numeric error code

name The name of the exception object

You can use the information provided in the exception object to decide what to do in
terms of overall program flow. For example, if the program needs access to a resource that
it can’t have and an exception is thrown, the program can fall back to a different process
to achieve the desired functionality or simply tell the user that something needs to be
changed—for example, if cookies or another HTML5 API are required for the site to work.
Other ways to check for this type of thing are demonstrated shortly.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement exception handling	 CHAPTER 2	 151

Another part to the try…catch block is the finally block. This block is added directly after
the catch block. The significance of the finally block is that the code inside it runs all the time.
This isn’t to say that the code in the finally block can’t have its own errors resulting in excep-
tions, but whether or not the code in the try block has an error, the code in the finally block
still runs. Consider the following code:

function WorkthroughArray() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 context.fillStyle = "blue";

 contxt.arc(50, 50, 25, 0, 360);

 context.fill();
 context.strokeStyle = "red";
 context.stroke();
}

This function contains an intentional spelling error, contxt, which results in an exception.
Nothing after the line that causes the exception runs. However, placing a try…catch…finally
block around this code provides more control over the flow:

try{

 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 context.fillStyle = "blue";

 contxt.arc(50, 50, 25, 0, 360);

 context.fill();
 context.strokeStyle = "red";
 context.stroke();
}
catch (e) {
 console.log(e.message);
}
finally {
 //do any final logic before exiting the method
}

Now, with the structured error handling in place, when the line with the typo is hit,
processing jumps into the catch block. In this block, the error could be logged for future
diagnostics. After the catch block completes, the finally block runs. If any cleanup or variable
resetting needs to be done, it can be done here even though an exception occurs. The finally
block also runs. If the typo is fixed so that no exceptions occur in the try block, the catch
doesn’t occur because of nothing to catch, but the finally block still runs. The finally block
always runs as the last part of a try…catch…finally block.

Variable scope applies to each block within the try…catch block. If a variable is declared
within the try portion, it won’t be accessible from the catch of the finally. If you want to have

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	152	 CHAPTER 2	 Implement program flow

access in those blocks, the variables need to be declared outside the try block. Look at this
example:

var canvas;
var context;
try {
 document.getElementById("myCanvas");
 context = canvas.getContext("2d");
 contxt.arc(50, 50, 25, 0, 360);
 context.fillStyle = "blue";
 context.fill();
 context.strokeStyle = "red";
 context.stroke();
 }
 catch (e) {
 context.strokeText(e.message, 50, 50);
 console.log(e.message);
 }
 finally {
 //do any final logic before exiting the method
 }

The declaration for the reference to the canvas and the canvas context is moved outside
the try block so that it can be accessible in the catch block. The catch block can now write the
error to the canvas.

NOTE  USING DEBUGGING TOOLS

A call to console.log was added to the catch block. This is a great way to add information
that can be viewed in the client debugger. For example, in Internet Explorer, you can access
the debugger tools by pressing F12.

Exceptions bubble up the call stack, a special stack in the processing environment that rep-
resents the functions currently being processed in sequential order. Take the following code
sample:

window.onload = function () {
 try {
 WorkWithCanvas();
 } catch (e) {
 console.log(e.message);
 }
}

function WorkWithCanvas() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 contxt.arc(50, 50, 25, 0, 360);
 context.fillStyle = "blue";
 context.fill();
 context.strokeStyle = "red";
 context.stroke();
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement exception handling	 CHAPTER 2	 153

Because the WorkWithCanvas method has no exception handling, the exception bubbles
up to the calling method, the next method in the stack. This continues through the stack until
either an exception handler is met or the browser receives the exception and treats it as an
unhandled exception. Of course, in this case, the variables in the WorkWithCanvas method
can’t be accessed, so if anything needed to be done in a finally block, the try…catch…finally
block should be either moved into the WorkWithCanvas method, or the WorkWithCanvas
method can handle the error and rethrow it for further processing.

The concept of raising an error is also known as throwing an exception. Custom objects and
libraries throw exceptions as needed to the consumers of the libraries. The objects or libraries
expect you to meet certain conditions and if those conditions aren’t met, they can throw
an exception for the consumer to deal with. To continue with the example, the exception is
handled in the WorkWithCanvas method and then rethrown. An exception is thrown using
the throw keyword:

function WorkWithCanvas() {
 try {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 contxt.arc(50, 50, 25, 0, 360);
 context.fillStyle = "blue";
 context.fill();
 context.strokeStyle = "red";
 context.stroke();
 } catch (e) {
 //handle the exception as appropriate
 throw e;
 } finally {
 }
}

In this example, the exception can be handled in the catch block as needed, and then
thrown back up the call stack to be handled again at another level.

More commonly when working with custom libraries, you can create custom exceptions to
give users information specific to the situation that occurred:

var ball = {
 x: -1,
 y: -1,
 draw: function DrawBall(c) {
 if (this.x < 0)
 throw new Error(25, "Invalid X coordinate");
 }
}
window.onload = function () {
 try {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 ball.draw(context);
 } catch (e) {
 alert(e.message);
 }
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	154	 CHAPTER 2	 Implement program flow

In this code, a custom object to represent a ball is created. It has a draw method that
expects a canvas context to draw itself on. However, if the coordinates for the ball aren’t
initialized, the ball object throws a custom error. The calling code has a try…catch block so
that it can handle any unexpected errors. In this example, the consumer of the ball object
would get a meaningful message that the x-coordinate needs to be set to something valid.

A new object, Error, is used here to create the exception. The Error object constructor takes
two parameters, in this order: the error number followed by an error description. This infor-
mation should be as specific as possible to provide as much detail as possible to the calling
code.

Checking for null values
One way to prevent many errors is to check for null values before using something. A null
value in a JavaScript program is what a variable equals before it’s initialized. JavaScript knows
about the variable’s existence but doesn’t yet have a value.

A common place to ensure that variables have values is in functions that accept param-
eters. Consider the following function:

window.onload = function () {
 try {
 var a, b, c;
 a = 5;
 b = 10;
 var result = multiplyNumbers(a, b, c);
 alert(result);
 } catch (e) {
 alert(e.message);
 }
 }
 function multiplyNumbers(first, second, third) {
 if (first == null || second == null || third == null)
 {
 throw new Error(5, "Forgot to initialize a number.");
 }
 return first * second * third;
 }

In this code, the developer forgot to initialize the variable c, resulting in a null value. In the
multiplyNumbers method, the parameters are evaluated for a null value and, if found, an error
is thrown. If this method didn’t check for null values and assumed that every developer call-
ing it would never make a mistake, the results would be unexpected to the consumer of the
method. In this case, the result would be NaN (not a number), a special JavaScript type. This is
because of the attempt to perform a mathematical operation against a null value.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.3: Implement exception handling	 CHAPTER 2	 155

Thought experiment
Micromanaging exceptions

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

The reason behind exception handling is, obviously, to handle exceptions. In some
cases, error conditions can be predicted and if the situation occurs, it’s handled and
resolved. In this case, you might not want to simply wrap an entire code block into a
big try…catch block and have the application fail to proceed.

How would you incorporate the use of try…catch blocks into a longer JavaScript
routine with multiple points of potential error? Some errors can be corrected, and
some might not be. The correctable errors should allow the script to continue
successfully.

Objective summary
■■ Structured error handling is provided by the JavaScript language in the form of the

try…catch…finally block.

■■ The try…catch…finally block provides a way to try some logic, catch an error and
handle it appropriately, and finally do some clean up.

■■ The finally block always runs whether or not an exception is thrown.

■■ Checking for a null value before accessing any objects to ensure that they are initial-
ized is good practice.

Objective review
1.	 Which statement correctly describes the proper error handling using try…catch…finally

blocks?

A.	 Proper error handling allows code processing to continue and to provide appropri-
ate user feedback.

B.	 Proper error handling allows users to fix problems with the webpage.

C.	 Proper error handling allows you to debug the application at run time.

D.	 Proper error handling allows you to suppress all the bugs in your scripts.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	156	 CHAPTER 2	 Implement program flow

2.	 Which of the following isn’t a property of the exception object?

A.	 message

B.	 description

C.	 number

D.	 name

3.	 Why is checking for null a good practice?

A.	 Checking for null prevents the use of an object before it’s initialized.

B.	 Checking for null prevents errors resulting in NaN.

C.	 Checking for null prevents the need to throw custom errors.

Objective 2.4: Implement a callback

Callbacks are a design pattern to implement when you are working with multiple threads or
just needing to have something work asynchronously. The concept of the callback is quite
straightforward and is used throughout this book quite heavily. The idea of a callback is to
call a function to run but when it’s done, to call back a specified function with usually some
sort of result or status of the operation. The “Using advanced array methods” section earlier
in this chapter demonstrates a few of the functions available on the array object that take a
callback as a parameter. The general pattern is shown here:

<script>
 window.onload = function () {
 WillCallBackWhenDone(MyCallBack, 3, 3);
 }
 function WillCallBackWhenDone(f, a, b) {
 var r = a * b;
 f(r);
 }
 function MyCallBack(result) {
 alert(result);
 }
</script>

In this code example, two functions are declared: WillCallBackWhenDone and MyCallBack.
One parameter to the WillCallBackWhenDone function is a function followed by two other
variables, which in this case are numbers that will be multiplied. The product of the multi-
plication is passed to the callback function. This case is a bit over the top for the usage of
callbacks, but it does demonstrate the pattern involved. Anytime a function is called that ex-
pects a function as a parameter, this is what it’s doing. Knowing what parameters the callback
function will receive is important so that they can be specified in the parameter list.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 157

Another common use for callbacks is as events. Whenever a DOM event is fired, it’s using
a callback pattern. A function is provided as a parameter or property to indicate that when
specific things occur, such as a mouseover, to call back to the specified function to run some
custom logic related to the end-user action.

Many APIs that JavaScript and the browser expose as part of the HTML5 specification
involve the use of callbacks. In this objective, the WebSocket API is examined. Also, the use of
jQuery is introduced as it applies to making Asynchronous JavaScript and XML (AJAX) calls.
The ability to wire up an event and implement a callback using anonymous functions is also
discussed. Finally, this objective covers the use of the this pointer.

This objective covers how to:
■■ Implement bidirectional communication with the WebSocket API

■■ Make webpages dynamic with jQuery and AJAX

■■ Wire up an event with jQuery

■■ Implement a callback with an anonymous function

■■ Use the this pointer

Implementing bidirectional communication with the
WebSocket API
The WebSocket API provides bidirectional communication support to your web applications.
WebSocket has greatly simplified the way data can be sent and received. Traditional methods,
such as long polling, have existed for a long time and are widely used all over the web today.
However, traditional techniques use the heavier HTTP mechanisms, which make the applica-
tion inherently less efficient. The use of the WebSocket API allows the connection directly to
a server over a socket. This is a much lighter weight connection and is fully bidirectional; both
binary and text-based data can be sent and received.

NOTE  ACCEPTING SOCKET CONNECTIONS

The full implementation of a WebSocket API requires that a webserver have a proper
server-side implementation that can accept socket connections. Technologies such as
Node.js work well for this purpose. Implementation of such technologies is beyond the
scope of this book, and these code samples assume such an implementation exists.

The use of the WebSocket API is ideal for real-time applications such as messenger/chat
applications, server-based games, and more advanced scenarios, such as WebRTC (Web

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	158	 CHAPTER 2	 Implement program flow

Real-Time Communication) video conferencing. The data transmitted over WebSockets can
be text based or binary. The code in Listing 2-1 demonstrates the WebSocket API.

LISTING 2-1  Implementation of the WebSocket API

<script type="text/javascript">
 window.onload = function (){
 var wsConnection;
 var chatBox = document.getElementById("chatWindow");
 var disconnectButton = document.getElementById("Disconnect");
 var connectButton = document.getElementById("Connect");
 var sendButton = document.getElementById("Send");
 var msgToSend = document.getElementById("msgSendText");
 disconnectButton.onclick = function () {
 wsConnection.close();
 }
 connectButton.onclick = function () {
 //Or the use of wss for secure WebSockets. IE: wss://studygroup.70480.com
 //Opens the WebSocket
 wsConnection= new WebSocket('ws://studygroup.70480.com', ['soap', 'xmpp']);
 }
 sendButton.onclick = function () {
 //check the state of the connection
 if (wsConnection.readyState == WebSocket.OPEN) {
 //send message to server.
 wsConnection.send(msgToSend.value);
 }
 else
 return;
 //show message in chat window.
 NewLine();
 chatBox.value = chatBox.value + "You: " + msgToSend.value;
 //clear message text box
 msgToSend.value = '';
 }
 // event handler for when the WebSocket connection is established
 wsConnection.onopen = function () {

 chatBox.textContent = chatBox.textContent +
 "System: Connection has been established";
 }
 //event handler for when the WebSocket encounters an error
 wsConnection.onerror = function (err) {
 //write an error to the screen
 NewLine();
 chatBox.value = chatBox.value + "System: Error Occurred. ";
 }
 wsConnection.onclose = function () {
 //write the connection has been closed.
 NewLine();
 chatBox.value = chatBox.value + "System: Connection has been closed.";
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 159

 wsConnection.onmessage = function (msg) {
 //write message
 NewLine();
 chatBox.value = chatBox.value + "Them: " + msg.data;
 }
 //helper functions.
 function NewLine()
 {
 chatBox.textContent = chatBox.textContent + '\r\n';
 }
 }
</script>
<body>
 <div align="center">
 <div>
 70-480 Study Group Chat Forum
 </div>
 <div>
 <textarea id="chatWindow" style="height: 500px; width: 300px">
 </textarea>
 </div>
 <div>
 <input type="text" id="msgSendText" style="width: 300px"/>
 </div>
 <div>
 <button id="Disconnect">Disconnect</button>
 <button id="Connect">Connect</button>
 <button id="Send">Send</button>
 </div>
 </div>
</body>

The primary object that you will work with is the WebSocket object, which connects to the
socket when its constructor is invoked. In Listing 2.1, a variable is declared but not instanti-
ated until a user invokes the connect button. When the user clicks the button, the WebSocket
is instantiated with the appropriate connection information:

wsConnection= new WebSocket('ws://studygroup.70480.com', ['soap', 'xmpp']);

The WebSocket constructor accepts two parameters:

■■ The URL of the server-side socket to connect to, which is always prefixed with ws or
wss for secure WebSocket connections

■■ An optional list of subprotocols

When the WebSocket constructor is called, the WebSocket API establishes a connection
to the server. One of two things can happen at this stage. The WebSocket will successfully
connect to the server or the connection will fail, resulting in an error. Both cases should be

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	160	 CHAPTER 2	 Implement program flow

handled so that the proper feedback is provided to the application user. The WebSocket API
provides an event for each, called onopen and onerror, as shown earlier in Listing 2-1:

// event handler for when the WebSocket connection is established
wsConnection.onopen = function () {
 chatBox.textContent = chatBox.textContent +
 "System: Connection has been established";
}
//event handler for when the WebSocket encounters an error
wsConnection.onerror = function (err) {
 //write an error to the screen
 NewLine();
 chatBox.value = chatBox.value + "System: Error Occurred.";
}

In this example, both event handlers are providing feedback in the chat window to let
users know of either a successful connection or the occurrence of an error. The error event
could happen at any time, not just when establishing the initial connection.

When a successful connection is established, you can send and receive messages over the
socket. To send messages, the WebSocket API provides the Send function. To receive mes-
sages, the WebSocket API provides the onmessage event handler. These two methods show
the functions and events that handle the bidirectional communication:

wsConnection.onmessage = function (msg) {
 //write message
 NewLine();
 chatBox.value = chatBox.value + "Them: " + msg.data;
}
sendButton.onclick = function () {
 //check the state of the connection
 if (wsConnection.readyState == WebSocket.OPEN) {
 //send message to server.
 wsConnection.send(msgToSend.value);
}
 else
 return;
 //show message in chat window.
 NewLine();
 chatBox.value = chatBox.value + "You: " + msgToSend.value;
 //clear message text box
 msgToSend.value = '';
}

The first method is an event handler for the send button provided in the HTML. Users
click this button to send messages to other users of the chat application. The WebSocket API
provides a mechanism to check the current status of the connection. To prevent an error, the
readyState property is evaluated to ensure that it’s now open. readyState provides four pos-
sible values, as described in Table 2-9.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 161

TABLE 2-9  Possible values of the WebSocket readyState

Value Description

OPEN The connection is open.

CONNECTING The connection is in the process of connecting and not ready for use yet. This is the
default value.

CLOSING The connection is in the process of being closed.

CLOSED The connection is closed.

After confirming that the connection is in the appropriate state for sending a message, the
send method is called with the text that the user entered into the chat application. Also, so
that each user can see that his/her message is indeed part of the chat, the message is added
to the chat window.

When other users of the chat application send messages into the system, the server calls
the event handler specified in onmessage. The onmessage event receives a message parame-
ter with the data property that contains the message. This message is extracted and displayed
in the chat window for users to see.

When finished with a chat session, a user should be able to exit cleanly. This is accom-
plished by calling the close method of the WebSocket object. The close method can be called
with no parameters. It also allows the use of two optional parameters. A numerical code and a
reason can be provided but isn’t mandatory. In this example, the connection is closed with no
parameters. When a connection is closed, the onclose event handler is raised:

disconnectButton.onclick = function () {
 wsConnection.close();
}
wsConnection.onclose = function () {
 //write the connection has been closed.
 NewLine();
 chatBox.value = chatBox.value + "System: Connection has been closed.";
}

When the user clicks the close button, the close method is called. Then, the subsequent
call to the onclose event handler is implemented so that a message can be provided to the
user that the connection has indeed been closed.

Making webpages dynamic with jQuery and AJAX
So far throughout the book, you’ve seen some great ways to make webpages dynamic by
using JavaScript. JavaScript is the language that the webpage browser understands. In some
cases, using plain JavaScript or the standard JavaScript library available in the browser can be
cumbersome. This is where jQuery can be helpful. jQuery is a JavaScript library that special-
izes in working with the DOM to make webpages dynamic.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	162	 CHAPTER 2	 Implement program flow

In the preceding section, you explored how to use the WebSocket API to open a
bidirectional communication channel with the server. In this section, you examine using
jQuery and AJAX to make server requests to retrieve updated content for your pages. In tra-
ditional web development, when content needs to be updated on a page, a request is made
to the server for the page itself where the server-side code can run to get the new content,
perhaps from a database, and re-render the page with updated information. The user experi-
ence is a flicker as the entire page needs to be refreshed. The use of AJAX has solved this
issue by allowing you to make server-side requests via JavaScript without having to request a
full page refresh. You can implement AJAX without jQuery; however, because of the popular-
ity and ease of use that jQuery provides, using jQuery to implement this type of functionality
is much more desirable.

By requesting data from a server with JavaScript via jQuery and AJAX, you can retrieve
data behind the scenes and then use the various DOM manipulation techniques that you’ve
learned to update specific areas of the page that need to be updated. This prevents the need
to send a request for the entire page back to the server and creates a much more pleasant
user experience.

For this example, you will create a fictitious website for searching fruit. The page consists
of a box to enter an adjective about fruit and return any fruit that match the results. The
webpage is set up as shown in Listing 2-2.

LISTING 2-2  The Fruit Finder webpage

<html>
 <head>
 <script src=”jquery-2.0.3.min.js” type=”text/javascript”></script>
 <script type=”text/javascript”>
 window.onload = function () {
 $(‘#searchButton’).click(function () {
 var searchPath;
 $(‘#searchResults’).empty();
 switch ($(‘#searchFruit’).val()) {
 case ‘long’:
 searchPath = “Fruit/Long.xml”;
 break;
 case ‘round’:
 searchPath = “Fruit/Round.xml”;
 break;
 case ‘orange’:
 searchPath = “Fruit/Orange.xml”;
 break;
 default:
 InvalidSearchTerm();
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 163

 $.ajax({
 url: searchPath,
 cache: false,
 dataType: “xml”,
 success: function (data) {
 $(data).find(“fruit”).each(
 function () {
 $(‘#searchResults’).append($(this).text());
 $(‘#searchResults’).append(“
”);
 })
 }
 });
 });
 }
 function InvalidSearchTerm() {
 $(‘#searchResults’).empty();
 $(‘#searchResults’).append(‘Invalid Search Term. Please try again.’);
 }
 </script>
 </head>
 <body>
 <div>
 Enter search term: <input type=”text” id=”searchFruit”/>
 <input type=”button” id=”searchButton” value=”Search”/>
 </div>
 <div>
 <h1>Results:</h1>
 </div>
 <div id=”searchResults”>
 </div>
 </body>

</html>

In this listing, users are presented with a very simple user interface in which they can enter
a search term and retrieve a result set based on that search term. In this case, users can enter
one of the supported search terms and get back the data from the server. The data request is
made using AJAX and as such the entire page doesn’t need to refresh, only the area that dis-
plays the results. The part of the page where the data is needed is the only part of the page
that is affected by the new data being received.

The first thing that this code does is set up an event listener for the search button click
event. All the magic occurs in this function. The search term is evaluated to ensure that it
matches one of the supported search terms. If it doesn’t, the user is presented with a message
indicating this. If it does, the code proceeds to make an AJAX call to the server for the correct
data set that matches the search term. In this case, it’s a hard-coded XML file. However, the
data source is irrelevant as long as the returned XML matches the schema that the webpage
expects so that it can be parsed and displayed.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	164	 CHAPTER 2	 Implement program flow

The AJAX call has a few important parameters that you can set. Look at the AJAX call from
Listing 2-2:

$.ajax({
 url: searchPath,
 cache: false,
 dataType: "xml",
 success: function (data) {
 $(data).find("fruit").each(
 function () {
 $('#searchResults').append($(this).text());
 $('#searchResults').append("
");
 })
 }
 });

The first parameter being set is the url that the AJAX call will be requesting. For security
reasons, to prevent cross-site scripting, this URL must be within the same domain as the web-
page itself.

The next parameter, cache, is optional and indicates whether the call can use a cached
copy. The third parameter, datatype, indicates the expected data type, which could be XML or
JavaScript Object Notation (JSON), for example.

The last parameter set in this example is the success property. This parameter takes a func-
tion that the results of the AJAX calls should be passed into for the webpage to do some work
with. In this example, the results are parsed and added to the DOM so that users can see the
results.

Another property that can be set on the AJAX call, as good practice, is the error property
so that any error conditions can be handled gracefully. This is the listing updated with an er-
ror function set:

$.ajax({
 url: searchPath,
 cache: false,
 dataType: "xml",
 success: function (data) {
 $(data).find("fruit").each(
 function () {
 $('#searchResults').append($(this).text());
 $('#searchResults').append("
");
 })
 },
 error: function (xhr, textStatus, errorThrown) {
 $('#searchResults').append(errorThrown);
 }
});

The error function is passed three useful parameters:

■■ The HTTP request itself

■■ The HTTP error number (such as 404)

■■ The error text (such as Not Found)

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 165

You can mimic a 404 error by changing one of the search words to return an invalid path.

The jQuery AJAX toolkit supports not only getting data, but also posting data to the
server. The default request type is GET. To change a call to a post, you change the value of the
property to POST:

$.ajax({
 url: searchPath,
 cache: false,
 dataType: "xml",
 type: "POST",
 success: function (data) {
 …
 },
 error: function (xhr, textStatus, errorThrown) {
 $('#searchResults').append(errorThrown);
 }
 });

Perhaps the site user knows of additional fruit that fit into a certain category. The page
can be enhanced to allow users to enter the name of a fruit and submit it to the XML file so
that subsequent searches include it. Ideally in this case, you would use the POST method to a
server-side function that would accept this data and store it in the XML file.

Wiring up an event with jQuery
In Objective 2.2, “Raise and handle an event,” you saw how to set up event listeners for
various actions that the DOM or a user’s interaction with the DOM could invoke. One of the
most common issues encountered by web developers is cross-browser compatibility. Al-
though this topic is large and this book doesn’t have the space to go into great detail about
cross-browser compatibility, jQuery is one of the toolkits available to help bridge the issue. In
Listing 2-2, you saw an example of jQuery syntax to wire up an event:

$('#searchButton').click(function () {
…
}

In this sample, the jQuery selector syntax is used to find the search button on the page by
its name. Then the click event is assigned a function that runs when the button is clicked.

This syntax is quite powerful. Aside from being cross-browser friendly, it includes much
flexibility in how event handlers are assigned to objects. This jQuery selector syntax supports
all the same type of searches that the document object exposes. But the part that differenti-
ates jQuery from the document object is that jQuery can assign styles or events to everything
in the result set in one line.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	166	 CHAPTER 2	 Implement program flow

Assume the following HTML makes up the markup for a webpage:

<body>
 <table>
 <tr>
 <td id="door1">Door 1</td>
 <td id="door2">Door 2</td>
 <td id="door3">Door 3</td>
 </tr>
 </table>
</body>

The following script is the more traditional method to assign event handlers to the DOM
elements:

<script type=”text/javascript”>
 window.onload = function () {
 document.getElementById(“door1”).onclick = function () { };
 document.getElementById(“door2”).onclick = function () { };
 document.getElementById(“door3”).onclick = function () { };
 }

This fairly simple script has only three cells to add a click event to. But if the page is to
get more complex and have up to 20 or 50 doors, this code becomes tedious. This is where
jQuery can simplify things. The preceding code can be replaced with this code:

$("document").ready(function () {
 $("td").click(function () { });
 });

Notice how much easier this code is. In one line, all <td> elements are assigned a click event.
This code applies to all <td> elements on the page. So, if some <td> elements aren’t part of the
page, you need to ensure that the selector is unique to the required elements. This can be ac-
complished with cascading style sheets (CSS) or by using the DOM hierarchy, as in this example:

$("document").ready(function () {
 $("#GameRow td").click(function () {
 alert($(this).text());
 });
 });
…
<table>
 <tr id="GameRow">
 <td id="door1">Door 1</td>
 <td id="door2">Door 2</td>
 <td id="door3">Door 3</td>
 </tr>
</table>
<table>
 <tr id="SomeOtherRow">
 <td id="cell1">Not a Door 1</td>
 <td id="cell2">Not a Door 2</td>
 <td id="cell3">Not a Door 3</td>
 </tr>
</table>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 167

The click events are assigned only to the <td> elements that are children of an element
named GameRow. jQuery provides advanced selector capabilities that allow fine control over
how the DOM is manipulated.

Implementing a callback with an anonymous function
Callback functions are used everywhere. The concept of a callback is the basis for how events
work. It’s the mechanism by which asynchronous operations return to the caller. In traditional
programming languages, a callback is achieved by passing a pointer to a function to another
process so that when that process completes or is at specified stages of the process, the
function is called to advise the caller of a status of some sort. This could be when the opera-
tion completes and could be passing data back to the caller. An example of this would be an
asynchronous web service call that returns data. The principle is the same in JavaScript.

In JavaScript, functions are considered objects and are often noted as first-class citizens.
This means that a variable can be assigned a function, or a function can be passed into an-
other function as a parameter. Seeing functions used in this way is a common convention in
JavaScript. Functions used in this way are called anonymous functions.

A function is considered anonymous when it doesn’t have a name. The following function
declaration has a name, so wouldn’t be considered anonymous:

function SubmitClick() {
 //do some logic here
}

Here a function is declared that can be used throughout the page. This function has
a name: SubmitClick. Because this function has a name, it’s not an anonymous function.
However, a named function like this can be assigned to as many button events as you want:

$("#Button1").click(SubmitClick);
$("#Button2").click(SubmitClick);
$("#Button3").click(SubmitClick);

With a named function, the convenience of reuse is there. However, in some cases this
is more overhead than is necessary. This also can make the code more difficult to follow in
terms of being able to easily see what’s actually happening in the click event handler. In a
situation that specifies distinct behavior for each button, anonymous functions simplify things
greatly. The following code demonstrates using anonymous functions instead of the named
function:

$("#Button1").click(function () { ... });
$("#Button2").click(function () { ... });
$("#Button3").click(function () { ... });

Each button is given its own function inline, where the implementation can be customized
for each button click. In that example, the use of anonymous function is apparent because the
function doesn’t have a name. The syntax for an anonymous function is as follows:

function (n,n,…,n) { body };

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	168	 CHAPTER 2	 Implement program flow

The anonymous function declaration must begin with the function keyword, which must
be followed by closed parentheses. The parentheses can include zero or more parameters.
The parentheses are followed by closed braces in which the code block that makes up the
implementation of the function is coded.

The only difference between an anonymous function and a named function is the name
portion of the function signature. That the anonymous function accepts parameters is an
important concept when dealing with callbacks.

When working with an API, either your own or a third party’s, functionality often is
provided that includes the use of callbacks. As discussed earlier, callbacks are functions that
are processed when the transfer of control returns to the caller. For example, in the previous
section using jQuery with AJAX, the following code sample was used:

$.ajax({
 url: searchPath,
 cache: false,
 dataType: "xml",
 error: function(hdr, num, txt){…}
 success: function (data) {
…
 }});

In this sample, the AJAX call enables you to specify some functions to call back for dif-
ferent circumstances that can occur. The error and success properties allow you to specify
a function that the AJAX framework calls after it either successfully completes the request
or encounters an error. In each case, parameters are specified to receive the data that
accompanies each callback.

Callback functions can also be used in the form of a parameter to another function. Con-
sider the following example that accepts a user’s input to evaluate if a score is a pass or a fail:

$("document").ready(function () {
 $("#Button1").click(function () {
 DoLongTask($("#inputValue").val(),
 function (result, data) {
 if (result == "SUCCESS")
 alert(data + " is a Success");
 else
 alert(data + " is a fail");
 });
 });
});
function DoLongTask(n,f)
{
 if (n < 10)
 f("SUCCESS", n);
 else
 f("FAIL", n);
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 169

This code makes heavy use of anonymous functions and callbacks. The first instance is
the document ready callback. In this case, you ask the renderer to call back to an anonymous
function after it reaches the ready state:

$("document").ready(function () {…

Next, you want to handle a click event. In this case, you indicate to the renderer that, when
it receives a click from a specific button, to call back to your anonymous function:

$("#Button1").click(function () {…

Next, in your button click is where you are coding your own logic for the page. User input
is taken from the input box and passed to a function that evaluates it. The function does
nothing more than evaluate the value and produce the result. Any caller that’s interested in
the result can provide a callback function to get the result.

DoLongTask($("#inputValue").val(),
 function (result, data) {
 if (result == "SUCCESS")
 alert(data + " is a Success");
 else
 alert(data + " is a fail");
 });

The call to DoLongTask accepts two parameters: the value to evaluate and a callback
function to pass the results to when it’s done. An anonymous function is passed into the
DoLongTask function as the callback to run. In this case, the callback is known to provide two
parameters, so the callback function accepts two parameters: the original value and the result
of the evaluation. The callback then provides information to users about what the calculation
result was.

Callback functions are very useful and widely used in JavaScript development. Callback
functions can exist statically with a name or be provided inline dynamically as anonymous.

Using the this pointer
The this pointer is a special object provided by the jQuery framework. When running selec-
tions against the DOM using jQuery, this refers to the object that it finds or the collection of
objects that it finds. It provides a shortcut to accessing the item within the current context of
jQuery filter. In a simple example, the this keyword can be demonstrated as follows:

$("document").ready(
 function () {
 $('#floorDiv').click(function () {
 $(this).css("background-color", "red");
 	 })
 	 }
);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	170	 CHAPTER 2	 Implement program flow

In this sample, the floorDiv element is assigned an anonymous function to run when it’s
clicked. Within the function, rather than query the DOM for the element again to do some-
thing with it, the this keyword provides a reference to the element that initiated the event. In
this case, $(this) provides a reference to the floorDiv element, and you can do whatever you
want with that element. In this case, you are only changing the background color style prop-
erty of the div. In more advanced scenarios, the result of the selector can return more than
one element. The following example demonstrates this:

$("document").ready(
 function () {
 $('#floorDiv').click(function () {
 $("div").each(function () { $(this).css("background-color", "red");
});
 })
 }
);

In this example, when floorDiv is clicked, $(“div”) finds all the div elements in the page.
Then it calls the each operator, which calls the callback function passed into it for each ele-
ment that’s returned. Then, $(this) is used to modify the background color of each div. In this
way, the use of the this keyword is extremely efficient because it provides quick direct access
to each element with very little code.

Thought experiment
Creating a chat application

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Would you use WebSockets or would you use AJAX to create an asynchronous
bidirectional communication application in JavaScript? For this though experiment,
describe how you would create an HTML5 JavaScript based real-time chat
application.

Objective summary
■■ WebSockets provide bidirectional communication with a server.

■■ WebSockets support both non-secure (ws) and secure (wss) connections to the server.

■■ The jQuery AJAX framework provides a mechanism to make asynchronous web
requests.

■■ You can wire up events by using the jQuery selector syntax.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.4: Implement a callback	 CHAPTER 2	 171

Objective review
1.	 Which of the following is a valid WebSocket instantiation?

A.	 wsConnection = new WebSocket(‘http://studygroup.70480.com’);

B.	 wsConnection = new WebSocket(‘tcp://studygroup.70480.com’,[‘soap’,’xmpp’]);

C.	 wsConnection = new WebSocket(‘wss://studygroup.70480.com’,[‘soap’,’xmpp’]);

D.	 wsConnection = new WebSocket(‘ftp://studygroup.70480.com’,[‘soap’,’xmpp’]);

2.	 Which of the following statements properly handles the reception of data from a
WebSocket?

A.	 wsConnection.onpost = function(msg){..};

B.	 wsConneciton.onreceive = function(msg){...};

C.	 wsConnection.onmessage = function(msg){...};

D.	 wsConnection.ongetdata = function(msg){...};

3.	 Which list identifies the properties that need to be set up to make an AJAX call?

A.	 cache, datatype, success

B.	 url, cache, datatype, success

C.	 url, datatype, onsuccess

D.	 url, datatype, oncomplete

4.	 Why is wiring up events with jQuery easier?

A.	 It allows you to assign the event listener to many elements at once via the selector
syntax.

B.	 There is no difference wiring up events with jQuery versus addEventListener
method.

C.	 jQuery works more efficiently in a loop.

D.	 jQuery allows both named and anonymous functions to be used as event listeners.

From the Library of Ida Schander

www.hellodigi.ir

http://studygroup.70480.com

ptg14200515

	172	 CHAPTER 2	 Implement program flow

Objective 2.5: Create a web worker process

Web workers present a way of developing multithreaded JavaScript applications. JavaScript is
a single-threaded environment. Everything run in JavaScript is queued up synchronously. This
might not be evident in most applications because the available processing power on client
computers usually far exceeds what’s required by a webpage on a client computer. However,
in more intense web applications, you have seen warning messages from the browser that the
scripts are running and taking a long time to complete. In fact, these warnings give users the
option to stop running scripts on the page immediately. This type of user experience won’t
have users coming back to the website. This is where the Web Worker API is useful.

This objective covers how to:
■■ Get started with a web worker process

■■ Create a worker process with the Web Worker API

■■ Use a web worker

■■ Understand web worker limitations

■■ Configure timeouts and intervals

Getting started with a web worker process
The Web Worker API enables you to specify that pieces of work should be processed on their
own thread. Doing so has many advantages but also some pitfalls that you need to respect.
In this objective, you learn how to use the Web Worker API to take advantage of the flexibil-
ity this brings to web applications. You also learn about the disadvantages and cautions that
come with using web workers.

This objective uses the bouncing ball example to demonstrate the use of a web worker.
Listing 2-3 shows the basic code for the bouncing ball. It will be adjusted as you work through
the sections within this objective to achieve moving work to a web worker process.

LISTING 2-3  Bouncing ball

<html>
 <head>
 <script>
 window.requestAnimFrame = (function (callback) {
 return window.requestAnimationFrame || window.webkitRequestAnimationFrame
|| window.mozRequestAnimationFrame || window.oRequestAnimationFrame ||
window.msRequestAnimationFrame ||
 function (callback) {
 window.setTimeout(callback, 1000 / 30);
 };
 })();

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Create a web worker process	 CHAPTER 2	 173

 window.setTimeout(getDirection, 30000);

 var x = 176, y = 176, w = 600, h = 600, r = 26;
 var d,c,s;
 var rColor,gColor,bColor;
 var hd = "r";
 var horizontal = true;

 window.onload = function () {
 try{
 c = document.getElementById("c");
 w = c.width;
 h = c.height;
 s = parseInt(document.getElementById("speedy").value);

 getDirection();
 drawBall();

 document.onkeydown = function () {
 switch (window.event.keyCode) {
 case 40:
 horizontal = false;
 hd = "d";
 break;
 case 37:
 horizontal = true;
 hd = "l";
 break;
 case 38:
 horizontal = false;
 hd = "u";
 break;
 case 39:
 horizontal = true;
 hd = "r";
 break;
 }
 }
 } catch (e) {
 alert(e.message);
 }
 }
 function increaseSpeed() {
 s++;
 document.getElementById("speedy").value = s;
 }
 function decreaseSpeed() {
 s--;
 document.getElementById("speedy").value = s;
 }
 function changeDirection() {
 var cx = window.event.offsetX;
 var cy = window.event.offsetY;
 x = cx;
 y = cy;

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	174	 CHAPTER 2	 Implement program flow

 document.getElementById("speedy").value = s;
 }
 function setNewPoint(d) {
 try{
 switch (horizontal) {
 case true:
 if (x < (w - r) && hd == "r")
 x += s;
 else if(x > r && hd == "l")
 x -= s;
 break;
 case false:
 if (y < (h - r) && hd == "d")
 y += s;
 else if (y > r && hd == "u")
 y -= s;
 break;
 }
 if (x >= (w - r))
 hd = "l";
 if (x <= r)
 hd = "r";
 if (y >= (h - r))
 hd = "u";
 if (y <= r)
 hd = "d";
 } catch (e) {
 alert(e.message);
 }
 }
 function getDirection() {
 horizontal = !horizontal;
 var d = Math.ceil(Math.random() * 2);
 if (horizontal) {
 if (d == 1) {
 hd = "r";
 } else {
 hd = "l";
 }
 } else {
 if (d == 1) {
 hd = "u";
 } else {
 hd = "d";
 }
 }
 }
 function drawBall() {
 try {
 var rgbFill = "rgb(0,0,0)";
 var rgbStroke = "rgb(128,128,128)";

 setNewPoint(d);
 var ctxt = c.getContext("2d");

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Create a web worker process	 CHAPTER 2	 175

 ctxt.clearRect(0, 0, c.width, c.height);
 ctxt.beginPath();

 ctxt.lineWidth = "5";
 ctxt.strokeStyle = rgbStroke;
 ctxt.arc(x, y, r, 0, 360);
 ctxt.fillStyle = rgbFill;
 ctxt.fill();
 ctxt.stroke();
 s = parseInt(document.getElementById("speedy").value);
 requestAnimFrame(function () {
 drawBall();
 });
 } catch (e) {
 alert(e.message);
 }
 }
 </script>
 </head>
 <body>
 <canvas id="c" width="1200" height="800" style="border: 2px solid black;
position: absolute; top: 50px; left: 50px;"></canvas>
 <input id="intensiveWork" type="button" value="Do Work" /><span
id="workResult">

 <input id="speedy" type="range" min="0" max="10" value="10"
style="position:relative; visibility:hidden;" step="1"/>
 </body>
</html>

This code simply displays a small ball bouncing around inside a canvas. Users can use the
arrow keys to change the ball’s direction. Users would expect a smooth experience. Now
you can introduce an intensive mathematical operation to occur at the click of a button. The
button is on the form already and is called intensiveWork. Add the following function to the
bottom of the script block to do some intense math:

function DoIntensiveWork() {
 var result = document.getElementById("workResult");
 result.innerText = "";
 var work = 10000000;
 var i = 0;
 var a = new Array(work);
 var sum=0;
 for (i = 0; i < work; i++) {
 a[i] = i * i
 sum += i * i;
 }
 result.innerText = sum;
}

This function does nothing more than calculate the sum of a series of squares and display
the result to users. The amount of work to do is hard coded in this example but could be
extended to get the information from users as well.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	176	 CHAPTER 2	 Implement program flow

Next, add the click event handler to the button:

<script>
 …
 getDirection();
 drawBall();

 document.getElementById("intensiveWork").onclick = function () { DoIntensiveWork(); };
 …
</script>

Now, users can click a button and get the sum of the squares for a series of sequential
numbers.

The problem with this code is that although the math work is occurring, the ball interac-
tion is blocked completely. The ball stops moving and user input is seemingly ignored until
the math call returns. The call to run the calculations takes too long and interferes. You can
experiment with smaller numbers and see that eventually the number can be small enough so
the work happens fast enough that the ball isn’t stopped. This doesn’t mean that the applica-
tion is doing work concurrently, although visibly no interruption occurs.

Creating a worker process with the Web Worker API
The Web Worker API is based on the JavaScript messaging framework. This underlying
structure enables your code to send parameters to a worker and have the worker send results
back. A basic web worker is established by creating a separate file to contain the script that
will be processed on the separate thread. The Worker object is available from the global
namespace and is created like so:

var webWorker = new Worker("workercode.js");

This instantiates a new worker process and specifies what file contains the code to be run
on the worker thread. The Worker object supports the functionality described in Table 2-10.

TABLE 2-10  Worker object operations

Method Description

postMessage Starts the worker process. This method expects a single parameter containing the
data to pass to the worker thread. If nothing is required in the worker thread, an
empty string can be supplied.

terminate Stops the worker process from continuing.

onmessage Specifies the function for the worker thread to call back to when complete. This
function accepts a single parameter in the form of EventData with a property named
data containing the values.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Create a web worker process	 CHAPTER 2	 177

Method Description

onerror Specifies a function to call when an error occurs in the worker thread. The onerror
method receives event data, including the following:
message: textual message of the error
filename: the filename the error occurred in
lineno: the line number in the file that created the error

As soon as the Worker object is instantiated, it’s available for use at any time. All that’s
needed to start the process is to call the postMessage method:

webWorker.postMessage("");

As soon as the webWorker is running, the main application continues as usual. If something
occurs that the worker process should be canceled, a call to the terminate method would
achieve this:

webWorker.terminate();

After the worker process completes and results need to be processed, the onmessage
function is called from the worker. This should be set up before starting the worker:

webWorker.onmessage = function(evt) {…}

That’s everything required on the calling side or in the web application to create and
manage a worker process. Next, you need to create the worker code itself. For this, you create
the workercode.js file that was used in the constructor. The first line of the file will be the
onmessage property being assigned a function to process:

onmessage = function(e){…}

This tells the runtime the entry point to the work to be run within the worker process.
Somewhere in the worker process, where a result should be sent back to the calling applica-
tion, the postMessage method is called:

onmessage = function(e){
…
self.postMessage(result);
}

That’s what’s involved in creating a worker process. In the last piece, notice the user of the
self keyword. The self keyword is similar to the this keyword. The worker process runs in its
own context, meaning that it has its own global namespace. The self keyword gives access to
the global namespace within the worker process.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	178	 CHAPTER 2	 Implement program flow

Using web workers
Now that you’ve examined the foundation of web workers, you can go back to the bounc-
ing ball example and move the intensive math operations over to a worker process so that it
doesn’t interfere with the bouncing ball activity. To do this, create a new JavaScript file called
CalculateWorker.js with the following code in it:

onmessage = function (evt) {
 var work = 10000000;
 var i = 0;
 var a = new Array(work);
 var sum = 0;
 for (i = 0; i < work; i++) {
 a[i] = i * i;
 sum += i * i;
 }
 self.postMessage(sum);
}

This code starts with assigning the onmessage handler a function to run when spawned
within the context of a worker. At the end of the message, it calls postMessage to return
a result back to the caller. Save this file, and then change the click event handler for the
intensiveWork button in the bouncing ball code as follows:

document.getElementById("intensiveWork").onclick = function () {
 var result = document.getElementById("workResult");
 result.innerText = "";
 var worker = new Worker("CalculateWorker.js");
 worker.onmessage = function (evt) {
 try {
 result.innerText = evt.data;
 } catch (e) {
 alert(e.message);
 }
 }
worker.onerror = function (err) {
 alert(err.message + err.filename + err.lineno);
}
 worker.postMessage("");
};

In this code, the pattern described in the previous section is implemented. A new Worker
object is instantiated with CalculateWorker.js specified. Then the onmessage is assigned a
function to handle the result of the worker thread. The onerror is assigned a function to
handle any error conditions. Finally, the postMessage is called to invoke the worker.

Run this code and click the Do Work button. The ball now continues to move on the screen
and is responsive to the arrow keys. To make the worker process take longer, simply increase
the size of the number it needs to work with.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Create a web worker process	 CHAPTER 2	 179

To provide an option to stop the worker process, you need to implement the terminate
method. Add a button to the page like so:

<input id="stopWorker" type="button" value="Stop Work" />

And add the following script beneath the postMessage call:

document.getElementById("stopWorker").onclick = function () {
 worker.terminate();
}

Next, click the Do Work button followed by the Stop Work button to see that the work is
terminated and no result is returned.

Understanding web worker limitations
Web workers are very convenient. They can solve many processing problems in intensive web
applications. However, be aware of the limitations imposed on workers as well.

Passing parameters
The postMessage method accepts a parameter that enables it to pass data to the worker that
it might need to operate on or with. The postMessage parameter is a string—it can take any
serializable object such as native data types, JSON objects, or XML. The parameter can’t be a
function.

In the bouncing ball example, the input for what number to work with could come from
users. An input box can be added to the HTML and the entered value can be passed to the
worker. This would look like this:

var value = document.getElementById("inputValue").value;
worker.postMessage(value);

Then in the worker, the value would be accessed like this:

onmessage = function (evt) {
 var work = evt.data;
…
}

The function receives an event object with a property called data that contains whatever
was passed into the worker.

Number of workers
Although no limit is imposed on how many workers can be processed or created concurrently,
the number of workers used is something that you need to be pay attention to. Creating
workers is a heavy operation. Each worker creates threads at the operating system level and
their use should be managed accordingly. If you want a high volume of workers, consider

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	180	 CHAPTER 2	 Implement program flow

creating a pool that can be used in a round-robin fashion so that not too many workers are
created.

DOM access
Workers operate in their own global context, which means that they don’t have access to the
DOM of the page that invoked them. The DOM shouldn’t be manipulated from a worker pro-
cess. The worker context has no access to the window object, document object, or any parent
object.

Subworkers
Following the same patterns as for a worker from the main webpage, a worker can create
workers as well. All constructs must be followed for passing data and getting data returned.
However, knowing how many total workers will be created becomes increasingly important.

Configuring timeouts and intervals
You can set up a web worker to run on a specified interval in the background. This is done by
using any existing setTimeout or setInterval methods. The setTimeout method calls a specified
function after the specified delay. The setInterval calls the specified function repeatedly after
each specified time interval. For example, the following code runs the worker after 3 seconds:

var work = new Worker("workerFile.js");
setTimeout(function(){
work.postMessage("");
},3000);

However, the following code runs the worker every 3 seconds:

var work = new Worker("workerFile.js");
setInterval(function(){
work.postMessage("");
},3000);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 2.5: Create a web worker process	 CHAPTER 2	 181

Thought experiment
Creating a page that performs a fireworks show

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

As an exercise to create a webpage using timeouts and intervals, think about how
you would create a page that would perform a fireworks show. Different types of
fireworks need to fire at different intervals and delays. They each need to travel to
a different height, and different types of fireworks have different explosion effects
and colors.

1.	 Would a larger firework show be too intensive? Why or why not?

2.	 Would web workers help make it more fluid? Why or why not?

Objective summary
■■ Web workers allow the JavaScript runtime to provide multithreading.

■■ Web workers can have sub-workers.

■■ The number of workers that you can use is limitless, but too many workers can hinder
performance.

■■ Web workers can receive a single parameter containing any data needed for the
worker.

■■ Web workers don’t have access to the DOM of the calling page.

■■ Use setTimeout to delay before running a script function. Use setInterval to repeat a
script function after every specified interval.

Objective review
1.	 Which of the following isn’t a valid web worker operation?

A.	 postMessage

B.	 onmessage

C.	 close

D.	 terminate

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	182	 CHAPTER 2	 Implement program flow

2.	 Which method cancels a web worker?

A.	 close

B.	 terminate

C.	 suspend

D.	 sleep

3.	 Where must you place the JavaScript code to run in the context of a web worker?

A.	 Between the <head></head> elements

B.	 In any <script> block in the page

C.	 In its own JavaScript file

D.	 As a dynamic function assigned to the self.worker

4.	 How many web workers/subworkers can run concurrently?

A.	 A multiple of four web workers including subworkers, per processor

B.	 16 workers by default, but you can change that number via self.configuration

C.	 A limitless number of workers

D.	 A limit of eight workers, each with a maximum of eight subworkers

5.	 To have a script run continually every 30 seconds, which line of code should be used?

A.	 wsConnection.repeatWork(“workerFile.js”,30000);

B.	 setTimeout(function(){ worker.postMessage(“”);}, 30000);

C.	 setTimeout(worker.postMessage(“”), 30000);

D.	 setInterval(function(){ worker.postMessage(“”);}, 30000);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 2	 183

Answers

This section contains the solutions to the thought experiments and answers to the objective
review questions in this chapter.

Objective 2.1: Thought experiment
Writing clean JavaScript comes with some clear advantages. Choosing the correct construct to
handle a problem is imperative to achieving the goal of clean script.

A for loop and while loop can both get the same jobs done interchangeably, but some se-
mantic differences make one more preferable over the other in various situations. When you
know how many times a loop must run, the for loop is ideal. It has all the built-in semantics
to handle a counter to iterate a known number of times. It can be replaced with a while loop,
but the while loop requires extra variables and code added to the loop to take care of the
counting of the number of times the loop runs.

The while loop is better when you don’t know the number of times a loop will run; it’s
indeterminate. This is where the loop runs until the logic within the loop achieves a certain
state; hence, why the while loop evaluates on a Boolean expression.

You can apply the same logic when choosing between an if statement and a switch state-
ment. Although a switch statement can easily be replaced by an if statement, the inverse isn’t
true. Checking single values for equality in an if…else construct can become long and cum-
bersome. if statements allow for more complex evaluations, including compound evaluations
using AND and OR logic. switch statements are more useful for evaluating a single value
against a long list of possible values such as enumeration. Choosing the correct construct for
the problem is imperative to readable and maintainable script.

Objective 2.1: Review
1.	 Correct answer: C

A.	 Incorrect: The if statement provides branch flow control.

B.	 Incorrect: The switch statement provides branch flow control.

C.	 Correct: The for loop provides iterative flow control.

D.	 Incorrect: The break keyword is used to exit an iterative control block such as a for
or while loop.

2.	 Correct answer: D

A.	 Incorrect: The join method joins all the elements of an array into a string.

B.	 Incorrect: combine isn’t a valid method.

C.	 Incorrect: The split method is used to split a string into an array of substrings.

D.	 Correct: The concat method combines the elements of two arrays into one array.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	184	 CHAPTER 2	 Implement program flow

3.	 Correct answer: C

A.	 Incorrect: The for…in loop runs only if the target list contains at least on element.

B.	 Incorrect: The while loop runs only if the Boolean condition evaluates to true.

C.	 Correct: The do…while loop runs a Boolean condition after it runs once.

D.	 Incorrect: The for loop runs only if the values specified in the conditions are true.

4.	 Correct answer: B

A.	 Incorrect: The continue keyword exits the current iteration but continues to the
next iteration if the conditional values are still true.

B.	 Correct: The break keyword exits an iterative control loop.

C.	 Incorrect: stop isn’t a valid statement.

D.	 Incorrect: next isn’t a valid statement.

Objective 2.2: Thought experiment
This interesting scenario can lead to a complex chain of event handling in which one event
triggers other events. This requires deciding on the flow of the events through the page.
Good practice is to do this on paper or workflow software to design the workflow of the
events. This will require knowing when to cancel the event chain or allow it to continue
processing further down the controls.

Objective 2.2: Review
1.	 Correct answer: B

A.	 Incorrect: This is a valid method.

B.	 Correct: CSS doesn’t provide a way to assign events handlers.

C.	 Incorrect: This is a valid method.

D.	 Incorrect: This is a valid method.

2.	 Correct answer: D

A.	 Incorrect: Anonymous functions can’t be called.

B.	 Incorrect: Anonymous functions don’t have a name.

C.	 Incorrect: Anonymous functions can be passed as parameters.

D.	 Correct: Anonymous functions can’t be assigned to a DOM element declaratively.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 2	 185

3.	 Correct answer: A

A.	 Correct: window.event.returnValue = false; cancels the event.

B.	 Incorrect: return false; doesn’t cancel the event.

C.	 Incorrect: window.event.Return(); isn’t valid.

D.	 Incorrect: window.stop(); isn’t valid.

4.	 Correct answer: A

A.	 Correct: The focus event fires when an element receives the focus.

B.	 Incorrect: The change event fires when the value of an element is changed.

C.	 Incorrect: The keydown event fires when a keyboard key is pressed down.

D.	 Incorrect: The mouseleave event fires when the mouse pointer leaves the area of
an element.

Objective 2.3: Thought experiment
Implementing a try…catch block in every function at the top of the call stack is an important
way to catch unforeseen scenarios that result in the application getting into a bad state. How-
ever, this error handling routine might include situations from which you want to be able to
recover. Nesting try…catch blocks allow this to happen. You can implement as many try…catch
blocks as you want. Nesting them allows you to catch a specific scenario within the outer
block, handle it, correct data and/or assumptions, and allow the script to continue running.

Objective 2.3: Review
1.	 Correct answer: A

A.	 Correct: By using structured error handling, you can provide feedback to users
and handle unknown situations properly.

B.	 Incorrect: Proper error handling allows users to fix problems with the webpage.

C.	 Incorrect: Proper error handling allows you to debug the application at run time.

D.	 Incorrect: Proper error handling allows you to suppress all the bugs in your scripts.

2.	 Correct answer: B

A.	 Incorrect: message is a valid property that gives the textual description of the
error.

B.	 Correct: description isn’t a valid property.

C.	 Incorrect: The number property provides the number associated with the error.

D.	 Incorrect: The name property provides the name of the exception object.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	186	 CHAPTER 2	 Implement program flow

3.	 Correct answer: A

A.	 Correct: Checking for null prevents the use of an object before it initializes and
prevents unexpected results.

B.	 Incorrect: NaN is a different construct than null.

C.	 Incorrect: Custom errors aren’t related to checking for null. Throwing a custom
error can be used in many different scenarios.

Objective 2.4: Thought experiment
The concept of real-time chat or real-time communications isn’t new. However, HTML5 Web-
Sockets make the concept easier than ever to implement in HTML5 webpages. Implementing
this type of application is beyond the scope of the book but is very useful in understanding
the power that WebSockets provide. The following URL provides many search results that
provide examples: http://www.bing.com/search?q=WebSocket+JavaScript+chat+application.

AJAX provides asynchronous communication but doesn’t provide a bidirectional function-
ality that can deliver real-time communications.

Objective 2.4: Review
1.	 Correct answer: C

A.	 Incorrect: http isn’t a valid WebSocket protocol.

B.	 Incorrect: tcp isn’t a valid WebSocket protocol.

C.	 Correct: wss or ws is a valid protocol to create a WebSocket.

D.	 Incorrect: ftp isn’t a valid WebSocket protocol.

2.	 Correct answer: C

A.	 Incorrect: wsConnection.onpost isn’t a method.

B.	 Incorrect: wsConneciton.onreceive isn’t a method.

C.	 Correct: wsConnection.onmessage receives the resulting data.

D.	 Incorrect: wsConnection.ongetdata isn’t a method.

3.	 Correct answer: C

A.	 Incorrect: cache isn’t required.

B.	 Incorrect: cache isn’t required.

C.	 Correct: url, datatype, and onsuccess are required.

D.	 Incorrect: oncomplete isn’t a property.

From the Library of Ida Schander

www.hellodigi.ir

http://www.bing.com/search?q=WebSocket+JavaScript+chat+application

ptg14200515

	 Answers	 CHAPTER 2	 187

4.	 Correct answer: A

A.	 Correct: Wiring up events with jQuery allows you to assign the event listener to
many elements at once by using the selector syntax.

B.	 Incorrect: jQuery provides much more flexibility.

C.	 Incorrect: jQuery doesn’t work differently inside a loop.

D.	 Incorrect: This isn’t unique to jQuery.

Objective 2.5: Thought experiment
For an application such as this, you must consider the amount of work required to get it done.
The larger the show, the more intense the application will be. You could use setInterval and
setTimeout to control the show’s flow. However, the actual delivery of the firework display and
explosion would be suited nicely for a web worker. This allows the user interface thread to
continue to work uninterrupted while the complex logic of animating the fireworks occurs on
a worker.

Objective 2.5: Review
1.	 Correct answer: C

A.	 Incorrect: postMessage initiates the script to run in the worker.

B.	 Incorrect: onmessage is the event handler used to receive the messages across the
worker boundaries.

C.	 Correct: close isn’t a method on the web worker.

D.	 Incorrect: terminate is used to cancel a web worker.

2.	 Correct answer: B

A.	 Incorrect: close doesn’t cancel a web worker.

B.	 Correct: terminate cancels a web worker.

C.	 Incorrect: suspend isn’t a valid method.

D.	 Incorrect: sleep isn’t a valid method.

3.	 Correct answer: C

A.	 Incorrect: The code must be in its own file.

B.	 Incorrect: The code can’t be inside a <script> block.

C.	 Correct: The code must be in its own JavaScript file, and the name of the file is
passed to the web worker as a parameter.

D.	 Incorrect: There is no such property as self.worker.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	188	 CHAPTER 2	 Implement program flow

4.	 Correct answer: C

A.	 Incorrect: There is a limit associated with processors.

B.	 Incorrect: There is no such property as self.configuration.

C.	 Correct: There is no limit on the number of workers that can be created. However,
too many will result in performance issues.

D.	 Incorrect: There is no such limitation.

5.	 Correct answer: D

A.	 Incorrect: wsConnection.repeatWork(“workerFile.js”,30000); isn’t valid code.

B.	 Incorrect: setTimeout(function(){ worker.postMessage(“”);}, 30000); delays for
30 seconds before running the anonymous function once.

C.	 Incorrect: In setTimeout(worker.postMessage(“”), 30000);, setTimeout waits for the
specified delay before running the passed-in function. In this case, the parameter
isn’t a function.

D.	 Correct: setInterval(function(){ worker.postMessage(“”);}, 30000); calls the passed-in
function every interval as specified by the second parameter in milliseconds.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 189

C H A P T E R 3

Access and secure data
Most web applications require static or dynamic data. Static data is written directly into the
HTML markup, not altered or loaded by code such as JavaScript. It’s rendered and displayed
to users without any way for the data to change. Dynamic data can change. Dynamic data
can update a ticker on a webpage from a news feed, capture user data to perform an
operation and provide results, or perhaps even store just a user’s registration information
in a database.

Both approaches to data have benefits as well as disadvantages. Static data is quite
secure because it doesn’t provide much of an attack surface for a malicious user. However,
as a website transitions into a more dynamic site, with live updates of data and the ability
for users to enter information into various fields, an attack surface opens and the site can
become less secure.

Knowing how to prevent malicious users from causing harm to your application and
possibly your users is important. You can implement the same mechanisms used to pre-
vent malicious usage to simplify the user experience and to keep your data generally clean.
Certain data elements, such as phone numbers and email addresses, can be provided in
different formats. Because such information can be very important, you want to make it
as easy as possible for users to enter it. Having complete address information and ensur-
ing that all the necessary fields are populated also can be very important. HTML5 supports
constructs such as regular expressions and required attributes to support implementing
these types of rules. Throughout the objectives in this chapter, validating user input both
declaratively via HTML5 and also by using JavaScript is covered.

In other scenarios, data coming to and from the website is either consuming data feeds
or providing data to another destination. Websites today commonly have a direct link to
social networking updates. In these cases, the retrieving and sending of the data is invisible in
that users aren’t engaged with the process. These processes should be streamlined and not
interfere with the website’s user experience. In this chapter’s objectives, consuming data from
external sources, transmitting data, and serializing and deserializing data are all covered.

Objectives in this chapter:
■■ Objective 3.1: Validate user input by using HTML5 elements

■■ Objective 3.2: Validate user input by using JavaScript

■■ Objective 3.3: Consume data

■■ Objective 3.4: Serialize, deserialize, and transmit data

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	190	 CHAPTER 3	 Access and secure data

Objective 3.1: Validate user input by using HTML5
elements

This objective examines the user interface elements made available by HTML5 that allow
users to provide input. The ability to capture information from users is a great feature. How-
ever, you must ensure that user privacy and safety are protected as best as possible. You also
must ensure that the website doesn’t open any holes that an attacker can exploit to disrupt
the site’s services. Part of protecting the site is choosing the correct user input controls for
the job and setting the appropriate attributes on those controls to ensure that the data is
validated. For the exam, you need to know these input controls and the attributes they use
for this purpose.

This objective covers how to:
■■ Choose input controls and HTML 5 input types

■■ Implement content attributes

Choosing input controls
HTML5 provides a wide assortment of controls to make capturing user input simple and
secure. In this section, you explore the user input controls in greater detail and see examples
of their usage. A simulation of a survey form will be created to demonstrate when each type
of control should be used. Listing 3-1 shows the entire markup for the survey.

LISTING 3-1  HTML5 markup for a customer survey,

<form>
 <div>
 <hgroup>
 <h1>Customer Satisfaction is #1</h1>
 <h2>Please take the time to fill out the following survey</h2>
 </hgroup>
 </div>
 <table>
 <tr>
 <td>Your Secret Code:
 </td>
 <td>
 <input type="text" readonly="readonly" value="00XY998BB"/>
 </td>
 </tr>
 <tr>
 <td>Password:
 </td>
 <td>
 <input type="password"/>
 </td>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 191

 </tr>
 <tr>
 <td>First Name:
 </td>
 <td>
 <input type="text" id="firstNameText" maxlength="50"/>
 </td>
 </tr>
 <tr>
 <td>Last Name:
 </td>
 <td>
 <input type="text" id="lastNameText"/>
 </td>
 </tr>
 <tr>
 <td>
 Your favorite website:
 </td>
 <td>
 <input type="url"/>
 </td>
 </tr>
 <tr>
 <td>
 Your age in years:
 </td>
 <td>
 <input type="number"/></td>
 </tr>
 <tr>
 <td>
 What colors have you colored your hair:
 </td>
 <td>
 <input type="checkbox" id="chkBrown" checked="checked"/>
 Brown
 <input type="checkbox" id="chkBlonde"/>
 Blonde
 <input type="checkbox" id="chkBlack"/>
 Black
 <input type="checkbox" id="chkRed"/>
 Red
 <input type="checkbox" id="chkNone"/>
 None
 </td>
 </tr>
 <tr>
 <td>Rate your experience:
 </td>
 <td>
 <input type="radio" id="chkOne" name="experience"/>
 1 - Very Poor
 <input type="radio" id="chkTwo" name="experience"/>
 2

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	192	 CHAPTER 3	 Access and secure data

 <input type="radio" id="chkThree" name="experience"/>
 3
 <input type="radio" id="chkFour" name="experience"/>
 4
 <input type="radio" id="chkFive" name="experience" checked="checked"/>
 5 - Very Good
 </td>
 </tr>
 <tr>
 <td>How likely would you recommend the product:
 </td>
 <td>

 <input type="range" min="1" max="25" value="20"/>
 </td>
 </tr>
 <tr>
 <td>
 Other Comments:
 </td>
 <td>
 <textarea id="otherCommentsText" rows="5" cols="20" spellcheck="true">
 </textarea>
 </td>
 </tr>
 <tr>
 <td>
 Email address:
 </td>
 <td>
 <input type="email" placeholder="me@mydomain.com" required/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit"/>
 <input type="reset"/>
 <input type="button" value="Cancel"/>
 </td>
 </tr>
 </table>
</form>

NOTE  INPUT CONTROLS

The HTML5 specification defines many more input controls than are explained in this
book. This book focuses specifically on the controls now supported by Internet Explorer,
followed by smaller examples to demonstrate some of the other controls as supported by
other browsers such as Google Chrome.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 193

The <input> element in HTML denotes input controls. This element contains a type attri-
bute that specifies the type of input element to render. The exceptions to the <input type=’’>
rule are the <textarea> and <button> elements, which have their own element support.
Table 3-1 outlines the input elements supported in HTML5 and indicates whether an ele-
ment is now supported in Internet Explorer. The additional attributes available to an <input>
element are discussed in later sections.

TABLE 3-1  HTML5 input elements

Element Description

color* Provides a color picker

date* Provides a date picker

datetime* Provides a date/time picker

month* Enables users to select a numeric month and year

week* Enables users to select a numeric week and year

time* Enables users to select a time of day

number* Forces the input to be numeric

Range Allows users to select a value within a range by using a slider bar

tel* Formats entered data as a phone number

url Formats entered data as a properly formatted URL

Radio† Enables users to select a single value for a list of choices

Checkbox† Enables users to select multiple values in a list of choices

Password† Captures a password and glyphs the entered characters

Button† Enables users to perform an action such as run script

Reset† Resets all HTML elements within a form

Submit† Posts the form data to a destination for further processing

*Not supported currently by Internet Explorer
†Not new in HTML5

Using text and textarea input types
The text and textarea input controls are the most flexible. By using these controls, you allow
users to enter any text that they want into a regular text box. A text box provides a single-line
text entry, whereas a textarea allows for a multiline data entry. The following HTML shows the
markup for both types of controls:

<table>
 <tr>
 <td>
 First Name:
 </td>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	194	 CHAPTER 3	 Access and secure data

 <td>
 <input type="text" id="firstNameText"/>
 </td>
 </tr>
 <tr>
 <td>
 Last Name:
 </td>
 <td>
 <input type="text" id="lastNameText"/>
 </td>
 </tr>
…
 <tr>
 <td>Other Comments:
 </td>
 <td>
 <textarea id="otherCommentsText" rows="5" cols="20"></textarea>
 </td>
 </tr>
</table>

Figure 3-1 shows the output of this code.

FIGURE 3-1  HTML markup showing text box data-entry fields

This code adds text boxes to capture information such as first name, last name, and
additional comments. For the first and last names, the input is a standard text box as denoted
by type=”text”. This tells the renderer to display an input field into which users can enter free-
form text. However, this type of input field is limited to a single line. The Other Comments
text box provides a multiline text area for users to enter text into. The rows and cols attributes
define the viewable size of the text area. In this case, users can enter many lines of text into
the text area.

Other attributes that help with controlling how much information is entered into the text
fields is the maxlength attribute:

<input type="text" id="firstNameText" maxlength="50"/>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 195

Users can’t enter any more than 50 characters into the text field with the maxlength set to
a value of 50.

In some cases, you might want to ensure that users enter only certain information in a
certain format.

url input type
The <input> type of url displays a text box similar to what the <input> type of text provides.
However, the renderer is instructed that the input type is url, so when users try to submit
a form with this type of information on it, it validates that the text in the box matches the
format of a valid URL.

EXAM TIP

You can validate data in many ways. Even more options become available in HTML5,
such as the url input type. Also available are the pattern attribute and the use of regular
expressions in JavaScript. Both of these are discussed later in this chapter.

The following code demonstrates a url type added to the survey:

<tr>
 <td>Last Name:
 </td>
 <td>
 <input type="text" id="lastNameText"/>
 </td>
</tr>
<tr>
 <td>
 Your favorite website:
 </td>
 <td>
 <input type="url"/>
 </td>
</tr>
<tr>
 <td>
 Other Comments:
 </td>
 <td>
 <textarea id="otherCommentsText" rows="5" cols="20"></textarea>
 </td>
</tr>
…
<tr>
 <td>
 <input type="submit"/>
 </td>
</tr>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	196	 CHAPTER 3	 Access and secure data

This code produces the output shown in Figure 3-2 to the HTML page making up the
survey. This HTML code also adds an input button, as discussed later in the section, "Using the
button input type."

FIGURE 3-2  The url input box added to the survey

This code demonstrates the power of the url input type in validating that the text a user
entered is indeed a valid URL format. If a user typed something other than a URL or an in-
complete URL into the Your Favorite Website box, such as contoso.com, and then clicked the
Submit Query button, the result would be similar to the output shown in Figure 3-3.

FIGURE 3-3  Demonstrating the validation of the url input type

Click the button to invoke the validation. The url box is outlined in red, and a tooltip pops
up to explain the validation error. In this case, it has detected that a valid URL hasn’t been
entered. If the user corrects the data by specifying the URL as http://www.contoso.com, the
validation error doesn’t occur and the input can be submitted successfully.

From the Library of Ida Schander

www.hellodigi.ir

http://www.contoso.com

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 197

If you require more flexibility and want to accept partially entered URL information, such
as contoso.com, don’t use the url input box. A regular text input with a pattern specified would
be more appropriate.

Using the password input control
The password input control is the standard method of prompting users for sensitive
information. As you type your password, each character is replaced with a glyph so that any
onlookers can’t see your password.

EXAM TIP

You can’t specify default text in a password box or write to it via JavaScript. This is a se-
curity safeguard to help ensure the safety of passwords. However, the browsers provide a
mechanism to store a password should a user choose to have the password remembered
by the browser.

You can add a password text box to the survey to provide a way to retrieve a survey if a
user wants to complete it later. The password could be stored in a server for later retrieval.
The following markup is added to the HTML:

<tr>
 <td>
 Password:
 </td>
 <td>
 <input type="password"/>
 </td>
</tr>

With this HTML added, the survey now appears as shown in Figure 3-4.

FIGURE 3-4  A password input field added to the form

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	198	 CHAPTER 3	 Access and secure data

Again, the password text box doesn’t look any different than any other text box. However,
typing into the box provides a different experience, as shown in Figure 3-5.

FIGURE 3-5  Replacing password input with the glyph character

The password input type captures information securely. Users typing this information don’t
want others who are nearby to be able to see what they’ve been typing and hence compro-
mise their data.

Using the email input type
You can use the email input type to ensure that the format of the text entered into the text
box matches that of a valid email address. Being able to capture an email address is often im-
portant to enable further follow up with a user. This control helps ensure that the information
entered matches what’s expected in the form of an email address.

EXAM TIP

Validation of the email input type confirms only that the information entered matches the
expected format of a valid email address. It in no way verifies that the email address itself
is a valid mailbox that can receive messages.

The following HTML adds an email address input type to the survey:

<tr>
 <td>
 Email address:
 </td>
 <td>
 <input type="email"/>
 </td>
</tr>
<tr>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 199

 <td>
 <input type="submit"/>
 </td>
</tr>

Figure 3-6 shows the output of this HTML.

FIGURE 3-6  Output of the email address input type

Just as with the url input type, if you type text that doesn’t match the format of an email
address, you receive a warning message (see Figure 3-7).

FIGURE 3-7  Validation for the email address input type

This validation helps ensure that you don’t mistype your email address. Of course, it
doesn’t prevent you from entering an invalid email address, only one where the format
doesn’t match correctly to what would be expected such as having the @ symbol and ending
with a .com or other domain suffix.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	200	 CHAPTER 3	 Access and secure data

Using the checkbox input type
In some cases when capturing information from users, you need to be able to capture more
than one choice as it relates to a specific question. In this case, the checkbox input control
is the best choice. You can provide a series of check boxes and allow users to select all that
apply.

The survey will now add a question where users can select multiple items, as follows:

<tr>
 <td>Your age in years:</td>
 <td><input type="number" /></td>
</tr>
<tr>
 <td>
 What colors have you colored your hair:
 </td>
 <td>
 <input type="checkbox" id="chkBrown"/> Brown
 <input type="checkbox" id="chkBlonde"/> Blonde
 <input type="checkbox" id="chkBlack"/> Black
 <input type="checkbox" id="chkRed"/> Red
 <input type="checkbox" id="chkNone"/> None
 </td>
</tr>

In this HTML example, users see a list of hair colors that they might have used. Because a
user possibly might have used more than one, she has the option to choose more than one.
Figure 3-8 shows the output of this HTML.

FIGURE 3-8  The input check box added to the HTML form

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 201

An additional attribute available on the check box is the checked attribute. This attribute
provides a way to default a check box to the “checked” (or selected) state. By default, check
boxes aren’t selected. However, by adding the attribute as follows, the check box defaults to
the “checked” state when the page is loaded:

<input type="checkbox" id="chkBrown" checked="checked"/> Brown

In other cases, when presented with a list of items, users might be able to choose only a
single item from the list.

Using the radio input type
The radio button is similar to the check box in that it provides a list of options for users to
select from. The difference from the check box is that users can select only a single item from
the list. An example would be asking users to rate something on a scale from 1 to 5. To add
this type of question to the survey, incorporate the following HTML beneath the check boxes:

<tr>
 <td>
 Rate your experience:
 </td>
 <td>
 <input type="radio" id="chkOne" name="experience"/> 1 - Very Poor
 <input type="radio" id="chkTwo" name="experience"/> 2
 <input type="radio" id="chkThree" name="experience"/> 3
 <input type="radio" id="chkFour" name="experience"/> 4
 <input type="radio" id="chkFive" name="experience"/> 5 - Very Good
 </td>
</tr>

Notice that as with all HTML elements, each radio input type needs a unique id. However,
the name attribute ties all the radio buttons together. With the same name specified for each
radio type, the browser knows that they are part of a group and that only one radio button
of the group can be selected. Figure 3-9 shows the output of the radio buttons added to the
survey.

In this output, the radio buttons are shown from left to right and enable users to select
only one option. When a user changes the selection to a different option, the previously
selected option is automatically cleared.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	202	 CHAPTER 3	 Access and secure data

FIGURE 3-9  Adding some radio input types to the form

Like with the checkbox input types, defaulting the state of the radio input to selected is
possible. This is done in exactly the same way, by specifying the checked attribute:

<input type="radio" id="chkFive" name="experience" checked="checked"/> 5 - Very Good

In this case, the rating of 5 - Very Good defaults to selected for the group of radio buttons.

You can have multiple groups of radio buttons on the same page by specifying a different
name for each group of buttons. Another way to provide users with the ability to specify a
single value within a group of values is with the use of the range control.

Using the range input type
Using the range input type enables users to specify a value within a predefined range by
using a slider bar. This type can be used in cases where a wider range of values is required to
choose from but using radio buttons would be too unwieldy. Add another rating question to
the survey, as shown in the following HTML after the radio buttons:

<tr>
 <td>How likely would you recommend the product:
 </td>
 <td>
 <input type="range" min="1" max="25" value="20"/>
 </td>
</tr>

This HTML markup provides users with a slider bar that they can use to specify a value
between 1 and 25. The min attribute specifies the minimum value of the range; the max at-
tribute specifies the maximum value. The value attribute specifies a default value. If you omit

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 203

the value attribute, the range defaults to the minimum value. This HTML displays the output
shown in Figure 3-10.

FIGURE 3-10  A range input element added to the HTML form

In this output, the range control is displayed as a slider bar. The bar defaults to the value of
20 as specified in the markup. Users can grab the black endpoint of the slider and change the
value lower or higher by dragging it left or right. As a user changes the value, a tooltip shows
the current value where the slider resides. In this case, the user is now at the value 17 (see
Figure 3-11).

FIGURE 3-11  The tooltip displaying the current value of the range as the user changes it.

After users enter all the needed information, they need a way to submit or save the
information. The submit button has already been previewed.

Using the button input type
The input type that allows users to submit the form or clear it is button. The button input isn’t
new to HTML5 but is an essential piece to the data-capture puzzle. Buttons are what tell the
website when a user finishes doing something and that they want to perform an action. The
<input> element supports three types of button controls: submit, reset, and button.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	204	 CHAPTER 3	 Access and secure data

EXAM TIP

Anything can be a “button.” Because most DOM elements have a click event or at least
a mousedown and mouseup event, the concept of clicking can be captured and custom
actions processed. This can inherently turn any part of the DOM into a ”button.”

The submit input type tells the HTML form to post its information to the server (or, in some
cases, to another site or webpage). The reset type automatically clears all form elements to
their default values. The button type provides a generic button with no predefined func-
tionality. It can be used to provide a custom function, such as cancel out from this page and
return to the home page. All three button types are added to the bottom of the survey page
as follows:

<tr>
 <td>
 <input type="submit"/>
 <input type="reset"/>
 <input type="button"/>
 </td>
</tr>

That’s all that’s required to add the functionality to the page for each button. Of course,
type=”button” requires some JavaScript to be wired up to actually do something. However,
the submit and reset buttons come with the described functionality built in. The HTML
provides the output on the form as shown in Figure 3-12.

FIGURE 3-12  Buttons added to the HTML form

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 205

The text on the buttons is the default text. The submit button comes with the text Submit
Query, and the reset button comes with the text Reset. This can’t be changed. However, the
button type doesn’t have any text on it because none was specified and the button doesn’t
come with any predetermined behavior. To specify text for this button, add the value attri-
bute:

<input type="button" value="Cancel"/>

This produces a button as shown in Figure 3-13.

FIGURE 3-13  The button type with text specified

That’s what you get with the input type of button. However, in some cases, more flexibility
in the button’s content is desired. This is where the button element comes in handy.

Using the button element
The button element provides a button on the user interface, just as the name implies.
However, from a graphical perspective, this element behaves very differently.

The button element also supports a type attribute, like as the ones seen previously: submit,
reset, and button. This example steps away from the survey and demonstrates these buttons
on a stand-alone page. The following HTML is added to a page, and the subsequent output is
shown in Figure 3-14:

<button type="button"/>
<button type="reset"/>
<button type="submit"/>

FIGURE 3-14  All three types of button elements

This output displays three buttons, as expected. However, it doesn’t provide any text on
the buttons. The button element provides only the desired click behavior, such as submitting,
resetting, or providing a custom behavior like with type=”button”. Everything else must be
specified in the HTML, including the label or text that goes on the button. In this way, you
have much more control over what’s put on the button. Instead of Submit Query as with the
<input> element, the text can be set as Submit Survey or Save Data. The following HTML
shows the text on the buttons, and Figure 3-15 shows the output:

<button type="button">Go Home</button>
<button type="reset" >Reset</button>
<button type="submit">Submit Survey</button>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	206	 CHAPTER 3	 Access and secure data

FIGURE 3-15  The button elements with text specified

You can take the button element even further. The element’s contents don’t have to be just
plain text. You can embed images within the element by using the element in addition
to text, or embed an entire clickable paragraph. You also can apply cascading style sheets
(CSS) to the button to change its appearance, as shown in Figure 3-16. The HTML is as follows:

<button type="button" style="border-radius: 15px;">
 <p>Something exciting lies behind this button</p>

</button>

FIGURE 3-16  A customized button element

Within the button element lies the capability to create a highly customized button and get
default behavior from the browser.

In addition to what’s provided by the various input types, such as range, email, and url,
other attributes are available and common across most of the input controls and provide ad-
ditional flexibility in how the fields are validated. This is covered next.

Implementing content attributes
Input controls provide content attributes that allow you to control their behavior in the
browser declaratively rather than have to write JavaScript code.

Making controls read-only
Part of the specification for the HTML input controls includes a readonly attribute. If you want
to present information to users in elements such as text boxes but don’t want them to be able
to alter this data, use the readonly attribute. When readonly is specified, the renderer won’t
allow users to change any of the data in the text box. The following HTML demonstrates the
readonly property:

<tr>
 <td>
 Your Secret Code:
 </td>
 <td>
 <input type="text" readonly value="00XY998BB"/>
 </td>
</tr>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 207

In this code, at the top of the survey form, users are provided a secret code to correspond
with their survey. They can’t change this because the readonly attribute is specified.

Where fields aren’t read-only and users can type whatever they want into the text box,
providing them with the capability to check spelling is a good idea.

Providing a spelling checker
Checking spelling is another method available to validate user input. The spellcheck attribute
helps provide feedback to users that a word they’ve entered is misspelled. Again, this attri-
bute is applied to the input element:

<textarea id="otherCommentsText" rows="5" cols="20" spellcheck="true"></textarea>

In this HTML, the spellcheck option has been turned on for the Other Comments text area
because users can type whatever they want and might make spelling errors.

The output of a text box with spellcheck isn’t any different until a user starts typing and
enters a spelling error. Figure 3-17 shows the red underlining for the words that are detected
as spelled incorrectly.

FIGURE 3-17  A textarea with spellcheck enabled

In some cases, the built-in validation provided by the input controls isn’t sufficient, and
providing a custom pattern to validate is better, as explored in the next section.

Specifying a pattern
As you saw with the email and url input types, built-in validation is fairly thorough in ensuring
that the information entered is accurate and as expected. However, in some cases you might
require looser or stricter validation. Suppose that you don’t want users to have to specify
the HTTP protocol in a url type, but you want to allow only .com or .ca websites. This can be
achieved by using the pattern attribute, which allows the use of a regular expression to define
the pattern that should be accepted.

EXAM TIP

The pattern attribute applies only to text boxes. It can’t be used to override the validation
built into the email or url types.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	208	 CHAPTER 3	 Access and secure data

The following code shows the pattern attribute used to achieve the desired validation:

<input type="text" title="Only .com and .ca are permitted."
 pattern="^[a-zA-Z0-9\-\.]+\.(com|ca)$"/>

Plenty of regular expressions are available to validate a URL; this one is fairly simple. When
specifying the pattern attribute, you should specify the title attribute as well. The title attri-
bute specifies the error message to users in the tooltip when validation fails.

To ensure that users enter the data in the correct format, you should show them a sample
of what the data should look like. This is achieved with the placeholder attribute.

Using the placeholder attribute
The placeholder attribute enables you to prompt users with what’s expected in a cer-
tain text box. For example, an email text box might show placeholder text such as
me@mydomain.com. More importantly, this placeholder text doesn’t interfere with users
when they start typing their information into the text box. The placeholder attribute achieves
this, as shown in the following HTML and subsequent output in Figure 3-18.

<input type="email" placeholder="me@mydomain.com" /></td>

FIGURE 3-18  The placeholder attribute demonstrating to users what is expected

The placeholder text is slightly lighter in color. As soon as a user puts the mouse cursor
into the box to type, the placeholder text disappears and the user’s typing takes over.

HTML fields can be validated in many ways. In some cases, it’s not so much what is put into
the field, but that the field is indeed filled in. The required attribute controls this for the HTML
elements.

Making controls required
To ensure that a user fills in a field, use the required attribute with the <input> element. Doing
so ensures that users will be told that the field is required. In this example, the email address
will be made a required text box:

<input type="email" placeholder="me@mydomain.com" required/>

With the required control specified, if users try to submit the form without specifying an
email address, they get an error message (see Figure 3-19). Now users can’t submit until they
specify a valid email address.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.1: Validate user input by using HTML5 elements	 CHAPTER 3	 209

FIGURE 3-19  The required field validation invoked

The capabilities of the input controls can provide quite a robust validation framework.
However, more needs to be done to ensure that the website is safe and secure.

Thought experiment
Creating dynamic forms

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Building on the thought experiment from Objective 1.3, consider what you need to
do to add custom validation to a control based on what a user has entered in the
previous field. Having a dynamically created form where you can change the valida-
tion rules as a user progresses through the form can be quite powerful. Consider
different cultural variations to rules on phone numbers, postal codes, and email ad-
dress suffixes. Describe how you would implement the validation so that you could
provide context rich validation for the user.

Objective summary
■■ Input controls such as text and textarea allow users to type information into a

webpage.

■■ Some input controls provide built-in validation, such as for URLs and email addresses.

■■ Radio buttons and check boxes provide controls for users to select items in a list.

■■ Reset and submit buttons control behavior of the HTML form.

■■ Users can’t modify the content of a control that has the readonly attribute assigned.

■■ You can add a spelling checker to a text box to help users avoid spelling errors.

■■ The pattern attribute helps define a regular expression for custom validation of
formatted data.

■■ The required attribute ensures that a field is populated before users can submit the
form.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	210	 CHAPTER 3	 Access and secure data

Objective review
1.	 Which input control is better suited for allowing users to make multiple selections?

A.	 radio button

B.	 textarea

C.	 checkbox

D.	 radio or checkbox

2.	 Which input control is designed to allow users to enter secure information in a way
that keeps others from seeing what’s typed?

A.	 text

B.	 textarea

C.	 url

D.	 password

3.	 Which input control posts form data to a server?

A.	 button

B.	 Submit

C.	 Reset

D.	 radio

4.	 Which of the following declarations are valid ways to make a text control non-editable?

A.	 <input type=”text” edit=”false”/>

B.	 <input type=”text” editable=”false”/>

C.	 <input type=”text” readonly=”yes”/>

D.	 <input type=”text” readonly/>

5.	 How can you ensure that all necessary fields are populated before a form can be
submitted?

A.	 Write a JavaScript function to evaluate all the controls on the form for content.

B.	 On the server, evaluate all the controls for data and return an error page for
missing content.

C.	 Add the required attribute on each control so that users get a message that the
field is required.

D.	 Add a label to the page to let users know which controls they must fill in.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 211

Objective 3.2: Validate user input by using JavaScript

The new HTML controls discussed in Objective 3.1 provide some great functionality to
validate user data. However, this functionality has some limitations. This is where further vali-
dation performed in JavaScript comes in handy. JavaScript provides additional functionality
that’s not readily available in the core HTML controls. Although some controls aren’t yet avail-
able in all browsers, you might need to validate user input such as dates, telephone numbers,
or alphanumeric postal codes. This objective demonstrates how to use regular expressions to
validate the input format and how to use the JavaScript built-in functions to ensure that data
is the correct data type. This objective also adds a layer of security by demonstrating how to
prevent malicious code injection.

This objective covers how to:
■■ Evaluate regular expressions

■■ Validate data with built-in functions

■■ Prevent code injection

Evaluating regular expressions
You saw the use of regular expressions in Objective 3.1. In fact, the core HTML input controls
support a pattern attribute that allows you to apply a regular expression to validate user
input. In some cases, though, validating user input in JavaScript can be more effective than
inline with attributes. This section introduces regular expressions. The basic syntax of a regular
expression is explained, as is how to use the expression in JavaScript.

Regular expressions have a unique syntax of their own. They can be daunting to use but
can also be very powerful. Although a full instruction on regular expressions is beyond the
scope of this book, a brief introduction is provided to support the later examples.

EXAM TIP

Regular expressions tend to make their way onto the exams. You should prepare by study-
ing them in more detail. An Internet search should yield many resources freely available
on the topic. Be familiar with how to read an expression for such things as email addresses,
URLs, and phone numbers, among other things.

Regular expressions are a mix of special characters and literal characters that make up the
pattern that someone would want to match. Table 3-1 lists the special characters and their
meaning.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	212	 CHAPTER 3	 Access and secure data

TABLE 3-1  Regular expression special characters

Symbol Description

^ The caret character denotes the beginning of a string.

$ The dollar sign denotes the end of a string.

. The period indicates to match on any character.

[A-Z] Alphabet letters indicate to match any alphabetic character. This is case-sensitive. To match
lowercase letters, use [a-z].

\d This combination indicates to match any numeric character.

+ The plus sign denotes that the preceding character or character set must match at least
once.

* The asterisk denotes that the preceding character or character set might or might not match.
This generates zero or more matches.

[̂] When included in a character set, the caret denotes a negation. [̂ a] would match a string
that doesn’t have an ‘a’ in it.

? The question mark denotes that the preceding character is optional.

\w This combination indicates to match a word character consisting of any alphanumeric
character, including an underscore.

\ The backslash is an escape character. If any special character should be included in the
character set to match on literally, it needs to be escaped with a \. For example, to find a
backslash in a string, the pattern would include \\.

\s This combination indicates to match on a space. When it’s combined with + or *, it can
match on one or more spaces.

This list encompasses the main functions available when string matching with regular
expressions. Building regular expressions requires taking the definition of those characters
and essentially creating a mask out of them to be used by the regular expression engine
to interpret and decide whether there is a match. For example, a Canadian postal code is
comprised of the format A1A 1A1—that is, alternating alphabetic characters and numeric
characters with a space in the middle. Some characters aren’t used in postal codes because
the machines confuse them with other characters (for example, Z and 2). Also, the space isn’t
mandatory. When you need to enforce the data format of the user input, deciding how you
want the data to be captured and how flexible you want it to be is important. Then build your
regular expression to match this.

Now, build the regular expression for a postal code. You first need to denote the begin-
ning of the string, because it helps eliminate unnecessary white space at the lead of the string:

^

The first part of the expression is the caret. The next character must be alphabetic:

^[A-Z,a-z]

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 213

Because postal codes aren’t case sensitive, the expression allows the first character to be
either uppercase or lowercase. The next character in the postal code must be a digit:

^[A-Z,a-z]\d

Because the postal code accepts all digits 0-9, \d is used to specify any digit. However,
[0-9] could have been used as well. And now the pattern continues, letter-number-letter
number-letter-number:

^[A-Z,a-z]\d[A-Z,a-z]\d[A-Z,a-z]\d

As was indicated earlier, the space in the middle of the postal code, while common
convention, is optional. This is where deciding how flexible the data validation should be is
required. The expression as it is won’t allow for any space in the middle because the expres-
sion is set to match on consecutive alternating letter-number-letter. Perhaps, for formatting
purposes, a space should be required. In this case, \s would require that a space is included:

^[A-Z,a-z]\d[A-Z,a-z]\s\d[A-Z,a-z]\d

Now, users would be required to enter the postal code with a space in the middle of the
two sets of three characters. But maybe the website doesn’t care about the space in the
middle, because it doesn’t really affect anything. In this case, the \s can be denoted with the *:

^[A-Z,a-z]\d[A-Z,a-z]\s*\d[A-Z,a-z]\d

Now, the expression allows for alternating letter-number-letter and one or more spaces
can occur in the middle. The space is now optional, but a problem has been introduced. The
user can now enter any number of spaces and still pass the validation, such as:

A1A 1A1

That would pass the validation because one or more spaces is required by the \s*. The
desired outcome here is to allow only one space or no spaces. For this, a new element is
added to limit the number of occurrences to just one. This is accomplished by specifying the
maximum length allowed for the character set being matched:

^[A-Z,a-z]\d[A-Z,a-z]\s{1}\d[A-Z,a-z]\d

The {1} says to match the previous character only the specified number of times—in this
case, one time. Now the expression is back to functionality that’s no different than just speci-
fying the \s. What is needed next is something to make the single space optional, as denoted
with the ?. To achieve this effect, the space segment is wrapped in square brackets to make it
a set and followed by the ? to make it optional:

^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d

Now you have a regular expression that requires the correct alphanumeric pattern for a
Canadian postal code with an optional space in the middle.

This simple example demonstrates the key elements to a regular expression. Although this
regular expression can be placed into the pattern attribute of the <input> element, this next

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	214	 CHAPTER 3	 Access and secure data

section discusses how to use the JavaScript framework to perform pattern matching with
regular expressions.

Evaluating regular expressions in JavaScript
Just like with strings and integers, regular expressions are objects in JavaScript. As such, they
can be created and can provide methods to evaluate strings. Regular expression objects are
created in a similar fashion as strings; however, rather than use “ to encapsulate the expres-
sion, use the forward slash /<expression>/ instead. JavaScript knows that text surrounded
by forward slashes in this way is a regular expression object. Going back to the postal code
example, the following HTML is provided:

<script type="text/javascript">
 function CheckString() {
 try{
 var s = $('#regExString').val();
 var regExpression = /^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d/;
 if (regExpression.test(s))
 alert("Valid postal code.");
 else
 alert("Invalid postal code.");
 } catch (e) {
 alert(e.message);
 }
 }
</script>
<body>
 <form>
 <input type="text" id="regExString" />
 <button onclick="CheckString();" >Evaluate</button>
 </form>
</body>

This HTML provides a very basic page with a text box and a button. The button does noth-
ing more than call a function to validate whether the entered text matches the format desired
for a postal code. This page shouldn’t contain anything that you haven’t seen already, except
the line in which the regular expression object is created:

var regExpression = /^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d/;

With this line, a regular expression object is created and, as a result, methods are avail-
able. The string is extracted from the text box and passed to the test method of the regular
expression. The test method returns a Boolean to indicate whether the input string matches
the regular expression that was created.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 215

The regular expression object also provides a method called exec. This method returns the
portion of the input string that matches the expression. The following code example illus-
trates this by adding another button and function to use the exec method instead of test:

function CheckStringExec() {
 var s = $('#regExString').val();
 var regExpression = /^[A-Z,a-z]\d[A-Z,a-z][\s{1}]?\d[A-Z,a-z]\d/;
 var results = regExpression.exec(s);
 if(results != null)
 alert("Valid postal code." + results[0]);
 else
 alert("Invalid postal code.");
…
<button onclick="CheckStringExec();" >Evaluate with Exec</button>

With this button, the expression is evaluated just like it was with the test method, except
the match is returned as a string array. That the return result is a string array is important to
note because using regular expressions can result in multiple matches. If a match isn’t made,
the return result will be null. In this example, the results are evaluated by checking whether
the array isn’t null; if it’s not, the postal code is valid and shown back to the user. If the match
isn’t made, the return value will be null.

The string object also provides regular expression methods. The string could be used
directly to evaluate the expression. The string provides the search and match methods. The
search method returns the index of the character in the string where the first match occurred.
The match method returns the part of the string that matches the pattern, much like the exec
method. In addition to these two methods, many of the other string methods accept a regular
expression object, such as indexOf, split, and replace. This provides some advanced functional-
ity for manipulating strings in JavaScript.

EXAM TIP

The example uses a regular expression to validate user input of data entered into the
webpage. Keep in mind that data can come from anywhere, such as an RSS feed or back-
end server providing JavaScript Object Notation (JSON). In this context, where a website
is expecting specifically formatted data, you can use regular expressions to validate the
incoming data and prevent the possible crashing of the website or at least errors being
presented to users.

Although regular expressions provide a great deal of power in evaluating strings for pat-
terns and ensuring that the data is in the desired format, JavaScript also provides built-in
functions to evaluate the type of data received.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	216	 CHAPTER 3	 Access and secure data

Validating data with built-in functions
JavaScript provides built-in functions to evaluate data type. Some functions are provided
directly within JavaScript; others are provided by the jQuery library.

The isNaN function provides a way to evaluate whether the value passed into it isn’t a
number. If the value isn’t a number, the function returns true; if it is a number, it returns false.
If the expected form of data being evaluated is numeric, this function provides a defensive
way to determine this and handle it appropriately:

if (isNan(value)) {
 //handle the non number value
}
else {
 //proceed with the number value
}

The opposite of the isNaN function is the isFinite function. The isFinite function is used in
the same way but returns true if the value is a finite number and false if it’s not.

Being able to validate data is very important as previously outlined. Equally important to
validating the data explicitly is ensuring that data-entry fields prevent users from injecting
script. Code injection is a widely discussed topic in website security. The next section discusses
preventing code injection.

Preventing code injection
Code injection is a technique that attackers use to inject JavaScript code into your webpage.
These attacks usually take advantage of dynamically created content to have additional
script run so that malicious users can try to gain some sort of control over the website. Their
intentions can be many, but among those intentions might be to trick other site users into
providing sensitive information. Depending on the content of the page, different measures
need to be considered.

Protecting against user input
A web application accepting user input opens up a potential attack surface for malicious
users. The size of the attack surface depends on what’s done with the entered data. If the
website takes data and doesn’t do anything with it outside the scope of the current webpage,
such as send it to another server or store it in a database, the effects are limited to the cur-
rent page and browser session. Little can be accomplished except to disrupt the design of the
website for this particular user. However, if the captured data includes an account creation
form or survey, for example, a malicious user has much more potential to do harm—especial-
ly when that information is later rendered to the webpage dynamically. This inherently allows
anyone to add script to the site, which can open up the site to behavior such as phishing. As a
webpage developer, you need to ensure that all user input is scrubbed of script elements. For
example, don’t allow < > text to be entered into the form. Without those characters, a script
block can’t be added.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.2: Validate user input by using JavaScript	 CHAPTER 3	 217

Using the eval function
The eval function is used to run JavaScript dynamically. It takes a string as a parameter and
runs it as a JavaScript function. Never use the eval function against any data provided by an
external source over which you don’t have 100 percent control.

Using iFrames
iFrames open up a new opportunity to attackers. Search engines provide a plethora of results
dealing with exploits regarding the use of iFrames. The sandbox attribute should always
be used to restrict what data can be placed into an iFrame. The sandbox attribute has four
possible values, as listed in Table 3-2.

TABLE 3-2  Available sandbox attribute values

Value Description

“” An empty string applies all restrictions. This is the most secure.

allow-same-origin iFrame content is treated as being from the same origin as the containing
HTML document.

allow-top-navigation iFrame content can load content from the containing HTML document.

allow-forms iFrame can submit forms.

allow-scripts iFrame can run script.

Thought experiment
Encoding input data

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

The primary way in which malicious users seek out vulnerabilities in your webpages
is through the use of code injections. These are used to find weaknesses in the code
where malicious users could trick legitimate users into redirecting to a malicious
site or—worse—steal private data. What additional strategies can you design into
your webpages to help prevent these types of attacks?

Objective summary
■■ Regular expressions are strings of special characters that an interpreter understands

and uses to validate text format.

■■ Regular expressions are objects in JavaScript that provide methods for testing input
data.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	218	 CHAPTER 3	 Access and secure data

■■ isNaN is a built-in function to determine whether a value isn’t a number, whereas
isFinite validates whether the value is a finite number.

■■ Code injection is a technique that attackers use to inject malicious code into your
application.

■■ iFrames and dynamic JavaScript are dangerous if not used properly in a webpage.

Objective review
1.	 Which of the following regular expression characters denote the end of the string?

A.	 $

B.	 %

C.	 ^

D.	 &

2.	 Which of the following sandbox attributes allows the iFrame to load content from the
containing HTML document?

A.	 allow-script-execution

B.	 allow-same-origin

C.	 allow-forms

D.	 allow-top-navigation

E.	 allow-top-document

3.	 Which function should never be used to run JavaScript?

A.	 execute

B.	 JSDynamic

C.	 eval

D.	 evaluate

Objective 3.3: Consume data

This objective covers how to consume data in an HTML5 web application. The ability to
consume data from external sources is more popular than ever. Website mash-ups and social
integration are major catalysts for this.

This objective covers how to:
■■ Consume JSON and XML data by using web services

■■ Use the XMLHTTPRequest object

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Consume data	 CHAPTER 3	 219

Consuming JSON and XML data by using web services
The two data formats commonly used in data transmission are JSON and XML. JSON is
unstructured data, whereas XML is structured. JSON uses a special syntax that allows the
definition of name value pairs in a lightweight string format. XML, as a relative of HTML, is
more structured than JSON with named tags and opening and closing tags. Tags can have
attributes. The following are examples of what a person object might look like in both for-
mats where the person object has a first name, last name, hair color, and eye color:

■■ JSON:

{firstName: "Rick", lastName: "Delorme", hairColor: "brown", eyeColor: "brown" }

■■ XML (Elements):

<Person>
 <firstName>Rick</firstName>
 <lastName>Delorme</lastName>
 <hairColor>Brown</hairColor>
 <eyeColor>Brown</eyeColor>
</Person>

■■ XML (attributes):

<Person firstname="Rick" lastName="Delorme" hairColor="Brown" eyeColor="Brown"/>

When publishing data services such as Web Services or a REST API, you can control how
you publish the data. When consuming third-party resources, you won’t have control over
how they’ve published the data.

Using the XMLHttpRequest object
JavaScript provides built-in support for receiving HTML data via the XMLHttpRequest ob-
ject. The object makes a call to a web service, REST API, or other data provider services. The
advantage of doing this via JavaScript on the client side is to be able to reload portions of the
page from an external source without having to post the entire page back to the server.

XMLHttpRequest makes an HTTP request and expects to receive back data in XML format.
Both synchronous and asynchronous calls are supported. Table 3-3, Table 3-4, and Table 3-5
list the available events, methods, and properties of the XMLHttpRequest object.

TABLE 3-3  Available events of the XMLHttpRequest object

Events Description

Onreadystatechange Sets an event handler for when the state of the request has changed. Used
for asynchronous calls.

Ontimeout Sets an event handler for when the request can’t be completed.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	220	 CHAPTER 3	 Access and secure data

TABLE 3-4  Available methods of the XMLHttpRequest object

Method Description

Abort Cancels the current request

getAllResponseHeaders Gives a complete list of response headers

getResponseHeader Returns the specific response header

Send Makes the HTTP request and receives the response

setRequestHeader Adds a custom HTTP header to the request

Open Sets properties for the request such as the URL, a user name, and a password

TABLE 3-5  Available properties of the XMLHttpRequest object

Property Description

readyState Gets the current state of the object

Response Gets the response returned from the server

responseBody Gets the response body as an array of bytes

responseText Gets the response body as a string

responseType Gets the data type associated with the response, such as blob, text, array-
buffer, or document

responseXML Gets the response body as an XML DOM object

Status Gets the HTTP status code of the request

statusText Gets the friendly HTTP text that corresponds with the status

Timeout Sets the timeout threshold on the request

withCredentials Specifies whether the request should include user credentials

In its simplest form, a request to the server using the XMLHttpRequest object looks like
this:

<script>
 $("document").ready(function () {
 $("#btnGetXMLData").click(function () {
 var xReq = new XMLHttpRequest();
 xReq.open("GET", "myXMLData.xml", false);
 xReq.send(null);
 $("#results").text(xReq.response);
 });
 });
</script>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Consume data	 CHAPTER 3	 221

This script assumes a button on the HTML form and a div to show the results. A new
XMLHttpRequest object is created. The open method is called to specify the request type, URI,
and whether to make the call asynchronous. Table 3-6 lists all the parameters to the open
method.

TABLE 3-6  Parameters for the XMLHttpRequest open method

Parameter Description

Method The HTTP method being used for the request: GET, POST, etc.

URL The URL to make the request to.

async A Boolean value to indicate whether the call should be made asynchronously. If true, an
event handler needs to be set for the onreadystatechanged.

User name A user name if the destination requires credentials.

Password A password if the destination requires credentials.

EXAM TIP

The open method doesn’t make any server requests. If the user name and password is
specified, it doesn’t send this information to the server in the open method. When the
send method is called, the user name and password aren’t passed to the server either. The
credentials are passed to the server only in response to a 401 security response from the
server.

The XMLHttpRequest object provides some mechanisms for handling errors. The most
common error to account for is a timeout error. By default, the value of the timeout is zero,
which is infinite. A timeout value should always be specified. The code is updated as follows:

var xReq = new XMLHttpRequest();
xReq.open("GET", "myXMLData.xml", false);
xReq.timeout = 2000;
xReq.ontimeout = function () {
 $("#results").text("Request Timed out");
}
xReq.send(null);
$("#results").text(xReq.response);

This results in not allowing the call to take any more than two seconds. The timeout is
expressed in milliseconds. After the timeout period, the ontimeout event handler is called to
allow for this condition to be handled appropriately in the webpage.

An additional consideration for this code is whether to make the call synchronously or
asynchronously. Ideally, you should ensure that the call to the service to get the data won’t
interfere with users and won’t block them, unless of course they need to wait on the reply
before taking any further action. Synchronous calls, as the examples so far have shown,

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	222	 CHAPTER 3	 Access and secure data

block the user interface while the request is being made. To prevent this, the call should be
asynchronous, as shown here:

var XMLHTTPReadyState_COMPLETE = 4;

var xReq = new XMLHttpRequest();
xReq.open("GET", "myXMLData.xml", true);
xReq.timeout = 2000;
xReq.ontimeout = function () {
 $("#results").text("Request Timed out");
}
xReq.onreadystatechange = function (e) {
 if (xReq.readyState == XMLHTTPReadyState_COMPLETE) {
 if (xReq.status = "200") {
 $("#results").text(xReq.response);
 } else {
 $("#results").text(xReq.statusText);
 }
 }
}
xReq.send(null);

The onreadystate event is assigned a function to run when the state of the
XMLHttpRequest object is changed. When the request is complete, the readyState changes
to complete (readyState == 4). At this point, the HTTP return status can be evaluated for a
success value such as 200, and then the processing of the XML data can occur.

The same code that has been used so far to retrieve XML data can also be used to make a
request for JSON data. The following update to the code shows this:

var XMLHTTPReadyState_COMPLETE = 4;

var xReq = new XMLHttpRequest();
xReq.open("GET", "myJSONData.json", true);
xReq.timeout = 2000;
xReq.ontimeout = function () {
 $("#results").text("Request Timed out");
}
xReq.onreadystatechange = function (e) {
 if (xReq.readyState == XMLHTTPReadyState_COMPLETE) {
 if (xReq.status = "200") {
 $("#results").text(xReq.response);
 } else {
 $("#results").text(xReq.statusText);
 }
 }
}
xReq.send(null);

The only difference to this code is the name of the URL being passed. In this case, the
endpoint is a data source that returns JSON-formatted data instead of XML. The JSON is
displayed to the screen in the same way that the XML is displayed.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.3: Consume data	 CHAPTER 3	 223

When the data is received via the XMLHttpRequest object, the data will need to be
deserialized into a more user-friendly format. You also might want to submit data to the
server in response to user actions. The next objective examines these concepts.

Thought experiment
Creating a webpage with a stock ticker

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

You are tasked with building a webpage for your client that involves a stock ticker.
You need to provide real-time stock quotes to your page users in a scroll across the
top of the page. Explain how you would build a web application that will do this
dynamically without posting back the whole webpage.

Objective summary
■■ JSON and XML are the most common formats used for data exchange.

■■ JSON consists of name/value pairs.

■■ XML is a structured element-based document.

■■ JavaScript provides built-in support for receiving data via the XMLHttpRequest object.

Objective review
1.	 Which of the following is a valid JSON string?

A.	 {firstName, Rick, lastname, Delorme, hairColor, brown, eyeColor, brown}

B.	 {firstName: Rick; lastname: Delorme; hairColor: brown; eyeColor: brown}

C.	 {firstName: “Rick”; lastname: “Delorme”; hairColor: “brown”; eyeColor: “brown”}

D.	 {firstName: “Rick”, lastname: “Delorme”, hairColor: “brown”, eyeColor: “brown”}

2.	 With the XMLHttpRequest object, which of the following properties provides the
response in a human readable format?

A.	 Response

B.	 responseBody

C.	 responseText

D.	 responseXML

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	224	 CHAPTER 3	 Access and secure data

3.	 At which stage during an XMLHttpRequest are user credentials sent to the server?

A.	 When the connection is opened

B.	 When the request is sent

C.	 When the ready state is complete

D.	 When the server sends a security response requesting the credentials

Objective 3.4: Serialize, deserialize, and transmit data

Data can be received and sent in many forms. In the preceding objective, JSON and XML were
examined specifically. The notion of presenting JSON or XML data directly to users isn’t ideal.
Users would appreciate receiving the data in a more usable or readable and meaningful way.
For this, you need to have the data converted from an XML string or JSON string into some-
thing else. The concept of converting the data from one form to another is called serialization
or deserialization.

With serialization, the data is put into a format for transmission. With deserialization, the
transmitted data is converted into something that can be worked with, such as a custom
object. In addition to working with string data, applications can work with binary data. An
application might capture drawings or pictures on a canvas and send that data back to the
server. The data needs to be serialized into a binary stream to achieve this.

This objective reviews the serialization, deserialization, and transmission of binary
and text data. The ability to submit data via the HTML Form and sending data with the
XMLHttpRequest object is also reviewed.

This objective covers how to:
■■ Send data by using XMLHttpRequest

■■ Serialize and deserialize JSON data

■■ Serialize and deserialize binary data

Sending data by using XMLHttpRequest
Sending data to the server is similar to receiving data. The code examples in the preceding
objective used the XMLHttpRequest object to receive data. The XMLHttpRequest object itself
is agnostic to sending or receiving. It can accomplish both tasks based on how the object is
set up. To send data, the send method must have data passed into it, and that data can be

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.4: Serialize, deserialize, and transmit data	 CHAPTER 3	 225

transmitted to the endpoint specified in the URL of the open method. The following code
sends the XML data to the server:

var xmlData = "<Person firstname='Rick' lastName='Delorme' hairColor='Brown'
eyeColor='Brown' /> ";
var xReq = new XMLHttpRequest();
xReq.open("POST", "/ReceiveXMLData.aspx", false);
xReq.responseType
xReq.send(xmlData);

When data is transmitted to the server, it needs to be serialized into a format that the
URL endpoint can understand. If the endpoint is expecting XML, the data must be XML; if it’s
expecting binary data, the data must be in a binary format.

Serializing and deserializing JSON data
The browser provides native support for working with JSON and XML. The JSON object
is available for converting a JSON string to and from an object (serialize/deserialize). The
following code shows how this is accomplished:

var person = {
 FirstName: "Rick",
 HairColor: "Brown"
 };
 var jsonPerson = JSON.stringify(person);

The person object has been serialized into a JSON string that can be sent to an endpoint
URL for processing. To return the person back to a person object from a JSON string, the
object can be deserialized by using the parse method:

var req = new XMLHttpRequest();

req.open("GET", "MyJsonData.json", false);
req.send(null);
var jsonPerson = JSON.parse(req.responseText);

When this code runs, the person object is reconstructed from the JSON string.

Serializing and deserializing binary data
Capturing dynamic image data follows a similar pattern as with the other techniques
reviewed. The key difference is now the responsetype property must be set to blob. The
following code demonstrates retrieving a binary image object and deserializing it into the
webpage:

var xReq = new XMLHttpRequest();
xReq.open("GET", "orange.jpg", false);
xReq.responseType = 'blob';
xReq.send(null);
var blob = xReq.response;
document.getElementById("result").src = URL.createObjectURL(blob);

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	226	 CHAPTER 3	 Access and secure data

The XMLHttpRequest object’s responseType property has been set to blob. Then
by using the response property to extract the binary data, the BLOB is passed to the
URL.createObjectURL method. The createObjectURL method gives the img element a URL
linking to the BLOB, and the image is displayed in the browser. For the inverse, the data can
also be submitted to the server as soon as it’s serialized into a BLOB:

var xReq = new XMLHttpRequest();
xReq.open("POST", "saveImage.aspx", false);
xReq.responseType = 'blob';
xReq.send(data);

Using the Form.Submit method
The form element of an HTML page is the area of the form that contains elements that are
typically input controls to gather information from users. The form element contains an action
attribute that tells the form where to submit its data. Submitting the data in this way submits the
entire HTML page back to the server for processing. However, another available mechanism is to
hook up to the form’s submit event and handle the submission through JavaScript. This is useful
for submitting the form’s data through an AJAX request so that users don’t have to leave the cur-
rent page while the request is being processed. The form element at its simplest is as follows:

<form id="signupForm" action="processSignUp.aspx">
</form>

The form in this case will post its data to the processSignUp server page for processing,
which in turn should redirect users back to a confirmation page of some sort. The other
option for handling the form’s submission is to wire up the event in JavaScript:

$("document").ready(function () {
 $("form").submit(function () {
 });
 });

Iterating over all the form elements, capturing the data out of them, and constructing a
query string for use with an AJAX call would be possible inside the click event. The following
code reviews this concept:

$("form").submit(function () {

 var fName = $("#firstName").val();
 var lName = $("#lastName").val();
 var qString = "Last Name=" + lName + "&First Name=" + fName;

 $.ajax({
 url: 'processSignUp.aspx',
 type: "POST",
 data: qString,
 success: function (r) {
 }
 });
 return false;
});

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.4: Serialize, deserialize, and transmit data	 CHAPTER 3	 227

The data from each field in the form is extracted and concatenated into a query string
to submit to the server from the AJAX call. Although this method is functional, it has some
drawbacks. First, a form with many elements will cause this code to get long. As new elements
are added, the code will need to be updated. There is another option in the form of a jQuery
method called serialize().

Using the jQuery.serialize method
jQuery provides a seamless way to encode data from an HTML form by traversing the form
that’s passed into it and looking for input boxes to construct and return a query string. Then
the query string can be posted to the server for processing. The preceding code is rewritten
like this:

$("form").submit(function () {
 var qString = $(this).serialize();
 alert(qString);
 $.ajax({
 url: 'processSignUp.aspx',
 type: "POST",
 data: qString,
 success: function (r) {
 }
 });
 return false;
});

In this case, the jQuery.serialize method handles the extraction of the data from all the
input elements and creates the query string. The advantage of using this method— beyond
saving a lot of code—is that the query string is also encoded.

EXAM TIP

The serialize method requires that all elements have the name attribute specified. The preced-
ing code works with the HTML modified as such:

<form id=”signupForm”>
 First Name:
 <input type=”text” id=”firstName” name=”firstName”/>

 Last Name:
 <input type=”text” id=”lastName” name=”lastName”/>

 <button type=”submit”>Submit</button>
</form>

The serialize method acts on any results from the selector that’s passed into the $() seg-
ment of the jQuery. However, the serialize method has some limitations that you should know
about. Only successful controls are serialized—meaning, only controls that are in a valid state.
For input controls such as check boxes and radio buttons, only the ones that are in a selected
state are considered. For radio buttons, because the name attribute must be the same for

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	228	 CHAPTER 3	 Access and secure data

them all to be considered in a radio button group, you would specify the value attribute to
differentiate them in the query string:

<input type="radio" name="gender" value="m"/>Male
<input type="radio" name="gender" value="f"/>Female

The jQuery.serialize method makes the code involved to generate a query string of the
parameters from a form much simpler to create and less error prone.

Thought experiment
Saving a form

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

In Objective 3.1, a customer survey was built. Extending this concept, how can you
use the XMLHttpRequest object to post the data captured in the form to the server?
Before submitting the form, how can you process server-side validation in real
time? Add validation to the form so that you can compare an email address entered
against a database of email addresses to ensure that it hasn’t been used before.

Objective summary
■■ Browsers provide native support via the JSON object to work with serializing and

deserializing JSON strings.

■■ The JSON.parse method deserializes a JSON string into an object, and the
JSON.stringify method serializes an object into a JSON string.

■■ By setting the XMLHttpRequest responseType property to the value ‘blob’, you can
retrieve binary data.

■■ By default, the form submit action sends the entire page to the server (based on the
action attribute) for processing.

■■ Handling the submit event allows you to customize how the form data is posted to the
server.

■■ The jQuery.serialize method provides a convenient shortcut to convert specified input
controls into a query string.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 3.4: Serialize, deserialize, and transmit data	 CHAPTER 3	 229

Objective review
1.	 Which of the following code lines is the correct way create an object from a JSON

string stored in a variable called jsonString?

A.	 var o = JSON.split(jsonString);

B.	 var o = JSON.stringify(jsonString);

C.	 var o = JSON.parse(jsonString);

D.	 var 0 = JSON.join(jsonString);

2.	 Which of the following code lines allows an XMLHttpRequest to return binary data?

A.	 request.responseType = ‘binary’;

B.	 request.responseType = ‘image/jpg’;

C.	 response.type = ‘blob’;

D.	 request.responseType = ‘blob’;

3.	 How do you control what’s sent to the server when submitting a form?

A.	 Add a submit button to the form.

B.	 Handle the submit event of the form.

C.	 Specify the action attribute of the form element.

D.	 Ensure that all elements on the form have a name.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	230	 CHAPTER 3	 Access and secure data

Answers

This section contains the solutions to the thought experiments and answers to the objective
review questions in this chapter.

Objective 3.1: Thought experiment
You’ve already seen how to get access to the DOM and modify elements through JavaScript.
By using these techniques, you can get a reference to the input controls on the form and,
based on user input in certain elements, this can trigger modification to the validation rules
(for example, change the regular expression validation dynamically). You can get regional
context about a user from the Geolocation API. From this you can derive what part of the
world the user is in and apply the exact validation on the input controls.

Objective 3.1: Review
1.	 Correct answer: C

A.	 Incorrect: A radio button is suited for allowing a single selection.

B.	 Incorrect: A text area is suited for a multi-line text box.

C.	 Correct: Check boxes allow multiple selections.

D.	 Incorrect: A radio button doesn’t allow more than one selection.

2.	 Correct answer: D

A.	 Incorrect: A text box allows data entry but is plainly visible.

B.	 Incorrect: A text area allows data entry but is plainly visible.

C.	 Incorrect: url is a type of text box with special validation rules.

D.	 Correct: A password input type hides the characters being entered.

3.	 Correct answer: B

A.	 Incorrect: A button is generic and must have an event handler to perform custom
logic.

B.	 Correct: The submit button invokes the forms submit action.

C.	 Incorrect: The reset button clears all input fields on the form.

D.	 Incorrect: A radio button is used for a selection list.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 3	 231

4.	 Correct answer: C

A.	 Incorrect: You can do this with a custom event, but that’s more work than
necessary.

B.	 Incorrect: The goal is to validate the data before submitting the form.

C.	 Correct: The required attribute ensures that a field contains a value before being
submitted.

D.	 Incorrect: A label would be informative but doesn’t guarantee that all the required
fields are populated before submitting.

Objective 3.2: Thought experiment
The safest approach to restricting input data is to restrict the characters that a user can enter
into a specific field. If a field is designed to accept only numeric data, ensure that the valida-
tion on that input control will allow only numeric data. The same is true for dates, text, and
any other input that a user can freely type into. Regular expressions simplify this type of
validation by verifying that only the expected characters are entered. If a text box is expect-
ing a person’s name, don’t allow HTML characters such as the < or > symbols to be input into
the field. Also, restrict the field length so that it matches the type of the data expected. A field
expecting the age of a person doesn’t need to be 500 characters; you can probably get away
with allowing only 3 characters.

Objective 3.2: Review
1.	 Correct answer: A

A.	 Correct: The $ sign denotes the end of the string.

B.	 Incorrect: The % sign doesn’t denote the end of the string.

C.	 Incorrect: The ^ character denotes the start of the string.

D.	 Incorrect: The & character doesn’t denote the end of the string.

2.	 Correct answer: D

A.	 Incorrect: Allows scripts to run

B.	 Incorrect: Only allows content from the same origin

C.	 Incorrect: Allows forms

D.	 Correct: Allows content from the containing HTML document

E.	 Incorrect: Not a valid option

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	232	 CHAPTER 3	 Access and secure data

3.	 Correct answer: D

A.	 Incorrect: Credentials aren’t passed with the open method.

B.	 Incorrect: Credentials aren’t passed with the request method.

C.	 Incorrect: Ready state is a property that indicates the current state of the
connection.

D.	 Correct: Credentials are passed only if the server requests them with a return
code 401.

Objective 3.3: Thought experiment
The task assigned here to build a scroll across the top of the page is seen in many websites
today. A stock price ticker is a typical application of this. This solution would potentially incor-
porate different technologies. At its core, you can implement the XMLHttpRequest object to
make a call to an API that provides stock data. When the data is retrieved, you can display in
the browser. Because the solution calls for not posting the entire page, you would need to use
dynamic DOM manipulation to display the results and have them scroll across the top of the
page. Because the quotes must be updated regularly, you would likely include the use of a
timer to poll for the results at a regular interval.

Objective 3.3: Review
1.	 Correct answer: D

A.	 Incorrect: A JSON string isn’t just a comma-separated list.

B.	 Incorrect: A JSON string isn’t a list delimited by semi-colons.

C.	 Incorrect: A JSON string isn’t a list delimited by semi-colons.

D.	 Correct: A JSON string is a series of name/value pairs where the name of the
property is followed by a colon and a quoted string. Multiple name value pairs are
comma separated.

2.	 Correct answer: C

A.	 Incorrect: Response doesn’t provide any direct information.

B.	 Incorrect: responseBody provides the result in binary format.

C.	 Correct: responseText provides the result as text that’s human readable.

D.	 Incorrect: responseXML isn’t a valid property.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 3	 233

3.	 Correct answer: D

A.	 Incorrect: Credentials aren’t passed with the open method.

B.	 Incorrect: Credentials aren’t passed with the request method.

C.	 Incorrect: Ready state is a property that indicates the current state of the
connection.

D.	 Correct: Credentials are passed only if the server requests them with a return
code 401.

Objective 3.4: Thought experiment
In this application, you now need to know when users finish entering information into a field.
You can use the onblur event for this. By hooking up onblur to the email field, you can use the
XMLHttpRequest object to send a request to the server to validate that the address is unique
and hasn’t been used before. The results of the data evaluation on the server are passed back
in the response and can be used to highlight to users that the data isn’t unique. This provides
a much better user experience in that users don’t need to wait until they fill out the entire
form to have all the fields validated. Did you remember to encode the data before submitting
it to the server to prevent an injection attack?

Objective 3.4: Review
1.	 Correct answer: C

A.	 Incorrect: This isn’t a valid method on the JSON object.

B.	 Incorrect: This method is used to serialize an object into a JSON string.

C.	 Correct: This method is used to deserialize a JSON string into an object.

D.	 Incorrect: This isn’t a valid method on the JSON object.

2.	 Correct answer: D

A.	 Incorrect: ‘binary’ isn’t a valid option for the responseType.

B.	 Incorrect: ‘image/jpg’ isn’t a valid option for the responseType.

C.	 Incorrect: type isn’t a valid property name on the response object.

D.	 Correct: The response object’s responseType property must be set to ‘blob’.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	234	 CHAPTER 3	 Access and secure data

3.	 Correct answer: B

A.	 Incorrect: A submit button submits the entire form to the server by default.

B.	 Correct: Handling the submit event on the form allows you to intercept the form
before submitting and perform custom actions with it.

C.	 Incorrect: The action attribute indicates what server-side page the form should
submit.

D.	 Incorrect: All elements on the form should have a name to use jQuery to serialize
them. However, this has no effect on form submission.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

		 	 235

C H A P T E R 4

Use CSS3 in applications
The use of cascading style sheets (CSS) is not a new concept. However, the functional
capabilities of CSS3 have advanced tremendously. In this chapter, you review the capabilities
of CSS3 and how they can be leveraged into your HTML5 web applications to provide end
users with the desired experience.

NOTE  VARYING RESULTS

You might see slightly different results in some of the code samples. Not all features work
in all browsers. Internet Explorer 11 and Chrome v35+ were used to validate the examples
throughout this chapter.

Objectives in this chapter:
■■ Objective 4.1: Style HTML text properties

■■ Objective 4.2: Style HTML box properties

■■ Objective 4.3: Create a flexible content layout

■■ Objective 4.4: Create an animated and adaptive UI

■■ Objective 4.5: Find elements by using CSS selectors and jQuery

■■ Objective 4.6: Structure a CSS file by using CSS selectors

Objective 4.1: Style HTML text properties

Text is the basis for all web applications. Some web applications have more text than others.
Ultimately, the viewer of the website will read the content of the website that is in text. CSS
provides many capabilities to customize the appearance of the text in order to provide
your own unique look and feel to your web application. Throughout this objective, you will
explore the various ways to style text.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	236	 CHAPTER 4	 Use CSS3 in applications

This objective covers how to:
■■ Apply styles to text appearance

■■ Apply styles to text font

■■ Apply styles to text alignment, spacing, and indentation

■■ Apply styles to text hyphenation

■■ Apply styles for a text drop shadow

Apply styles to text appearance
Applying styles such as color, bold, or italic makes certain text stand out on a webpage. Any
of these styling techniques can be applied in combination or individually.

Applying color to text
The color of text can be changed by specifying the color property to the CSS element. CSS3
accepts the color value in any of the following three methods.

■■ Hexadecimal value: Specify the color as a hexadecimal value, for example as #00FF00
to display the text in green. The first two digits (base 16) are the value for Red, the
second two digits are the value for Green, and the last two digits are the value for Blue.
This is commonly referred to as the RGB code.

■■ Color name: Use a word to specify the color value, such as green to display the text in
green.

■■ RGB function: Specify the color value using the RGB function, which takes three
parameters, each representing a color spectrum bit value from 0 to 255. For example,
rgb(0,255,0) specifies green as the text color.

The following code demonstrates each method in use.

<style>
 h1{
 color:#00FF00;
 }
 h2 {
 color: green;
 }
 h3{
 color: rgb(0,255,0);
 }
</style>

The output in Figure 4-1 shows the result of applying these styles to a page.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Style HTML text properties	 CHAPTER 4	 237

FIGURE 4-1  Specifying the color of text using CSS

With this code, each of the h1 through h3 headers have a CSS style applied to change the
color to green, each using a different method. Using the hexadecimal or RGB method gives
you more granular control over the color then using the color name as was done on the <h2>
element. There are just far more colors that exist then could be named. The hexadecimal and
RGB methods allow you to access the full range of colors.

NOTE  DEFAULT STYLES

In Figure 4-1, you see that even though all three text items are set to pure green, one is
darker than the others. It is important to know that some elements, such as the various
header elements, have default styles already applied to them. In this case, the style for the
element defaults to a bolder type.

Applying bold to text
CSS also provides access to other properties of the text display via the font object. The font
object provides the ability to make text bold or italic . The following code demonstrates
changing the text to bold for all <p> elements:

p {
 font-weight: bold;
}

The above styles produce the output shown in Figure 4-2.

FIGURE 4-2  Displaying the bold style applied to the text

The font-weight CSS property accepts the following values to specify how bold you would
like the text to be: lighter, normal, bold, and bolder. In addition, the numeric values 100
(lighter) to 900 (darker) are supported. The values increase by 100, providing nine values in
total to control the weight of the text.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	238	 CHAPTER 4	 Use CSS3 in applications

Applying italic style to text
Through the font object, you can also make specific text italic. This is done by specifying the
font-style for the text. The following code demonstrates applying the italic style to all <p>
elements on the webpage:

p{
 font-style:italic;
}

Applying the italic style to a text element produces the output shown in Figure 4-3.

FIGURE 4-3  The italic style applied to a text element.

Apply styles to text font
The font CSS object contains other properties to allow you to control how text is rendered on
your pages. You can change the font typeface and control the size of the text. You can control
the font typeface in a few different ways. The first method is to simply rely on the fonts that
are installed on the system rendering the webpage. This is achieved using the font-family as
shown in the following code:

p{
 font-family:Arial,'Times New Roman',Webdings;
}

This CSS code renders the fonts in order from left to right until it finds one that is available
on the client computer. If the font name contains spaces, it must be contained within quotes.
If none of the specified fonts are available, the text falls back to the browser’s default font.
In the previous example, the client looks first for the Arial font. If that is not installed, it then
looks for the Times New Roman font, and so on. This is a simple approach, but many people
prefer to use fonts that are not available on the system. There are many custom fonts avail-
able on the Internet for inclusion in your web applications. These fonts are known as WOFF
(Web Open Font Format). To use these fonts in your webpage, you define a font family using
the special keyword @font-face.

EXAM TIP

Be aware that certain font types will work in some browsers but not others. It is important
to declare each font type by using @font-face so that the browser has access to the one it
needs.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Style HTML text properties	 CHAPTER 4	 239

The following code defines a @font-face for a webpage and implements it for the <p>
elements of the page:

 @font-face {
 font-family: "My Nicer Font";
 src: url('fonts/my_woff_font.eot');
 src: url('fonts/my_woff_font.woff');
 }
 p {
 font-family: 'My Nicer Font';
 }

First, you add the @font-face keyword to the page, then you give it a name by specifying
the font-family property. Next, you specify where the font can be loaded from. This could be
from the local web server if you downloaded the fonts to it or from an Internet source. In the
previous declaration, both eot and woff types are specified.

After you have decided on a font for your web application, you might decide to resize the
text for different scenarios as you see fit. Of course, the <h1> through <h6> elements pro-
vide some default formatting, but you would not want to use those elements throughout a
website to control the size of the text. Instead you can use the font-size property. The font-size
property accepts relative values that when rendered are relative to the default text size in
the browser. The available values are: xx-small, x-small, small, smaller, medium, larger, large,
x-large, xx-large. The following code demonstrates setting the font-size for the <p> elements:

p{
 font-size: x-large;
 }

The application of the size attribute to the font results in the text rendering as shown in
Figure 4-4.The first line of text shows the default size while the bigger text shows the x-large
size.

FIGURE 4-4  The size of the text increases through the use of the font-size attribute

Applying styles to text alignment, spacing, and indentation
CSS3 can also be used to alter text alignment, spacing, and indentation. This provides great
control over positioning text within parent containers.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	240	 CHAPTER 4	 Use CSS3 in applications

Text alignment
To control the alignment of text within a container, you specify the text-align attribute. The
text-align attribute supports the values outlined in Table 4-1.

TABLE 4-1  Supported values for text-align

Value Description

right Aligns text to the right side of the parent container

left Aligns text to the left side of the parent container

center Aligns text to the horizontal center of the parent container

justify Stretches text horizontally to fill the full width of the parent container

The following code sample demonstrates the use of the text-align attribute, and Figure 4-5
displays the results within the boundaries of a defined div element.

p {
 text-align: center;
}

FIGURE 4-5  The text-align attribute used to position text in the center of a div element

Text indentation
Text indentation is configured using the text-indent attribute. The text-indent attribute
accepts an integer value to indicate how much to indent. The following code sample
illustrates how to indent the text from the left border of the parent div element. Figure 4-6
shows the results of this code.

p {
 text-indent: 50px;
}

FIGURE 4-6  Text indented using the text-indent attribute

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Style HTML text properties	 CHAPTER 4	 241

Text spacing
There are two ways to control the spacing of text. This can be done by specifying the spacing
between each character in the text or by specifying the spacing between each word in the
text. The following CSS code demonstrates both examples. Figure 4-7 shows the output of
this code.

p {
 letter-spacing: 8px;
}
p {
 word-spacing: 8px;
}

FIGURE 4-7  Letter and word spacing using CSS3

Applying styles to text hyphenation
Applying styles to text hyphenation allows you to control how a sentence or word wraps or
breaks at the end of the line. The hyphen attribute can be specified to control this behavior.
The values available for the hyphen attribute are defined in Table 4-2.

TABLE 4-2  Values available for the hyphen attribute

Value Description

none Words will not break with a hyphen and the sentence will only break on whitespace.

Auto Words will break based on a predefined algorithm.

Manual Words will break based on specified hints in the words indicating an appropriate space for the
break. This is done using the ­ notation within the text.

The following code demonstrates using the none value, and the results are shown in
Figure 4-8.

div {
 hyphens: none;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	242	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-8  The results of specifying none for the hyphen attribute

In Figure 4-8, the browser is not hyphenating any of the text and is letting it overflow
beyond the boundaries of the container. To force hyphenation, specify auto for the value of
the hyphen attribute. The output of this change is shown in Figure 4-9.

FIGURE 4-9  The results of specifying auto for the hyphen attribute

When auto is specified, the browser calculates where to hyphenate the words based on
its own rules so that the text does not go outside the bounds of the container. The manual
option behaves much the same way except that you can specify an external rule set to use
and also supply hints by using the ­ (soft hyphen) notation.

Applying styles for a text drop shadow
You’ll find information about applying styles for a text drop shadow in the next section. Mi-
crosoft uses the phrase “text drop shadow” but you’ll note that it has been shortened to “text
shadow” in this book.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.1: Style HTML text properties	 CHAPTER 4	 243

Thought experiment
Altering styles

In this thought experiment, apply what you’ve learned about this objective. You can
find an answer to this question in the “Answers” section at the end of this chapter.

CSS provides the ability to make websites look great. In some cases, you may want
to alter the styles based on user input or actions. How would you alter the styles of
your page in this fashion?

Objective summary
■■ CSS3 provides the ability to style the appearance of text in the following ways:

■■ Changing the color with the color property

■■ Changing the text to bold with the font-weight property

■■ Changing the text to italics with the font-style property

■■ Changing the font type with the font-family property

■■ Changing the size of the text with the font-size property

■■ CSS3 provides the ability to style the alignment of text with the text-align property.

■■ CSS3 provides the ability to alter text indentation with the text-indent property.

■■ CSS3 provides the ability to alter the spacing between letters and the spacing between
words with the letter-spacing and word-spacing properties.

■■ CSS3 allows you to control how text hyphenates when the text needs to wrap within
the boundaries of its container.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following CSS would not change the appearance of text?

A.	 font-style: italic;

B.	 font-weight: heavy;

C.	 font: bolder 12px arial;

D.	 color: green;

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	244	 CHAPTER 4	 Use CSS3 in applications

2.	 Which of the following aligns text to the full width of the available box?

A.	 right

B.	 full

C.	 center

D.	 justify

3.	 Which of the following is a way to configure the amount of space between words?

A.	 word-margin

B.	 letter-margin

C.	 word-spacing

D.	 word-padding

Objective 4.2: Style HTML box properties

Every HTML element has box properties. These are the properties that control how the
element is spaced on the page and control the position of the box contents. In addi-
tion, the graphic effects can be applied to the box of an element.

This objective covers how to:
■■ Apply styles to alter appearance attributes

■■ Apply styles to alter graphic effects

■■ Apply styles to establish and change an element’s position

Applying styles to alter appearance attributes
There are a variety of ways to alter the appearance of a box as it applies to an HTML element.
This section demonstrates how to alter the appearance by changing the attributes related to
size, bordering, outlining, padding, and margin.

Altering the size
The size of any element is controlled by its height and width properties. These can be set on
any object or class in CSS. By default, an object will size itself to be able to display its contents.
So, a div element with some text inside it will have a width and height that is sufficient to
display the text. The size can be changed by setting a value for the width and/or height. The
width and height can be specified as a measurement in pixels (px) or centimeters (cm) or
can be specified as a percentage of its parent element. For example, the following code will
set the width of a table to be 50 percent of its parent container, which in this case is just the
window object.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 245

table {
 height: 50%;
 width: 50%;
}

In another example, the size of a <div> element can be set to a specific value as in this
case:

div {
 width: 200px;
 height: 100px;
}

Bordering
CSS provides very granular control over the styles of the borders of any HTML element. The
name of the root CSS property to do this is the border property. With the use of the border
property, you can control the style, spacing, color, and width of the border.

The first thing that you need to set on the border is the style. This will essentially bring
the border into existence. There are a variety of border styles that exists. These include, solid
border, dashed border, dotted line border, grooved line border, and so on. The border is set
by specifying the border-style property:

p {
 border-style: solid;
}

The color of the border can be changed by specifying the border-color property. This is
demonstrated with the following code:

p {
 border-style: solid;
 border-color: black;
}

All the <p> elements will now be displayed with a solid black border. This is demonstrated
in Figure 4-10.

FIGURE 4-10  A <p> element with border properties set

NOTE  SETTING BORDER-STYLE

Note that the border needs to exist before it can have any visible changes done to it. This is
why in the above example, the border-style is set first.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	246	 CHAPTER 4	 Use CSS3 in applications

Border-spacing is used to set the amount of space desired between adjacent elements. The
following CSS will provide 250 px border spacing to all paragraph elements on the page:

p {
 border-style: solid ;
 border-color: black;
 border-spacing: 250px;
}

Another border property that can be controlled with CSS is the border’s width. The
border-width is a property that is set using a fixed measurement, in pixels for example. The
following code sets the width of the border to 5 px:

p {
 border-style: solid ;
 border-color: black;
 border-spacing: 250px;
 border-width: 5px;
}

Figure 4-11 demonstrates the new width set on the paragraph element.

FIGURE 4-11  A thicker width on the border of the paragraph element set by the border-width property

So far, you have been setting each of the properties of the border as individual lines in the
style sheet. The border CSS property supports a shorthand technique where you can specify
the key properties in a single line. The following code demonstrates this concept:

p {

 border: 5px solid black;
}

In this case, the border is set to a 5-px width with a solid line and the color black.

EXAM TIP

The border element supports many variants in its ability to set properties in a single line.
Take some time to experiment with all the possible combinations so you will be able to
read them and identify them easily on the exam.

In addition to being able to set all the properties discussed so far in a single line, the
border element allows even more granular control. The properties discussed can also be set to

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 247

different values specific to each side of the box. For example, the following code produces the
output shown in Figure 4-12:

p {
 border-top: 15px solid black;
 border-left: 10px solid black;
 border-right: 10px solid black;
 border-bottom: 5px solid black;
}

FIGURE 4-12  Different border properties for each side of the box

Padding and margin
Padding and margin are additional methods to create space around an HTML element. In
essence, there are three layers around an HTML element. As you look from the inside to
the outside of the element there is the padding, the border, and the margin. If you take a
look again at the sample in Figure 4-12, the text is squished quite close to the border. The
border width has been set, but the padding (the space between the text and the border)
has its default value of 0 px. In order to create space between the text and the border, you
must increase the padding as shown in the following code sample. The results are shown in
Figure 4-13.

p {
 border-top: 15px solid black;
 border-left: 10px solid black;
 border-right: 10px solid black;
 border-bottom: 5px solid black;
 padding: 25px;
}

FIGURE 4-13  The use of padding to create space between text and a border

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	248	 CHAPTER 4	 Use CSS3 in applications

In this code, the padding is set to 25 px. With only a single value specified, it is assumed
that this value is applied to all four sides of the box. However, the padding can be specified as
different values for all four sides. The above code is in effect the same as saying:

padding: 25px 25px 25px 25px;

or

padding-top: 25px;
padding-bottom: 25px;
padding-left: 25px;
padding-right: 25px;

The next area where you can create spacing for your HTML elements is in the margin.
The margin is the space between the border of your element and the surrounding elements.
The browser provides a default margin based on the HTML element that is used. Figure
4-14 shows the default margin for the paragraph element. Figure 4-15 shows the effect of
increasing the size of the margin. The margin can be controlled in exactly the same ways as
the padding. You can specify a single value to be applied equally to all four sides, specify
individual values in a single line, or specify each side of the box individually. The following
code demonstrates increasing the margin of the paragraph element and the results are shown
in Figure 4-15:

p {
 border-top: 15px solid black;
 border-left: 10px solid black;
 border-right: 10px solid black;
 border-bottom: 5px solid black;
 padding-top: 25px;
 padding-bottom: 25px;
 padding-left: 25px;
 padding-right: 25px;
 margin: 40px;
}

FIGURE 4-14  The layout of two paragraphs with their default margins

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 249

FIGURE 4-15  The layout of two paragraphs with margins enlarged

You can see in Figure 4-15 that not only did the margin create space between the two
paragraph elements, but it also created space between the top of the window and the top of
the first paragraph element.

Applying styles to alter graphic effects
There are a variety of options in applying graphic effects to a box to provide a unique display
to end users. This section demonstrates setting transparency, opacity, a background image,
gradients, shadows, and clipping.

Applying transparency/opacity
Setting the opacity (also known as transparency) of an element in CSS provides the ability
to make the element effectively see through. The value used in setting the opacity is a ratio
from 0 to 1.0. A setting of 0 indicates that the element is fully transparent, essentially invisible.
A value of 1.0 indicates that the element is fully opaque, the default when no opacity value is
specified. The following code sets an opacity level of 0.4 to a text element:

p {
 opacity: 0.4;
}

Figure 4-16 demonstrates the output of applying this effect to the text element. The
output without the opacity specified is also provided for a comparison.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	250	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-16  The use of the opacity property

Applying a background image
Any HTML element can also contain a background image. This is achieved by specifying
the background-image property. The background property itself has many other options to
control its size and repeating pattern. However, to simply set a background image, you need
only specify the image to the backround-image property. The following code demonstrates
the use of this property to assign a background image:

p {
 background-image: url('orange.jpg');
 color: white;
}

Figure 4-17 shows the output of this code. The text color is changed to white to make it
more visible over the image. Table 4-3 explains more of the options available for formatting
the background image.

FIGURE 4-17  A background image on a text element

TABLE 4-3  Configuration options for the background image

Property Description

size Changes the dimensions of the image

repeat Specifies whether the image should be repeated/tiled through the available
space of the box

clip Specifies whether the image should be clipped at a border

position-x/position-y Specifies the origin position of the image within the box

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 251

All the properties are prefixed with the token background-.The following example
demonstrates using the repeat property and the size property. It specifies that the image
should be smaller and repeat. This example specifies to repeat continuously, both horizontally
and vertically. However, you can specify repeat-x or repeat-y to repeat only in the specified
direction.

p {
 background-image: url('orange.jpg');
 background-size: 20px;
 background-repeat: repeat;
 width: 200px;
 height: 200px;
 text-align: center;
 color: white;
}

This previous code produces the output in Figure 4-18.

FIGURE 4-18  The use of the size and repeat properties for a background image

Applying gradients
A gradient effect changes the color of an object gradually from one spectrum to another.
There are two types of gradient effects supported. The first is a linear gradient where the
color changes in a line across the object in any direction. The other gradient is a radial
gradient where the color starts in the center and changes toward the outer edges. The
gradient can be applied to the background of the element in the following way:

background:linear-gradient(black,gray);

The linear-gradient function takes a few parameters. The parameters are outlined in
Table 4-4.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	252	 CHAPTER 4	 Use CSS3 in applications

TABLE 4-4  Parameters for the linear-gradient function

Parameter description

Direction Specify the direction of the gradient as to right or to left. This parameter is optional and
the default when blank is an up/down gradient effect. A diagonal effect can also be
applied by specifying to bottom right or to bottom left. You may also specify an angle, as
in 100deg.

Color stop…n The second and subsequent parameters is the color to start with followed by the
transitional colors known as the color stops. This tells the browser what color to start with
and transition into with the gradient effect.

Applying a shadow effect
Shadow effects allow you to apply a shadow to your HTML element’s box or to the text.
There are two CSS3 properties to control the shadow effect: box-shadow and text-shadow.
The box-shadow controls the shadow effect surrounding the box of the HTML element. The
text-shadow property controls the shadow of text.

The box-shadow property supports the parameters outlined in Table 4-5. The first two
parameters are required to create the shadow effect. The blur and spread parameters are
optional effects that can be applied to the box-shadow.

TABLE 4-5  Parameters for the box-shadow property

Parameter Description

h-shadow Specifies the position of the horizontal shadow. The value can also be a negative number.

v-shadow Specifies the position of the vertical shadow. The value can also be a negative number.

blur Specifies the distance of the blur effect. This parameter is optional and defaults to 0.

spread Specifies the size of the shadow.

color Specifies the color of the shadow.

inset Specifies that the shadow should be inside the box instead of outside the box.

In its simplest form, the box-shadow property requires only that h-shadow and v-shadow
are specified. The following code shows a basic shadow applied to a div element:

div{
 position: absolute;
 left: 50px;top: 50px;
 width: 100px;
 height: 100px;
 border: solid 1px black;
 box-shadow: 10px 10px;
 }

The div element is rendered with a shadow as shown in Figure 4-19.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 253

FIGURE 4-19  A simple box-shadow effect

The shadow effect in Figure 4-19 is a solid box shadow. To provide an effect where the
shadow fades out gradually, you will need to specify the blur parameter. By adding the blur
parameter, you can create the effect shown in Figure 4-20. The following code adds the blur
parameter:

div{
 position: absolute;
 left: 50px;top: 50px;
 width: 100px;
 height: 100px;
 border: solid 1px black;
 box-shadow: 10px 10px 10px;
 }

FIGURE 4-20  A box-shadow effect with the addition of a blur

The next parameter that adds a special effect to the shadow is the spread parameter. This
parameter specifies the size of the shadow. The following code specifies a spread value to
increase the size of the shadow:

div{
 position: absolute;
 left: 50px;top: 50px;
 width: 100px;
 height: 100px;
 border: solid 1px black;
 box-shadow: 10px 10px 10px 20px;
 }

This code produces the output in Figure 4-21.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	254	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-21  A box-shadow effect with addition of the spread parameter to increase the shadow’s size.

Figure 4-21 shows the output of the previous code with the addition of the spread
parameter. The spread parameter specifies the size of the shadow. In the context of real-world
objects and their shadows, the spread is like indicating how close a light source is to an
object. The closer the light source, the larger the shadow it produces. The spread parameter
can be used to elicit this type of effect on the HTML element. In Figure 4-21, the shadow was
intentionally created to be larger than the HTML box itself. This was done to demonstrate
an additional concept of the shadow effects. The shadow itself is a full-size box. In this case,
the shadow was made to be larger than the original box so it is visible around all four sides
of the box. Normally, for a box where the spread is not specified to be larger, the shadow is only
visible on the two axes specified by the first two parameters. This is because the shadow box is
offset from center of the HTML element it is shadowing. The rest of the shadow is still behind
the HTML element being shadowed. You can demonstrate this by setting the position of the
shadow to be completely away from the HTML element. This is achieved by specifying the
position to be a greater number value then the size of the HTML element. The following code
demonstrates this:

div{
 position: absolute;
 left: 50px;top: 50px;
 width: 100px;
 height: 100px;
 border: solid 1px black;
 box-shadow: 100px 100px 10px;
 }

In this code, the position of the box shadow is set to be 100 px along the horizontal axis
and 100 px along the vertical axis, which will place the shadow to the bottom right corner of
the div element, as shown in Figure 4-22.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 255

FIGURE 4-22  The entire shadow of an element displayed by specifying the position to be greater then the
size of the HTML element

Another parameter for the box-shadow is the inset parameter. If omitted, this parameter
creates the shadow on the outside of the box. If inset is specified, the shadow is then created
on the inside of the box. This is demonstrated in the following code:

div{
 position: absolute;
 left: 50px;top: 50px;
 width: 100px;
 height: 100px;
 border: solid 1px black;
 box-shadow: 10px 10px inset;
 }

This code produces the output shown in Figure 4-23. The shadow is now displayed on the
inside of the box instead of the outside of the box.

FIGURE 4-23  The use of the inset parameter to place the shadow on the inside of the box

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	256	 CHAPTER 4	 Use CSS3 in applications

The color property accepts values as a hex code, rgb(), or literal color. This property
changes the color of the shadow. Since the book is printed in black and white, demonstrating
the use of this parameter will not present well. So, in your own code, change the color of the
shadow to see what effect it has—the color should change.

NOTE  UNDERSTANDING H-SHADOW AND V-SHADOW PARAMETERS

h-shadow and v-shadow parameters can accept negative values. To place the shadow on
the left side of the box instead of the right, specify a negative value for the h-shadow. To
place the shadow on top of the box instead of the bottom, specify a negative value for the
v-shadow parameter.

Text shadows can be created in the same way as box shadows. The CSS property to apply
a shadow to text is called text-shadow. The text-shadow property has parameters similar to
those of the box-shadow property. The parameters are described in Table 4-6.

TABLE 4-6  Text-shadow parameters

Parameter Description

h-shadow Specifies the position of the shadow along the horizontal axis. This value accepts nega-
tive numbers.

v-shadow Specifies the position of the shadow along the vertical axis. This value accepts negative
numbers.

blur Specifies the distance of the blur effect. This parameter is optional and defaults to 0.

color Specifies the color of the shadow.

All of the text-shadow parameters are familiar. They all have the same effect as their
counterparts in the box-shadow element. The following code demonstrates applying a
shadow effect to text on an HTML page:

p {
 position: absolute;
 left: 250px;
 top: 250px;
 text-shadow: -10px -10px;
}

In this example, negative numbers are supplied to the h-shadow and v-shadow parameters
in order to place the shadow to the top left of the text. The output of this code is shown in
Figure 4-24.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 257

FIGURE 4-24  A text-shadow on a paragraph HTML element

Applying clipping
The clip property allows you to specify what portion of an element is visible. The clip property
takes only one parameter, the shape to clip to. Currently, the only shape supported is a
rectangle, so the only parameter value that will yield any results is the rect() function. For
example, the following code is the valid syntax to specify a clip property:

img{
 position: absolute;
 clip: rect(25px, 50px, 50px, 25px);
}

In the above code sample, the clip region is set to be a rectangle. The first two parameters
of the rect function build the coordinates for what part of the image will be clipped. The
parameters run in clockwise order as top, right, bottom, and left sides of the rectangle. In
addition, all measurements are taken from the left of the top edge of the source box being
clipped. So, in the above code sample, a region of the image is defined as 25 px from the top
to form the top edge of the clipped region, 50 px from the left to form the right edge of the
clipped region, 50 px from the top to form the bottom edge of the clipped region, and 25 px
from the left to form the right edge of the clipped region. This essentially creates a rectangle
starting from the point (25px, 25px) and with a height and width of 25px. Figure 4-25 shows
an image before and after being clipped with these values.

FIGURE 4-25  The image on the left is the full image of a floral arrangement. The image on the right is a
clipped version of the same image.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	258	 CHAPTER 4	 Use CSS3 in applications

In Figure 2-25, you can see the full image on the left. On the right, the image is clipped.
Only the section of the source image as specified in the rect function assigned to the clip
property is visible. The following is the full code:

<html>
<head>
 <style>
 .clipper{
 position: fixed;
 left: 325px;
 clip: rect(25px, 100px, 100px, 25px);
 }
 </style>
</head>
<body>

</body>
</html>

NOTE  UNDERSTANDING THE CLIP PROPERTY

The clip property works only on elements whose position is set as fixed or absolute.

Apply styles to establish and change an element’s position
The browser provides a coordinate system for how to lay out elements on a page. The default
behavior is essentially a layout where the elements, without any other position attributes
specified, will simply lay out on the page in a default flow. In this context, the base coordinate
is the top left corner of the window which can be understood as (x,y) coordinate (0,0). This is
called static layout. CSS provides some mechanisms where you can override the default layout
of the page. This is achieved by specifying the desired position behavior with the position
property. Once the position property is set, other CSS properties such as top, left, bottom, or
right are set. In a static layout, the elements will not respond to the top, left, bottom, or right
properties. The positioning type must be specified.

EXAM TIP

For the exam, be sure you understand that each HTML element is a box and each box be-
gins its own new coordinate system. If you place a div element on the page at (50px,50px),
any elements placed inside it are not placed at a coordinate starting at (50px, 50px) just
because that is where the div element is. The child elements inside the div start at coor-
dinate (0,0), which is the top left corner of the div itself. All child elements are positioned
relative to the container in which they are placed.

The position property allows you to specify one of three different options: fixed, relative,
or absolute. With fixed positioning, elements are placed relative to the browser window. With

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 259

relative positioning, elements are positioned relative to their position in normal flow. With
absolute positioning, the element is positioned relative to its first parent element. You will
start with an image placed on a page inside a div element. Figure 4-26 shows this element in
static flow.

FIGURE 4-26 An image at its default position inside a div element

EXAM TIP

The left and right properties start their measurements from the outer-most edge of the
box. For the exam, keep in mind that if there are margins or padding specified, this will
influence the position of the object as well.

By applying the following style to the image, you are able to reposition the image inside
the div element. The output of this is shown in Figure 4-27.

img {
 position: fixed;
 left: 25px;
 top: 25px;
}

FIGURE 4-27  An image repositioned by setting the top and left CSS properties

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	260	 CHAPTER 4	 Use CSS3 in applications

Using relative positioning, you can adjust the layout of elements relative to where they
would be in the normal static flow. To demonstrate this, you will copy the image element
many times to show the flower picture many times inside the div. This is shown in static flow in
Figure 4-28.

FIGURE 4-28  An image duplicated in static flow

Now, you will move all the images to the left by 25 px. This will be done by specifying
relative positioning and -25 px for the left property. As this demonstrates, you can specify
negative numbers for the left or top properties. Figure 4-29 shows the output of the following
code:

img:nth-child(1n+0) {
 position: relative;
 left: -25px;
 top: 25px;
}

FIGURE 4-29  The use of the left property with relative positioning

As shown in Figure 4-29, all image elements have moved to the left by 25 px. Using relative
positioning, you can actually make your HTML elements overlap. While the above code moves
all the images over by 25 px, if you were to modify the code such that each element was
moved proportionately more to make them overlap, you can create some nice effects. Recall
that the elements are moved based on where they would have been in normal flow. Since
the images at center are 100 px from each other, you will need to move the second image,
third, and further image by the same amount as its neighbor moved, plus the amount of the
desired overlap. The following code shows this:

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 261

img:nth-child(2) {
 position: relative;
 left: -25px;
}
img:nth-child(3) {
 position: relative;
 left: -50px;
}
img:nth-child(4) {
 position: relative;
 left: -75px;
}

This code produces the output in Figure 4-30. Each element after the first is moved over
enough so that it overlaps its left-side neighbor by 25 px. Notice that the left property value
is incrementally larger to account for the fact that its neighbor has moved as well.

FIGURE 4-30  The use of relative positioning to overlap images

Using absolute positioning allows you to specify the location of an element such that it is
removed from the normal flow of the page. That is to say that the rest of the page flows as
if this element does not exist. The element can be considered to be hovering over or under
the content that is in the normal flow of the page. With this approach, it is also possible to
overlap elements.

EXAM TIP

When overlapping elements using absolute positioning, CSS provides a z-index property.
This allows you to specify in what order the elements should stack on the page along the
z-axis (the third dimension!).

The following code demonstrates using absolute positioning of an image over a block of
text. The text underneath the image renders in its normal flow. The image does not impact
anything in the normal flow of the document. The output of this code is shown in Figure 4-31.

img {
 position: absolute;
 left: 215px;
 top: 100px;
 height: 50px;
 width:50px;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	262	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-31  The use of absolute positioning to overlap an image over the normal flow

The final property available to use for positioning elements is the float property. The float
property automatically moves an element to the left or right of surrounding content. This is
most commonly used to place images in line with text to force the text to wrap around the
image. Building on the sample above, you will move the img element in line with the text as
shown here:

<p style="width: 200px;margin-left: 200px;">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed
diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper
suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure
dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu
feugiat nulla facilisis at vero eros et accumsan et iusto odio...</p>

In this paragraph element, there are two images in line with the text. An image put in this
way will push the text out of the way to make room for itself. This is shown in Figure 4-32.

FIGURE 4-32  Images embedded in line with the text in normal flow

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 263

The float property allows you to specify how you want the element to lay out amongst
the other elements around it. You can specify to float: left or to float: right. This will move
the image element to the left or the right, respectively, and allow the text to flow around it
smoothly. The following code demonstrates how to specify this:

img.flower {
 float: left;
 left: 215px;
 top: 100px;
 height: 50px;
 width: 50px;
}
img.orange {
 float: right;
 left: 215px;
 top: 100px;
 height: 50px;
 width: 50px;
}

The output of the above code is shown in Figure 4-33.

FIGURE 4-33  Images in line with text with their float properties specified

Now, with the float property specified, the text is flowing smoothly around the images.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	264	 CHAPTER 4	 Use CSS3 in applications

Thought experiment
Creating a moving HTML element

In this thought experiment, apply what you’ve learned about this objective. You can
find an answer to this question in the “Answers” section at the end of this chapter.

Create the styles and scripts to make an HTML object move across the page. This is
seen in many webpages today with banner or ticker controls that display informa-
tion moving across the screen. Using what you know about setting and changing
the position of an object with CSS, create a moving HTML element.

Objective summary
■■ Every HTML element is a box and has the properties of a box such as height and width.

■■ CSS3 allows you to change the size of a box by specifying a new height and width.

■■ CSS3 allows you to style box properties in the following ways:

■■ The border-style property allows you to specify a solid or dashed line for the border.

■■ The border-color property allows you to specify the color of the border.

■■ The border-spacing property allows you to specify the amount of space between
adjacent elements.

■■ The border-width property allows you to specify a thickness for the border.

■■ Each side of the box can by styled differently.

■■ CSS3 provides a way to define the padding and margin that a box should have relative
to adjacent elements. This can be configured differently for each side of the box.

■■ An element can be made transparent or partially transparent by setting the opacity
property.

■■ An element can contain a background image by setting its background-image
property.

■■ CSS3 provides the ability to create shadow effects by specifying the box-shadow
property.

■■ CSS3 provides the ability to clip images using the clip property to show only a portion
of an image.

■■ CSS3 can be used to establish an element’s position as either fixed, absolute, or
relative.

■■ The left and top CSS properties can be used to alter an element’s position.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.2: Style HTML box properties	 CHAPTER 4	 265

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following is not a valid way to alter the size of an element?

A.	 div{height: 50px; width: 50%;}

B.	 div{height: 50px; width: 50px;}

C.	 div{height: 50cm; width: 50px;

D.	 div{height: 50ft; width: 50ft;}

2.	 Which of the following will successfully style the border of a div element?

A.	 border-top: 5px dotted blue;
border-right: 5px solid green;
border-left: 3px dashed red;
border-bottom: 10px double black;

B.	 border-sides: 5px solid green;

C.	 border-all: 1px solid black;

D.	 border: full red;

3.	 When looking from the outside edge of an HTML element and moving to the inside
edge, what order does the padding, margin, and border occur in?

A.	 padding, border, margin

B.	 margin, border, padding

C.	 border, padding, margin

D.	 margin, padding, border

4.	 Which of the following statements will apply a box shadow to the right and bottom
edge of a div element?

A.	 box-shadow: gray 5px 5px;

B.	 box-shadow: gray -5px 5px;

C.	 box-shadow: gray 5px -5px;

D.	 box-shadow: gray -5px -5px;

5.	 Which of the following will place an element relative to the browser window?

A.	 absolute

B.	 fixed

C.	 relative

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	266	 CHAPTER 4	 Use CSS3 in applications

Objective 4.3: Create a flexible content layout

Organizing content on the page has always been a challenge in webpage design. The con-
cept of design patterns to separate layout from content/logic has existed for a long time in
other development spaces. However, it has been less readily and easily available in the HTML
space. CSS3 introduces new concepts such as the grid layout and flexbox layout that provide
mechanisms to achieve this proper separation.

This objective covers how to:
■■ Implement a layout using a flexible box model

■■ Implement a layout using multi-column

■■ Implement a layout using position, floating, and exclusions

■■ Implement a layout using grid alignment

■■ Implement a layout using regions, grouping, and nesting

Implement a layout using a flexible box model
The flexbox is a CSS3 construct that provides a way to lay out elements that flow. Flow means
that the elements will flow from either left to right, also known as horizontal, or up and
down, also known as vertical. In order to begin with a flexbox, you need to create a container
element and give it a name. Use a <div> element and name it as shown in this code:

<div id="flexbox1">
</div>

With this code block, you have the beginnings of a flexbox. All that is left to do is to create
the CSS to indicate that the container is indeed a flexbox. The following CSS achieves this:

#flexbox1 {
 display: flexbox;
 border: 1px solid black;
 margin-top: 100px;
 min-height: 15px;
 }

With that HTML and CSS in place, you can run the page and see a container specified to
have a flexbox layout. The output is shown in Figure 4-34.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 267

FIGURE 4-34  A div element set up as a flexbox

All the elements within a flexbox are called flexbox items. You can specify that the flexbox
layout runs horizontally or vertically. You will need to be familiar with some of the key styles
that can be applied to a flexbox and how the browser will interpret them. Table 4-7 outlines
the important styles related to the flow of the child elements.

TABLE 4-7  CSS styles available for a flexible box

Style Option Description

flex-direction Column Flows the child elements of the flexbox across the vertical
axis top to bottom.

row (default) Flows the child elements of the flexbox along the
horizontal axis left to right.

column-reverse Renders the child elements along the vertical axis from the
reverse end bottom to top.

row-reverse Renders the child elements along the horizontal axis from
the reverse end right to left.

flex-pack End Renders the child elements from the end in relation to the
layout axis set direction.

Start Renders the child elements from the start in relation to the
layout axis set direction.

center Renders the child elements centered on the layout axis.

distribute Evenly spaces the child elements along the layout axis.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	268	 CHAPTER 4	 Use CSS3 in applications

EXAM TIP

The flexbox is oriented based on the flex direction. The flex direction is based on the layout
axis. If the layout of the flexbox is column, the layout axis is vertical. If the flexbox layout is
row, the layout axis is horizontal. For the exam, this is important to understand in order to
know how other properties on the flex grid will be rendered.

Now add some child elements to your flexbox layout:

<div id="flexbox1">
 <div></div>
 <div></div>
 <div></div>
 </div>

Just adding empty <div> elements will not be enough to show content. You also need to
add some styles so that the flexbox layout will show your child elements. Here are the styles
to add:

 #flexbox1 > div {
 min-width: 80px;
 min-height: 80px;
 border: 1px solid black;
 margin: 5px;
 }
 #flexbox1 > div:nth-child(1) {
 background-color: green;
 }
 #flexbox1 > div:nth-child(2) {
 background-color: yellow;
 }
 #flexbox1 > div:nth-child(3) {
 background-color: red;
 }

This code produces the output in Figure 4-35.

FIGURE 4-35  A flexbox with content elements set up

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 269

The default flow inside the flexbox is to display the elements left to right starting from the
left edge. You can experiment with manipulating the properties to display the colored boxes
in a different order. For example, what if you wanted to display the boxes in the same spot on
the layout axis, but in reverse order? You could do something like this:

#flexbox1 {
 display: flexbox;
 flex-direction:row-reverse;
 border: 1px solid black;
 margin-top: 100px;
 min-height: 15px;
 }

The output from this code is shown in Figure 4-36.

FIGURE 4-36  Flexbox content in reverse order along the same axis

Here you have changed the direction to row-reverse. This changes the order of the boxes.
When you run this, you see that it has not only reversed the order of the boxes, but also
moved them to the right end. This is because the flex direction controls what is considered
the origin points on the layout axis. By reversing the direction, you have indicated that the
layout start is now at the right end and the layout end is at the left end. In order to prevent
reversing the order, you will need to specify the flex-pack property to indicate the end of the
layout axis:

#flexbox1 {
 display: flexbox;
 flex-flow:row-reverse;
 flex-pack:end;
 border: 1px solid black;
 margin-top: 100px;
 min-height: 15px;
 }

With this update, the boxes are now showing in the same order (red, yellow, green) but
aligned left as intended. The output is demonstrated in Figure 4-37.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	270	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-37  Flexbox content in the same order but aligned to the left end

There is also some additional functionality that provides the ability for each child element
to flex itself to take up the amount of space that is specified. If you wanted one box to take up
15 percent of the space, another to take up 25 percent and the last one to take up whatever
space is left without leaving in blank space between, you would implement the flex property.
The flex property is specified on each of the children elements to designate the amount of
space each should occupy.

You will first need to change the properties of the layout container to look as follows:

#flexbox1 {
 display: flexbox;
 border: 1px solid black;
 margin-top: 100px;
 min-height: 15px;
 }
#flexbox1 > div {
 min-width: 80px;
 min-height: 80px;
 border: 1px solid black;
 margin: 5px;
 }
#flexbox1 > div:nth-child(1) {
 background-color: green;
 flex: 2;
 }
#flexbox1 > div:nth-child(2) {
 background-color: yellow;
 flex: 15;
 }
#flexbox1 > div:nth-child(3){
 background-color: red;
 flex:3;
 }

In the updated CSS code, the flex property is added to each of the children elements. The
flex property takes a parameter that is a relative value. This is not a hardcoded measurement

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 271

in pixels or inches. It is relative to the value as specified among all the children elements. In
this case, the first element will hold 10 percent of the space, the last element will hold 15
percent of the space, and the middle element will hold whatever space is left. To do this, you
need to calculate the relative values that would be necessary to generate those proportions.
The rest of the calculations to render the output will be handled by the browser.

Because we are talking about percentages, it stands to reason that the entire width of
the space is 100 percent. The easy way to show this is to put into each element its respective
percentage since the relative size would be what you are looking for. To illustrate the point,
you can factor the units into something smaller by dividing by 20. This would make 10 per-
cent equal 2 parts of 100 percent and 15 percent equal 3 parts of 100 percent. The remaining
section will use 15 parts, or 75 percent of 100 percent. Figure 4-38 shows the output with
these values.

FIGURE 4-38  Distributing the flexbox content using the flex property

The order of the flexbox items can also be explicitly specified by using the order property
on the flexbox items. An example of this is listed here:

#flexbox1 > div:nth-child(1) {
 background-color: green;
 flex-order: 2;
 }
#flexbox1 > div:nth-child(2) {
 background-color: yellow;
 flex-order: 1;
 }
#flexbox1 > div:nth-child(3) {
 background-color: red;
 flex-order: 3;
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	272	 CHAPTER 4	 Use CSS3 in applications

Figure 3-39 demonstrates that the flexbox items are displayed in the order you specified
instead of the default order, which would have just been in the order the items are listed in
the HTML.

FIGURE 4-39  Explicitly setting the sequence of the flexbox items with the order property

Another property that is important to understand is the wrapping option. Just as with text
wrapping, flex-wrap provides the ability to specify what the browser should do in the event
that the content within the flexbox exceeds the available space of the flexbox itself. In this
case, you can specify that the flexbox should wrap or not wrap. An example of wrapping is
shown next. First update your flexbox to have a fixed width and then add the flexbox wrap
property:

#flexbox1 {
 display: flexbox;
 flex-flow: row;
 flex-wrap: wrap;
 border: 1px solid black;
 margin-top: 100px;
 min-height: 15px;
 width: 200px;
 }

To demonstrate the wrapping functionality, you need to add a couple more flexbox items
so that they will overflow the flexbox:

<div id="flexbox1">
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 273

Add these additional styles to set background colors for the extra flexbox items:

#flexbox1 > div:nth-child(1) {
 background-color: green;
 }
#flexbox1 > div:nth-child(2) {
 background-color: yellow;
 }
#flexbox1 > div:nth-child(3) {
 background-color: red;
 }
#flexbox1 > div:nth-child(4) {
 background-color: purple;
 }
#flexbox1 > div:nth-child(5) {
 background-color: blue;
 }

Figure 4-40 demonstrates the wrapping functionality of the flexbox.

FIGURE 4-40  Using the flex-wrap property to automatically wrap flexbox items

EXAM TIP

On the exam, you might see the shorthand version of what you have just done with
the wrapping. The flex-flow property supports specifying the wrap style as the second
parameter: flex-flow: row wrap.

Implementing a layout using multi-column
CSS3 provides the ability to create a layout using columns. This provides a look and feel to
the content like what you might see in a newspaper article where the content wraps up to
the next column. As with the other layout techniques, the multi-column technique starts with

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	274	 CHAPTER 4	 Use CSS3 in applications

specifying a container to hold the columns. In this case, an article element will be used. The
following markup is added to the page:

<html>
<head>
 <style>
 #c_lo {
 width:80%;
 height: 400px;
 border: 1px solid black;
 column-count: 5;
 column-rule-color: black;
 column-rule-style: dashed;
 column-rule-width: 2px;
 column-gap: 5px;
 }
 </style>
</head>
<body>
 <article id="c_lo">
 </article>
</body>
</html>

This HTML page contains a style block to set up the multi-column layout. The body
contains an article element that will be set up to handle the multiple columns. Some multi-
column properties are already set on the article element. Table 4-8 details the multi-column
properties.

TABLE 4-8  Multi-column properties

Property Description

column-count Specifies the number of columns

column-gap Specifies the amount of space to place between columns

column-rule-color Specifies the color of the vertical rule drawn between columns

column-rule-style Specifies the type of vertical rule to draw between columns, for example, solid or
dashed line

column-rule-width Specifies the width of the vertical rule drawn between the columns

column-rule A shorthand way to specify the color, style, and width of the vertical rule between
the columns

column-span Specifies how many columns the element should span across; possible values are a
number of columns or all; the default value is 1

column-width Specifies how wide the columns should be

Columns A shorthand method to specify the number of columns and their width

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 275

EXAM TIP

Whenever you see a property with the same name prefix as with the column-rule property,
you can know that there is a shorthand mechanism to specify the most common properties
in one line.

After reviewing Table 4-8, you now know that the article element in the previous code
block is set up to have five columns, each 5 px apart. The vertical rule between columns will
use a dashed line that is black and 2-px wide. It is common for articles to have a title. Usually
the title will span across all the columns of the article. To achieve this effect, you need to use
the column-span property on an element to indicate that it should render across multiple
columns. To achieve this, add the following code to the CSS:

<html>
<head>
 <style>
 #c_lo {
 width: 80%;
 height: 400px;
 border: 1px solid black;
 column-count: 5;
 column-rule-color: black;
 column-rule-style: dashed;
 column-rule-width: 2px;
 column-gap: 5px;
 }
 hgroup {
 column-span: all;
 text-align:center;
 }
</style>
</head>
<body>
 <article id="c_lo">
 <hgroup>
 <h1>My Blog Article</h1>
 </hgroup>
 <p>
 …
 </p>
 </article>
</body>
</html>

You have added an hgroup element, added style elements to specify that the hgroup text
should be centered, and specified the all value for the column-span property.

This markup produces the output shown in Figure 4-41.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	276	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-41  Using the multi-column layout technique to display text in an article format

Implementing a layout using position, floating, and
exclusions
Using position and float to position elements was discussed in the Objective 4.3 section titled,
“Apply styles to establish and change an element’s position.” In this section, you will examine
how these can be used in overall layout. Float is a mechanism by which the surrounding
content will flow smoothly around the element with its float property specified to either
float: left or float: right. Left and right are the only two options available for the float property.
Exclusions provide a way to overcome this limitation with float. Exclusions are achieved by
specifying the CSS3 property wrap-flow.

IMPORTANT  INTERNET EXPLORER VERSION REQUIREMENTS

At this time, the wrap-flow property is only implemented in Internet Explorer 10+. There-
fore, this element requires the –ms prefix be applied to it.

The wrap-flow property supports a variety of options. These options are outlined in
Table 4-9. You will use most of these options in the following examples.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 277

TABLE 4-9  Values available for the wrap-flow property

Value Description

auto This is the default value. The exclusion item will be over top of the inline element.

both The exclusion will force the inline element to wrap smoothly on both sides.

start The exclusion will force the inline elements to wrap only on the starting edge, and the
ending edge will be empty.

end The exclusion will force the inline element to wrap only on the ending edge, and the
starting edge will be empty.

maximum The exclusion will force the inline element to wrap only on the side with the largest
available space.

clear The exclusion will force the inline content to wrap only on the top and bottom and leave
the start and end edges empty.

With the understanding of the values provided by the previous table, you can now apply
these concepts to your pages. The code below will demonstrate the effect of setting the
wrap-flow property to both:

<html>
<head>
 <style>
 p {
 width: 80%;
 padding-left: 50px;
 }
 img {
 position: absolute;
 height: 100px;
 width: 150px;
 -ms-wrap-flow: both;
 }
 </style>
</head>
<body>
 <p>
 Lorem ipsum dolor sit …
 debitis. Modus elaboraret temporibus no sit. At invidunt
splendide qui, ut pro choro iisque democritum. Partem timeam graecis ea vis, utamur
feugiat …
 </p>
</body>
</html>

This code produces the output in Figure 4-42.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	278	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-42  Setting the wrap-flow property to the value of both to make the inline text wrap on both
sides of the image

The inline text wraps nicely around both the start (left edge of the image) and the end
(right edge of the image). The text is quite close to the image. The wrap-margin property can
be specified to provide a margin around the image. Add this property to your CSS code as
follows:

img {
 position: absolute;
 height: 100px;
 width: 150px;
 -ms-wrap-flow: both;
 -ms-wrap-margin: 15px;
}

The output of this code is shown in Figure 4-43.

FIGURE 4-43  Setting the wrap-margin property to create a margin around the exclusion

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 279

In the case where you want to have the inline content wrap only on the left or the right,
you will specify either start or end respectively as the value for the wrap-flow property.
Figure 4-44 demonstrates the output if you change the value to start. Setting the value to
end will have the opposite effect.

FIGURE 4-44  Setting the wrap-flow property to the value start to have the content wrap only on the left

Figure 4-45 shows the effect if the wrap-flow property is set to clear. Both sides of the
exclusion object are cleared and the text wraps only along the top and the bottom.

FIGURE 4-45  Setting the wrap-flow property to the value clear to have the content wrap only along the
top and bottom

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	280	 CHAPTER 4	 Use CSS3 in applications

Implementing a layout using grid alignment
The grid layout capability of CSS3 provides a way to lay out the content of the webpage much
like an HTML table but using only CSS to achieve the results. This provides more flexibility and
more maintainable code.

To demonstrate the capability of the grid layout with CSS3, you will build a webpage
layout that looks like the one in Figure 4-46.

FIGURE 4-46  The webpage you will create using the grid layout capability in CSS3

Traditionally, to achieve this layout, you would have likely created an HTML markup such as
the following code:

<table border="1" style="width:100%; height: 85%">
 <tr>
 <td colspan="3">
 </td>
 </tr>
 <tr>
 <td rowspan="3">
 </td>
 <td rowspan="3">
 </td>
 <td>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 </tr>
 <tr>
 <td colspan="3">
 </td>
 </tr>
</table>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 281

Using an HTML table works and has worked for a very long time. However, best practices
today suggest separating content from layout. This is seen in many other spaces of soft-
ware development and design in the context of design patterns. In this example, the layout
is right in the HTML. You will reconstruct the page such that the content can be provided
independent of layout and all the layout will be defined in the CSS code.

The grid layout is fully defined in CSS. To create the grid, CSS properties will need to be
applied to the HTML elements. Just as with the flexbox, the grid is based on a having the
display specified for a container. You will use simple div element for your grid container.
Create the following div and apply the styles as indicated:

 <style>
 #mainGrid {
 display: grid;
 }
 </style>
<div id="mainGrid">
</div>

You have designated your div with the id of mainGrid to be the container for a grid layout
by specifying its display to be grid. However, running this in the browser will not yield much
of a result. You need to define the structure of the grid. In this example, you will create a
simple four-by-two grid layout. Add the child elements to the div as shown and update the
styles as shown to supply information to the container about how you would like it to render
the child cells.

#mainGrid {
 display: grid;
 grid-columns: 150px 150px 150px 150px;
 grid-rows: 75px 75px;
 }
<div id="mainGrid">
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
</div>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	282	 CHAPTER 4	 Use CSS3 in applications

NOTE  USING SHORTHAND

Some great shorthand is available for specifying rows and columns in a case where
you have patterns. In the example in this section, the following CSS provides the same
instructions:

#blogPage {
 display: grid;
 grid-columns: 15% 1fr 25%;
 grid-rows: (20%)[5];
 width: 90%;
 height: 95%;
 border: 1px dotted black;
 margin: auto;
 }

You have added two additional CSS properties to mainGrid. These properties are rather
self-explanatory. As their name suggests, the grid-columns property allows you to specify how
many columns are in your grid. The grid-rows property allows you to specify how many rows
are in your grid. The property values accepted are size attributes separated by spaces. The
renderer will interpret each value as a new column or row.

If you run this HTML in the browser, the output will be less than exciting. One reason is
that the div elements are empty. Go ahead and put some text in each div and examine the
output that you get in the browser. If all goes as expected, your div elements will display all
on top of each other. They are, for all intents and purposes, ignoring your previous CSS in-
structions provided to the container to layout in a four-by-two style. Well, they are not really
ignoring the instructions. Recall, the instructions were to the container mainGrid regarding
how you wanted it to lay out its child elements. You still need to give each child element its
own identity within the grid. That is, the container knows it needs to set up a four-by-two
grid, but it does not know which element goes where within that four-by-two grid. It just
floats them all on top of each other. You will now specify to the grid elements where they
should live in the relative space available within the grid. You will apply some background
colors so that the rendered page will easily demonstrate the concepts.

#mainGrid > div:nth-child(1){
 grid-column: 1;
 grid-row:1;
 background-color: blue;
}
#mainGrid > div:nth-child(2){
 grid-column:2;
 grid-row:1;
 background-color: aqua;
}
#mainGrid > div:nth-child(3){
 grid-column: 3;
 grid-row:1;
 background-color: red;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 283

#mainGrid > div:nth-child(4){
 grid-column: 4;
 grid-row:1;
 background-color: green;
}
#mainGrid > div:nth-child(5){
 grid-column: 1;
 grid-row:2;
 background-color: magenta;
}
#mainGrid > div:nth-child(6){
 grid-column: 2;
 grid-row:2;
 background-color: yellow;
}
#mainGrid > div:nth-child(7){
 grid-column: 3;
 grid-row:2;
 background-color: orange;
}
#mainGrid > div:nth-child(8){
 grid-column: 4;
 grid-row:2;
 background-color: olive;
}

With this code, you have instructed the elements where they should be positioned within
the grid. When the renderer processes these elements, it will now know by asking each
element where it should go and how to place them. Now the page displayed in the browser
looks like Figure 4-47. Each element is placed according to the column and row position
specified for it: blue, aqua, red, and green elements respectively in columns 1 through 4, row
1; magenta, yellow, orange, and olive elements respectively in columns 1 through 4, row 2.

FIGURE 4-47  The webpage with all the columns and rows of the grid displayed

Now with the foundation in place, you can take this a step further to create a grid that will
correspond with the table layout specified earlier. To do this, you need only a couple more
CSS properties that will provide the equivalent functionality as the colspan and the rowspan.
In addition, your styles will provide some sizing properties to ensure that the grid expands on
the page as you would like it to. This is optional of course in the real world. You may want to
have content force the sizing of your grid or you may want to explicitly specify the size.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	284	 CHAPTER 4	 Use CSS3 in applications

The full code listing is specified here:

html, body {
 height: 100%;
 width: 100% ;
 }
#blogPage {
 display: grid;
 columns: 15% 1fr 25%;
 grid-rows: 20% 20% 20% 20% 20%;
 width: 90%;
 height: 95%;
 border: 1px dotted black;
 margin: auto;
}
#blogPage > header {
 grid-column: 1;
 grid-column-span: 3;
 grid-row: 1;
 border: 1px dotted black;
}
#blogPage > footer {
 grid-column: 1;
 grid-row: 5;
 grid-column-span: 3;
 border: 1px dotted black;
}
#blogPage > article {
 grid-column: 2;
 grid-row: 2;
 grid-row-span: 3;
 border: 1px dotted black;
 }
 #blogPage > #calendar {
 grid-column: 3;
 grid-row: 3;
 border: 1px dotted black;
 }
 #blogPage > #blogRoll {
 grid-column: 3;
 grid-row: 4;
 border: 1px dotted black;
 }
 #blogPage > #aboutMe {
 grid-column: 1;
 grid-row: 2;
 grid-row-span: 3;
 border: 1px dotted black;
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 285

#blogPage > #bloghistory {
 grid-column: 3;
 grid-row: 2;
 border: 1px dotted black;
}
</style>
<body>
 <div id="blogPage">
 <header>My Blog Header</header>
 <article>My Blog's Main Body</article>
 <footer>My Blog Footer</footer>
 <aside id="calendar">A calendar</aside>
 <aside id="blogRoll">My favorite blogs</aside>
 <aside id="aboutMe">Who am I?</aside>
 <aside id="bloghistory">My blog history</aside>
 </div>
</body>

Since you are producing a real webpage that will hold real content, the appropriate
semantic tags are being used. You can see from looking at the HTML portion of the code
that there is no indication to layout. You have defined only a series of sections for the page
to display. All the layout implementation happens in the CSS. You will notice the addition of
two CSS properties to your repertoire: grid-row-span and grid-column-span. As their names
suggest, you can expect them to behave the same way as the HTML attributes colspan and
rowspan. They tell the browser to lay out the column or the row such that it spans the speci-
fied number of columns or rows. When you run this code in the browser you will get the
output displayed in Figure 4-48.

FIGURE 4-48  The webpage layout using only the CSS3 grid layout

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	286	 CHAPTER 4	 Use CSS3 in applications

Implementing a layout using regions, grouping, and
nesting
Regions is a new CSS3 construct that allows you to have content flow through various regions
in a webpage. This could provide some very interesting scenarios. To get started, you will
need an HTML page with regions defined in it. The following HTML provides the starting
point for establishing regions.

<body>
 <div class="regionLayout">
 <div id="region1"></div>c
 <div id="region2"></div>
 <div id="region3"></div>
 …
 <div id="region-n"></div>
 </div>
</body>

NOTE  BROWSER SUPPORT FOR REGIONS

Regions are currently in the experimental and development phase. There is limited browser
support at this time. This section highlights only the key design goals of this feature.

Layout of a webpage using regions requires two things: a content source and the regions
that will be the content destination. The HTML above outlines the regions. The content can
come from another page via an iframe or another element on the page itself (though this
currently does not work in any browser). By adding an iframe to the page, you can set the
iframe src to the content that will be rendered in the regions:

<iframe src="content_source.html"/>

With the content source established in the HTML, there are now only two things that
need to occur. CSS is used to control the functionality of the content from the source to the
destination. The new CSS properties called flow-into and flow-from are used to assign the role
of the HTML elements in the region layout. The flow-into property is assigned a value to hold
the content. This value can be anything such as in this example:

.content_source{
 flow-into: myflow;
}

Then the destination of the content is defined in a class like this:

.content_regions{
 flow-from: myflow;
}

As long as the same name is used in the flow-into and the flow-from, they will work
together. This is called a named flow. All the elements forming the regions to display the

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.3: Create a flexible content layout	 CHAPTER 4	 287

content source in the same named flow is called a region chain. You can have multiple sources
and multiple region chains. The name assigned to the flow-* properties are used to coordi-
nate which content source goes into which regions.

EXAM TIP

Since the regions feature is still experimental, the exam is not likely to cover this topic.
However, this is only at the time of writing and could change at any time. Be familiar and
keep checking on updates with respect to the readiness of this CSS construct in the real
world.

Thought experiment
Combining layouts

In this thought experiment, apply what you’ve learned about this objective. You can
find an answer to this question in the “Answers” section at the end of this chapter.

Extend the current grid layout blog page so that the main content area uses a
column layout. Each layout is very powerful on its own to serve its specific purpose.
It is important though to know that you can create some very powerful layouts by
combining them where it makes sense.

Objective summary
■■ Flexbox allows you to lay out elements in a flow-like fashion.

■■ Multi-column layout allows you to separate content into a fixed number of columns,
like a newspaper layout.

■■ The flow of text around elements like images can be controlled using wrap-flow
layouts.

■■ The grid layout provides the best way to separate the layout from the content by spec-
ifying explicitly in CSS where each element should be displayed within a predefined
grid.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	288	 CHAPTER 4	 Use CSS3 in applications

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following layouts is based on columns and rows?

A.	 flexbox

B.	 multi-column

C.	 grid layout

D.	 exclusions

2.	 Which of the following is false about a flexbox layout?

A.	 The direction of the elements in a flexbox can be controlled with the flex-direction
property.

B.	 The elements layout can be configured along the layout axis using the flex-pack
property.

C.	 Elements in a flexbox are called flexbox items.

D.	 Elements in a flexbox can be set into rows and columns.

3.	 Which of the following property values for wrap-flow will allow the text to wrap along
both sides of an element?

A.	 both

B.	 all

C.	 left and right

D.	 cross

Objective 4.4: Create an animated and adaptive UI

The modern day website is an interactive experience for the end user. CSS3 provides many
mechanisms to apply a professional touch to the end-user interaction. This is achieved
through the ability to animate and transform objects. By adding these rich features to
your webpages, you really bring the experience to the next level. In addition, there is an
opportunity to create a responsive user interface. A responsive user interface is one that can
adapt itself automatically based on the size of the screen that is available. Finally, the ability to
hide and disable controls provides you with the ability to further customize the user interface
with CSS.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Create an animated and adaptive UI	 CHAPTER 4	 289

This objective covers how to:
■■ Animate objects by applying CSS transitions

■■ Apply 3-D and 2-D transformations

■■ Adjust UI based on media queries

■■ Hide or disable controls

Animating objects by applying CSS transitions
Transitions provide a mechanism to alter the style of an object such that the change occurs
in a visible gradual fashion. You have the ability to control which style property gets altered
and how long it takes to complete its transition from one style to the other. A transition starts
when the specified property is changed. In its simplest form, the following code transitions
two properties of a div element: the margin-left and the background-color. The transition is to
take one second. The transition will occur when the mouse is hovering over the div element.

NOTE  SEE IT FOR YOURSELF

Since this is a book and transitions are visual effects that involve the changing of properties
gradually, screen shots do not demonstrate the functionality very well. You should try the
code in your own webpages to get familiar with the outcomes of the styles and scripts.

The visual effect is that this div, which starts off with a gray background, will fade out of
sight to the right. The following code demonstrates this:

<html>
<head>
 <style>
 div {
 width: 100px;
 height: 100px;
 background-color: gray;
 margin-left: 250px;
 margin-top:250px;
 transition: background-color 1s, margin-left 1s ;
 }
 div:hover {
 margin-left: 350px;
 background-color: white;
 }
 </style>
</head>
<body>
 <div>
 </div>
</body>
</html>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	290	 CHAPTER 4	 Use CSS3 in applications

With this CSS code in place, when the user moves the mouse over the div element, it will
move to the right and its background color will change to white. Since the background of
the webpage is also white, it provides the effect of disappearing. You need to understand
what properties are being used to achieve this effect. In this particular code, you are using
a shorthand property called transition that allows you to specify a comma-separated list
of CSS properties and a length of time for the transition of the specified property to take
place. These properties could also be indicated separately using the various CSS properties in
Table 4-9.

TABLE 4-9  CSS3 transition properties

Property Name Description

transition-property Specifies the property to which a transition will be applied

transition-duration Specifies how much time the transition should take from start to finish

transition-delay Specifies how long to wait from the time the property is changed before starting
the transition

EXAM TIP

When using the individual transition-* properties, you can specify only one property to
transition. With the transition shorthand, you are able to specify a comma-separated list.

Another property that exists to control the speed of the transitions is transition-timing-
function. This property allows you to have a bit more control over the speed of the transition.
With the transition-timing-function property, you can specify some different effects to the
timing of the transition. The possible values are specified in Table 4-10.

TABLE 4-10  Values for transition-timing-function

Value Description

ease The default value that applies the effect in such a way that it starts slow, speeds up,
then ends slow.

linear Makes the transition constant from start to finish

ease-in Causes the transition to have a slow start.

ease-out Causes the transition to have a slow finish.

ease-in-out Causes the transition to have a slow start and a slow finish.

cubic-bezier Allows you to define values. This takes four parameters that are values from 0 and 1.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Create an animated and adaptive UI	 CHAPTER 4	 291

Applying 3-D and 2-D transformations
Using CSS you are also able to apply transformations to elements on your webpage. In
this section, you will review how to apply three dimensional transforms to your elements.
Following with the same div from the previous section, you will apply the three-dimensional
(3-D) transformations listed in Table 4-11. Two-dimensional (2-D) transforms are covered in
Objective 1.3, “Apply transforms.”

TABLE 4-11  Three-dimensional transformations

Transformation Effect

translate Moves the object from its current location to a new location

scale Changes the size of the object

rotate Spins the object along the x-axis, y-axis, and/or the z-axis

matrix Allows you to combine all the transformations into one command

As you can see, the 3-D transforms are the same property values as the 2-D transforms.
The addition is that each property now allows you to invoke the transform across the z-axis
instead of just the x-axis and y-axis. In addition, there are shorthand properties available such
as translate3d and rotate3d.

To demonstrate the use of a 3-D transform, you will look at the rotate transformation. The
following code applies a 3-D rotation of the div element.

div {
 transform: rotateX(30deg) rotateY(30deg) rotateZ(30deg);
}

When the page loads, all div elements on the page will be rotated 30 degrees along each
axis. The above transform could be expressed in this way as well:

transform: rotate3d(1,1,1, 30deg);

In this case, rotate3d takes the first parameters to specify on which axis to rotate. A value
of zero indicates to no rotation on that axis whereas a value of 1 indicates a rotation on that
axis. The parameters are in order of x-axis, y-axis, z-axis. The last parameter specifies the
number of degrees to rotate.

When the page loads, you will see the output in Figure 4-49.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	292	 CHAPTER 4	 Use CSS3 in applications

FIGURE 4-49  A div element being rotated in 3-D

You can experiment with each transformation. The output is similar to that of the 2-D with
the exception that the effects are applied along the z-axis as well. In addition, you can see
that you can still use the 3-D functions to achieve 2-D effects. It all depends which parameters
you specify.

Adjusting UI based on media queries
In the modern world, screen size is a variable you now have to contend with when building
webpages. With many people accessing the Internet from different devices such as smart
phones, tablets, and desktops, there is no guarantee that your page will fit nicely on the
screen, and as a result, it may not be user friendly. This is where the concept of media queries
is able to help. With the use of media queries you can create a responsive user interface that
will adjust automatically as the size of the available rendered webpage changes. By using
information from the browser, you are able to determine how to present your content so that
it provides a user-friendly experience on any device.

The media query syntax is as simple as adding the following to your CSS file:

@media screen and (max-width: 800px){
}

This code will apply all the styles within the media query to the page when the width of
the screen is not wider than 800 px. To achieve a different layout for different screen sizes or
devices, you need to specify a media query for the different size ranges. To explore this, use
the blog layout that was created in Objective 4.3 using a grid layout. The default layout of the
blog is shown in Figure 4-48. However, as the screen size gets smaller, the blog gets com-
pacted to the point that it might not be readable or, depending on the amount of content,
will require awkward scrolling on a device. To accommodate the different screen sizes, update

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Create an animated and adaptive UI	 CHAPTER 4	 293

your CSS code to include media queries. The following code adds a media query to apply the
default layout to larger screens such as desktops or laptops:

@media screen and (min-width: 1200px) {
 #blogPage {
 display: -ms-grid;
 grid-columns: 15% 1fr 25%;
 grid-rows: (20%)[5];
 width: 90%;
 height: 95%;
 border: 1px dotted black;
 margin: auto;
 }
 #blogPage > header {
 grid-column: 1;
 grid-column-span: 3;
 grid-row: 1;
 border: 1px dotted black;
 }
 #blogPage > footer {
 grid-column: 1;
 grid-row: 5;
 grid-column-span: 3;
 border: 1px dotted black;
 }
 #blogPage > article {
 grid-column: 2;
 grid-row: 2;
 grid-row-span: 3;
 border: 1px dotted black;
 }
 #blogPage > #calendar {
 grid-column: 3;
 grid-row: 3;
 border: 1px dotted black;
 }
 #blogPage > #blogRoll {
 grid-column: 3;
 grid-row: 4;
 border: 1px dotted black;
 }
 #blogPage > #aboutMe {
 grid-column: 1;
 grid-row: 2;
 grid-row-span: 3;
 border: 1px dotted black;
 }
 #blogPage > #bloghistory {
 grid-column: 3;
 grid-row: 2;
 border: 1px dotted black;
 }
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	294	 CHAPTER 4	 Use CSS3 in applications

This produces the output in Figure 4-48. As long as the screen is at least 1,200 px wide,
this layout will be applied. However, as the screen gets smaller, on a tablet for example, the
user interface starts to get less user friendly. To accommodate a tablet screen, you can adjust
the layout a bit by adding the following CSS code to the page:

@media screen and (max-width: 1199px) and (min-width: 401px) {
 #blogPage {
 display: -ms-grid;
 grid-columns: 75% 1fr;
 grid-rows: (20%)[6];
 width: 90%;
 height: 95%;
 border: 1px dotted black;
 margin: auto;
 }
 #blogPage > header {
 grid-column: 1;
 grid-column-span: 2;
 grid-row: 1;
 border: 1px dotted black;
 }
 #blogPage > footer {
 grid-column: 1;
 grid-row: 6;
 grid-column-span: 2;
 border: 1px dotted black;
 }
 #blogPage > article {
 grid-column: 1;
 grid-row: 3;
 grid-row-span: 3;
 border: 1px dotted black;
 }
 #blogPage > #calendar {
 grid-column: 2;
 grid-row: 4;
 border: 1px dotted black;
 }
 #blogPage > #blogRoll {
 grid-column: 2;
 grid-row: 5;
 border: 1px dotted black;
 }
 #blogPage > #aboutMe {
 grid-column: 1;
 grid-row: 2;
 grid-column-span: 2;
 border: 1px dotted black;
 }
 #blogPage > #bloghistory {
 grid-column: 2;
 grid-row: 3;
 border: 1px dotted black;
 }
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Create an animated and adaptive UI	 CHAPTER 4	 295

With this code, you can restructure the layout of the grid based on the different screen
size. The output of this code produces a user interface shown in Figure 4-50.

FIGURE 4-50  The layout of the blog is adjusted for the tablet screen size

Now you have the desktop-size screen and tablet-size screen looking good. The next one
to account for is the smaller smart phone screen. Add the following code to your CSS to place
a media query for the smaller screen size:

@media screen and (max-width: 400px) {
 #blogPage {
 display: grid;
 grid-columns: 50% 50%;
 grid-rows: 15% 15% 1fr 15% 15%;
 width: 90%;
 height: 95%;
 border: 1px dotted black;
 margin: auto;
 }
 #blogPage > header {
 grid-column: 1;
 grid-column-span: 2;
 grid-row: 1;
 border: 1px dotted black;
 }
 #blogPage > footer {
 grid-column: 1;
 grid-row: 5;
 grid-column-span: 2;
 border: 1px dotted black;
 }
 #blogPage > article {
 grid-column: 1;
 grid-row: 3;
 grid-column-span: 2;
 border: 1px dotted black;
 }
 #blogPage > #calendar {

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	296	 CHAPTER 4	 Use CSS3 in applications

 grid-column: 2;
 grid-row: 2;
 border: 1px dotted black;
 }
 #blogPage > #blogRoll {
 grid-column: 1;
 grid-row: 4;
 border: 1px dotted black;
 }
 #blogPage > #aboutMe {
 grid-column: 1;
 grid-row: 2;
 border: 1px dotted black;
 }
 #blogPage > #bloghistory {
 grid-column: 2;
 grid-row: 4;
 border: 1px dotted black;
 }
}

As the screen size gets to be as small as it would be on a smart phone, the user interface
will be rendered as shown in Figure 4-51.

FIGURE 4-51  The layout of the blog is adjusted for the screen size of a smart phone

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Create an animated and adaptive UI	 CHAPTER 4	 297

NOTE  DOES IT WORK?

The media query does not require that a smart phone or tablet be in use, only that the
view port of the page is within the query parameters. To test this code, simply resize your
browser window beyond the defined sizes to see the page change its layout dynamically.

So far the CSS is working great. The only problem is you have a lot of CSS code in a single
page. Typically, a website has multiple pages with styles shared across different pages. As
a result, you will likely be linking an external CSS file to your HTML page. The link element
supports media queries as well, which in turn lets you share a CSS file across multiple pages.
For example, you might want to change the font-size of the text throughout your site based
on the view port size. To achieve this, move the CSS from each media query into its own CSS
file and link in your CSS files in the following way:

<link rel="stylesheet" media="screen and (min-width: 1200px)" href="Desktop.css"/>
<link rel="stylesheet" media="screen and (max-width: 1199px) and (min-width: 401px)"
ref="tablet.css"/>
<link rel="stylesheet" media="screen and (max-width: 400px)" href="phone.css"/>

With the CSS linked in this fashion, you can add and modify the styles for the different
view ports centrally for your entire website.

Hiding or disabling controls
The ability to modify the user interface positioning using media queries as shown in the last
section is very useful. In addition, some layouts might just not work in some view ports. In
this case, you might want to complete hide controls or disable controls. HTML elements are
visible by default. However, they can be made invisible by setting the visibility CSS property as
shown in the following code:

.myhiddenelements {
 visibility:hidden;
}

By setting the visibility to hidden, the control is not visible to the end user of the web-
page. When hiding an element using the visibility property, the overall layout still behaves as
though the element is there. If you prefer to have the element hidden and the layout behave
as though it is not there, the display property should be used as shown in the following code:

.myhiddenelements {
 display: none;
}

With the display property, the element is not visible and the layout is not affected by it.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	298	 CHAPTER 4	 Use CSS3 in applications

If you do not want to hide the element but only make it disabled such that the user can
see it but cannot perform any action on it, you need to add the attribute directly to the HTML
element. As such, you can define a CSS class that you can apply to any elements that you
want to have disabled:

.disableIt

Now that you have a CSS class called .disableIt, you can apply this class to any elements
that you want to disable. In this case, you want to disable a button element, so apply the class
to the button element as shown here:

<button id="myButton" class="disableIt" >My Button</button>

The last step is to create some JavaScript that finds all the controls with this class assigned
to it and adds the disabled attribute to them. The following code demonstrates this:

<script>
 $("document").ready(function (e) {
 $(".disableIt").attr("disabled", "disabled");
 });
</script>

This script has the same net effect as putting the attribute directly on the button element
as shown here:

<button id="myButton" disabled="disabled">My Button</button>

When you have many elements that you would like to disable, it is much easier to create a
CSS class, apply it to the elements, then by using jQuery, apply the disabled attribute to them
all.

Thought experiment
Combining effects

In this thought experiment, apply what you’ve learned about this objective. You can
find the answer to this question in the “Answers” section at the end of this chapter.

Consider combining transitions with transformations. Individually, transitions and
transformations provide interesting effects to the HTML page. Consider what kind
of effects can be achieved by using them together.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.4: Create an animated and adaptive UI	 CHAPTER 4	 299

Objective summary
■■ HTML elements can be manipulated with transitions using the transition-property,

transition-duration, and transition-delay CSS properties.

■■ Elements can be manipulated in 2-D and 3-D space with effects such as translate, scale,
rotate, and matrix.

■■ Media queries allow you to have a dynamic, responsive user interface based on the
view port size and type.

■■ The visibility property hides a control but keeps its position in the overall layout. Using
the display property to hide a control removes it from the layout as well.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which of the following statements will hide an element but keep its space in the over-
all flow?

A.	 display: none;

B.	 visibility: hidden;

C.	 display: inline;

D.	 visibility: visible;

2.	 Media queries are best suited for what purpose?

A.	 Setting the priority of style sheet references in a webpage

B.	 Creating a responsive user interface based on the screen size of the view port

C.	 Modifying the view port to properly fit the content of the page

D.	 Connecting to third-party style sheets to alter the layout

3.	 Which of the following transition-timing-function properties makes the transition start
slow, speed up, then end slow?

A.	 ease

B.	 ease-in

C.	 ease-out

D.	 ease-in-out

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	300	 CHAPTER 4	 Use CSS3 in applications

Objective 4.5: Find elements using CSS selectors
and jQuery

Objective 1.2, “Write code that interacts with UI controls,” covered the use of document selec-
tors to find HTML elements by their unique name. In this section, you explore more advanced
techniques to find elements through the use of CSS selectors and jQuery.

This objective covers how to:
■■ Define element, style, and attribute selectors

■■ Choose the correct selector to reference an element

■■ Find elements by using pseudo-elements and pseudo-classes

Defining element, style, and attribute selectors
CSS uses selectors that you define in a CSS file or style block to identify which elements in a
webpage the defined styles should be applied to. This can be done by specifying the element
itself as the selector. For example, the following CSS is an element selector for the div element:

div{
…
}

Any div within scope of the declaration will have the styles applied to it. Another possible
selector is a class selector. To use a class selector, you define a custom class name in the CSS
file. This can be any name prefixed with a period. Then, any element that has that class as-
signed to it via the class attribute will have the defined styles applied. For example:

.mycustomclass{
….
}

Another way to use CSS to select specific elements on the page is to use attribute selec-
tion. This is achieved by specifying an element type followed by a specific attribute. For
example if you have a web form that needs to be filled in, you may attribute required fields
with a red border around the textboxes. The following code achieves this for any elements
that have the required attribute specified:

input[required] {
 border: 1px red solid;
}

There are other possibilities for the use of attribute selectors. These are outlined in
Table 4-12.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.5: Find elements using CSS selectors and jQuery	 CHAPTER 4	 301

TABLE 4-12  Attribute selector capabilities

Attribute selector Description

= Specifies that an attribute equals a specific value. For example, the URL of an anchor
is a specify URL.

~= Specifies a space-separated list of words as the values for an attribute.

^= Specifies that the attribute has a value starting with the text specified.

$= Specifies that the attribute has a value ending with the specified text.

*= Specifies that the attribute has a value containing the specified text.

Choosing the correct selector to reference an element
Choosing the correct selector to reference an element is an important consideration. You
need to ensure that you organize your selectors and your elements such that only the desired
elements are impacted by the defined styles. For example, the following style affects all
article elements:

article{
 border-color: 1px solid red;
}

If you do not want to affect all articles but only the newest article, you must distinguish
them, perhaps by adding a custom CSS class to the definition and assigning this to only the
newest article:

article.newest{
 border-color: 1px solid red;
}

By specifying it this way, you are assured that not every article on the page is impacted
by the style. This topic is covered in more detail in Objective 4.6 in the section “Referencing
elements correctly.”

Finding elements by using pseudo-elements
and pseudo-classes
Pseudo-classes and pseudo-elements provide some very powerful ways to add styles to
elements. Pseudo-classes allow you to apply styles to an element based on its state, its in-
teraction with the user, or its position in the document. Pseudo-elements allow you to insert
content into the page in locations relative to the elements that the CSS is being applied to.
You will examine each of the common pseudo-classes and pseudo-elements in this section.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	302	 CHAPTER 4	 Use CSS3 in applications

:link, :visited, and :hover
These are the most commonly used pseudo-classes, used most frequently with the anchor
element, providing a clickable link for the user of the webpage. With these pseudo-classes,
you can control what styles are applied to a hyperlink in the different states. For example, the
following CSS changes the color of the link based on its state:

a:link {
 color: green;
}
a:hover {
 color: red;
}
a:visited {
 color: black;
}

In this example, the link by default will be green. When a user moves the mouse over the
link, the color of the link will change to red. If the user does not click the link and then moves
off of it, the link will go back to green. However, if the user clicks the link, it becomes a visited
link and will change to black.

:checked
The :checked pseudo-class lets you apply styles to elements that are in a checked state.
Elements that support this pseudo-class are check boxes and radio buttons. The amount of
styling you can apply to the default elements is minimal. However, there are ample resources
to customize these elements using CSS. The following example shows how to hide a check
box when a user clicks it.

input[type="checkbox"]:checked {
 display: none;
}

:required
The :required pseudo-class lets you apply styles to any elements on the page that have
the required attribute. This is a convenient way to highlight required fields on a form. The
following CSS demonstrates applying styles to all required input controls:

input:required {
 border: 2px solid red;
}

All required input controls will now have a red border to highlight this to the user.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.5: Find elements using CSS selectors and jQuery	 CHAPTER 4	 303

:enabled and :disabled
The :enabled and :disabled pseudo-classes allow you to style controls based on their enabled
or disabled state. By default, disabled controls typically are light gray. With these pseudo
classes, you can control how the element displays in either state. The following code
demonstrates this:

input:disabled {
 background-color: blue;
}
input:enabled {
 background-color: white;
}

If a control is enabled, the background will be white; otherwise disabled controls will be
blue.

:first-child
The :first-child pseudo-element applies the specified styles to the first instance of the element
that occurs in a list, for example, the first paragraph element in this HTML:

<div>
 <p>Lorem Ipsum ...</p>
 <p>Lorem Ipsum ...</p>
 <p>Lorem Ipsum ...</p>
 <p>Lorem Ipsum ...</p>
</div>

The following CSS will change the text color to green in the first paragraph element:

p:first-child {
 color:green;
 }

:first-letter
The :first-letter pseudo-element will alter the style of the first letter in the specified element.
Continuing with the example HTML above, the following CSS will increase the size of the first
letter in each paragraph element:

p::first-letter {
 font-size: xx-large;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	304	 CHAPTER 4	 Use CSS3 in applications

:before and :after
The :before and :after pseudo-elements will add the specified content in front of or after the
indicated element selector. So, the following code would add ** to the front and end of the
paragraph element:

p::before {
 content: '**';
}
p::after {
 content: '**';
}

:first-line
The :first-line pseudo-element alters the styles of the first line of a text element. The following
CSS will make the first line of the text inside the paragraph element green and larger:

p::first-line {
 color:green;
 font-size: x-large;
}

Thought experiment
Using jQuery with pseudo-classes

In this thought experiment, apply what you’ve learned about this objective. You can
find an answer to this question in the “Answers” section at the end of this chapter.

Consider how you can use jQuery to select elements using pseudo-classes and
pseudo-elements. Using only jQuery, apply CSS styles to the first paragraph of any
group of paragraph elements.

Objective summary
■■ Pseudo-elements and pseudo-classes provide an advanced mechanism for searching

HTML elements in a page and applying styles.

■■ Using pseudo-elements and pseudo-classes you can change the style of an element
based on user actions.

■■ Using pseudo-elements and pseudo-classes you can gain granular control over parts
of the text in a text block.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.6: Structure a CSS file by using CSS selectors	 CHAPTER 4	 305

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1.	 Which one of the following is a CSS class selector?

A.	 .code

B.	 #code

C.	 div[code]

D.	 :code

2.	 Which one of the following is an attribute selector?

A.	 .required

B.	 #required

C.	 input[required]

D.	 :required

3.	 Which of the following statements would alter the style of an anchor element when
the mouse is moved over it?

A.	 a:link

B.	 a:mouseover

C.	 a:beforeclick

D.	 a:hover

Objective 4.6: Structure a CSS file by using CSS
selectors

CSS files can become large and complex. Structuring them in an organized fashion will
make them easier to maintain and also to know what selectors are best suited to be used to
reference the HTML on your page.

This objective covers how to:
■■ Reference elements correctly

■■ Implement inheritance

■■ Override inheritance using !important

■■ Style an element based on pseudo-elements and pseudo-classes

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	306	 CHAPTER 4	 Use CSS3 in applications

Referencing elements correctly
CSS is used to apply styles to elements in an HTML page. To do so, the CSS has to know which
elements to apply the styles to. There are a few ways to reference elements from CSS. This
is known as the selector syntax. This has been demonstrated throughout the chapter. This
section will explain specifically how to reference elements from CSS. The key consideration is
to ensure that you reference elements such that the styles affect only the elements you want
affected. In large complex CSS, it can get complicated.

Elements can be referenced from CSS by their element name. For example:

p{…}
article{…}
div{…}

In this code, styles are applied to all paragraph elements, article elements, and div
elements.

The next method to select elements is through the use of classes as shown here:

.bold{…}

.largeTitle{…}

In this code, the styles are applied only to HTML elements that have their class attribute
assigned these class names. Element names and classes can be combined to narrow the
selector even further:

p.largeTitle{…}

This code applies the styles only to paragraph elements that have the class largeTitle
assigned to the class attribute.

The most granular method to reference HTML elements from CSS is by using the id or
name of the element:

#nameBox{…}

This code applies the specified styles only to the single element on the page with the
specified name.

In some cases, you might want to apply the same style to many elements of different
types. In this case, you can group them and define the styles only once:

p, H1, H2 {…}

In this sample, all three of the HTML elements noted will have the defined styles applied to
them.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.6: Structure a CSS file by using CSS selectors	 CHAPTER 4	 307

Implementing inheritance
Some styles applied to a parent element are automatically inherited by children elements.
For example, if a series of paragraph elements are inside an article element, and font and text
styles are applied to the article, all the paragraph elements will automatically inherit the font
and text styles as well. The following code demonstrates this concept:

<style>
 div {
 font-family: sans-serif;
 color: green;
 }
</style>

And with the following HTML:

<div>
 hello div world.
 <p>
 Hello paragraph world.
 </p>
</div>

Both the div and the paragraph will have the font and color styles applied to them because
the paragraph element does not have any of its own styles defined. If you assign styles to the
paragraph element to override the div styles you would be able to prevent the inheritance of
the styles, as shown here:

<style>
 div {
 font-family: sans-serif;
 color: green;
 }
 p {
 font-family: serif;
 color: blue;
 }
</style>

Overriding inheritance using !important
CSS for large websites can be complicated. Large websites may have CSS coming from differ-
ent sources. It could be on each page and referenced externally. External libraries are more
and more common as experts throughout the community have created themes that can be
imported into your web applications. With all this styling coming from different sources,
inheritance of styles can be tricky. In some cases you may just need to override all other com-

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	308	 CHAPTER 4	 Use CSS3 in applications

peting styles completely with your own desired style. This is where the !important keyword
comes in. Consider the following simple CSS example:

p {
 font-family: serif;
 color: blue;
}
p {
 color: purple;
}
p{
 color: yellow;
}

In this CSS code, you have three competing styles for the paragraph element. How the
browser renders this is based on the last style it reads for an element it applies to. So in
this case, the text in all the paragraphs will be yellow. However, if you want to override this
behavior and force the paragraph elements on the page to be purple, you simply add the
!important keyword to the style you want to have applied:

p{
 font-family: serif;
 color: blue;
}
p{
 color: purple !important;
}
p{
 color: yellow;
}

The paragraph elements will render purple and not yellow. The !important notation tells
the parser to give that style priority. This is a simplistic example, but the concept is the same
whether the styles are in a single page such as this or if they come from a variety of external
sources with conflicting styles.

Styling an element based on pseudo-elements and
pseudo-classes
The Objective 4.5 section, “Finding elements by using pseudo-elements and pseudo-classes”
demonstrated the use of pseudo-elements and pseudo-classes as selectors. In addition,
that section can be referenced for how to apply styles to elements based on the use of the
pseudo-class and pseudo-element selectors.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.6: Structure a CSS file by using CSS selectors	 CHAPTER 4	 309

Thought experiment
Combining pseudo-element selectors

In this thought experiment, apply what you’ve learned about this objective. You can
find an answer to this question in the “Answers” section at the end of this chapter.

Consider how you can get very specific styles applied to your HTML elements
through the combination of pseudo-classes and pseudo-elements. For example,
how would you change the appearance of the first letter of the first paragraph of
each group of paragraphs on the page but only when the user hovers over it? Ex-
periment with other combinations of selectors to achieve specific effects.

Objective summary
■■ Referencing elements correctly takes careful consideration of how you will structure

your CSS and your HTML elements.

■■ Selectors can be nested and joined together to get more specific.

■■ HTML elements inherit styles automatically from their parent elements.

■■ CSS is processed from the top down, so that last style processed wins if it conflicts with
other style declarations.

■■ !important can be used to ensure that the desired style is rendered when there is a
competing CSS declaration.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

The review questions use the following HTML listing (line numbers are for reference only):

1. <html>
2. <body>
3. <div>
4. <hgroup>
5. <h1></h1>
6. <h2></h2>
7. </hgroup>
8. </div>
9. <div>
10. <section>
11. <article>
12. <h1></h1>
13. <p></p>
14. <p></p>
15. </article>

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	310	 CHAPTER 4	 Use CSS3 in applications

16. <article>
17. <h1></h1>
18. <p></p>
19. <aside></aside>
20. <p></p>
21. </article>
22. </section>
23. </div>
24. <div>
25. <footer>
26. <p></p>
27. <p></p>
28. </footer>
29. </div>
30.</body>
31.</html>

1.	 Referencing the HTML listing, how would you style only the first paragraph inside the
footer element to have a smaller font size?

A.	

footer p:first-child {
 font-size: x-small;
}

B.	

footer p.first-child {
 font-size: x-small;
 }

C.	

Footer:p:first-child {
 font-size: x-small;
 }

D.	

Footer=>p,first-child {
 font-size: x-small;
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Objective 4.6: Structure a CSS file by using CSS selectors	 CHAPTER 4	 311

2.	 Referencing the HTML listing, how would you apply a new font to all the H1 elements?
In addition, the <h1> elements in an article should be italic.

A.	

h1 {
font-family: ‘Courier New’;
 article h1 {
 font-style:italic;
 }
 }

B.	

h1 {
 font-family: ‘Courier New’;
}
article h1 {
 font-style:italic;
}

C.	

h1 {
font-family: ‘Courier New’;
font-style:italic;
 }
 article h1 {
font-style:italic;
 }

D.	

h1 {
 font-family: ‘Courier New’;
 }
 article, h1 {
 font-style:italic;
 }

3.	 Referencing the preceding HTML listing, write the CSS code to apply a border to the
aside element that is 100 pixels high and 50 pixels wide. In addition, provide a shadow
effect and slightly skew the element to the right 5 degrees.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	312	 CHAPTER 4	 Use CSS3 in applications

Answers

This section contains the solutions to the thought experiments and answers to the objective
review questions in this chapter.

Objective 4.1: Thought experiment
jQuery is the easiest way to achieve changing CSS styles dynamically. JavaScript will do the
trick as well. All the CSS properties that have been looked at are available to be changed dy-
namically. So for example, in the following code, the color of the button is changed to green
when it is clicked:

<html>
<head>
<script src="jquery-2.0.3.min.js" type="text/javascript"></script>
 <script>
 $("document").ready(function () {
 $("#changeStyle").click(function () {
 $(this).css("color", "green");
 });
 });
 </script>
</head>
<body>
 <button id="changeStyle">Change Style</button>
</body>
</html>

Objective 4.1: Review
1.	 Correct answer: B

A.	 Incorrect: font-style: italic will display the text with italics.

B.	 Correct: font-weight: heavy; heavy is not a valid option for font-weight.

C.	 Incorrect: font: bolder 12px arial; is a valid shorthand for setting font attributes.

D.	 Incorrect: color: green; is a valid way to change the color of the text to green.

2.	 Correct answer: D

A.	 Incorrect: Right will align all the text to the right side of the box.

B.	 Incorrect: Full is not a valid option.

C.	 Incorrect: Center will align the text along the center of the box.

D.	 Correct: Justify will align the text such that each line takes up the width of the box.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 313

3.	 Correct answer: C

A.	 Incorrect: word-margin is not a valid option.

B.	 Incorrect: letter-margin is not a valid option.

C.	 Correct: word-spacing will set the amount of space between words.

D.	 Incorrect: word-padding is not a valid option.

Objective 4.2: Thought experiment
The following code demonstrates how to alter an element’s position using jQuery.

<html>
<head>
<script src="jquery-2.0.3.min.js" type="text/javascript"></script>
 <style>
 p {
 position:fixed;
 left: 1px;
 }
 </style>
 <script>
 var pos = 1;
 $("document").ready(function () {
 setInterval(function () {
 var newPos = (pos + 1) + "px";
 $("#scrollMe").css("left", newPos);
 pos += 1;
 }, 20);
 });
 </script>
</head>
<body>
 <p id="scrollMe">This text moves accross the screen.</p>
</body>
</html>

Objective 4.2: Review
1.	 Correct answer: D

A.	 Incorrect: div{height: 50px; width: 50%;} is valid.

B.	 Incorrect: div{height: 50px; width: 50px;} is valid.

C.	 Incorrect: div{height: 50cm; width: 50px; is valid.

D.	 Correct: div{height: 50ft; width: 50ft;} ft is not a valid unit of measurement.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	314	 CHAPTER 4	 Use CSS3 in applications

2.	 Correct answer: A

A.	 Correct: Each side will be styled differently and the syntax is correct.

B.	 Incorrect: border-sides is not a valid property.

C.	 Incorrect: border-all is not a valid property.

D.	 Incorrect: The syntax is not correct to set the border properties with the short-
hand. Full is not a valid value.

3.	 Correct answer: B

A.	 Incorrect: This is not the correct sequence.

B.	 Correct: Margin, border, padding is the correct sequence.

C.	 Incorrect: This is not the correct sequence.

D.	 Incorrect: This is not the correct sequence.

4.	 Correct answer: A

A.	 Correct: box-shadow: gray 5px 5px; will apply a box shadow to the right and bot-
tom edge of a div element.

B.	 Incorrect: The shadow will be on the left and bottom.

C.	 Incorrect: The shadow will be on the top and right.

D.	 Incorrect: The shadow will be the top and left.

5.	 Correct Answer: B

A.	 Incorrect: Absolute positioning is relative to the parent.

B.	 Correct: Fixed positioning is the correct answer.

C.	 Incorrect: Relative positioning is relative to the elements in normal flow.

Objective 4.3: Thought experiment
The following listing shows the code for the blog page with the addition of a column layout
for the main content section. The additional CSS is highlighted in bold.

<html>
 <head>
 <style>
 html, body {
 height: 100%;
 width: 100%;
 }
 #blogPage {
 display: grid;
 grid-columns: 15% 1fr 25%;
 grid-rows: (20%)[5];
 width: 90%;
 height: 95%;

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 315

 border: 1px dotted black;
 margin: auto;
 }
 #blogPage > header {
 grid-column: 1;
 grid-column-span: 3;
 grid-row: 1;
 border: 1px dotted black;
 }
 #blogPage > footer {
 grid-column: 1;
 grid-row: 5;
 grid-column-span: 3;
 border: 1px dotted black;
 }
 #blogPage > article {
 grid-column: 2;
 grid-row: 2;
 grid-row-span: 3;
 border: 1px dotted black;
 }
 #blogPage > #calendar {
 grid-column: 3;
 grid-row: 3;
 border: 1px dotted black;
 }
 #blogPage > #blogRoll {
 grid-column: 3;
 grid-row: 4;
 border: 1px dotted black;
 }
 #blogPage > #aboutMe {
 grid-column: 1;
 grid-row: 2;
 grid-row-span: 3;
 border: 1px dotted black;
 }
 #blogPage > #bloghistory {
 grid-column: 3;
 grid-row: 2;
 border: 1px dotted black;
 }
 #cols {
 width: 80%;
 height: 100%;
 border: 1px solid black;
 column-count: 3;
 column-rule-color: black;
 column-rule-style: dashed;
 column-rule-width: 2px;
 column-gap: 5px;
 }
 hgroup {
 column-span: all;
 text-align: center;
 }

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	316	 CHAPTER 4	 Use CSS3 in applications

 </style>
 </head>
 <body>
 <div id="blogPage">
 <header>My Blog Header</header>
 <article id="cols">
 <hgroup>
 <h1>My Blog's Main Body</h1>
 </hgroup>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
 liquam
 …
 </p>
 </article>
 <footer>My Blog Footer</footer>
 <aside id="calendar">A calendar</aside>
 <aside id="blogRoll">My favorite blogs</aside>
 <aside id="aboutMe">Who am I?</aside>
 <aside id="bloghistory">My blog history</aside>
 </div>
 </body>
</html>

Objective 4.3: Review
1.	 Correct answer: C

A.	 Incorrect: Flexbox lays elements out in a flow direction.

B.	 Incorrect: Multi-column lays elements out only in columns.

C.	 Correct: Grid layout allows layout in rows and columns.

D.	 Incorrect: Exclusions do not deal with the layout in rows and columns.

2.	 Correct answer: D

A.	 Incorrect: This is a true statement.

B.	 Incorrect: This is a true statement.

C.	 Incorrect: This is a true statement.

D.	 Correct: Grid layouts can be set into rows and columns.

3.	 Correct answer: A

A.	 Correct: both will allow the text to wrap along both sides of an element.

B.	 Incorrect: all is not a valid value.

C.	 Incorrect: left and right is not a valid value.

D.	 Incorrect: cross is not a valid value.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 317

Objective 4.4: Thought experiment
By combining the transition with the transform, you are able to create effects that you other-
wise would not be able to create. For example, if you want to create the effect of a box spin-
ning or rotating, you can apply a transform: rotate(360deg); to the box. However, this happens
so fast that you cannot see that the box rotated. Alternatively, by applying a transform effect
with a longer duration, you actually can see the box rotate. Look at the following code, which
demonstrates this effect on a series of div boxes:

<html>
<head>
 <style>
 div {
 margin: 10px 10px 10px 10px;
 height: 50px;
 width: 50px;
 background-color: red;
 transition: transform 3s;
 }
 div:hover {
 transform: rotate(360deg);
 }
 </style>
</head>
<body>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
 <div></div>
</body>
</html>

Objective 4.4: Review
1.	 Correct answer: A

A.	 Correct: display:none; will hide an element but keep its space in the overall flow.

B.	 Incorrect: visibility: hidden; will maintain the element in the normal flow.

C.	 Incorrect: display: inline; will show the element in the normal flow.

D.	 Incorrect: visibility: visible; will show the element in the normal flow.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	318	 CHAPTER 4	 Use CSS3 in applications

2.	 Correct answer: B

A.	 Incorrect: Media queries are not best suited for setting the priority of style sheet
references in a webpage.

B.	 Correct: Media queries are best suited for creating a responsive user interface
based on the screen size of the view port.

C.	 Incorrect: Media queries are not best suited for modifying the view port to prop-
erly fit the content of the page.

D.	 Incorrect: Media queries are not best suited for connecting to third-party style
sheets to alter the layout.

3.	 Correct answer: A

A.	 Correct: ease will start slow, speed up and end slow. This is also the default value.

B.	 Incorrect: ease-in will start slow and speed up.

C.	 Incorrect: ease-out will slow near the end.

D.	 Incorrect: ease-in-out will slow at the beginning and at the end.

Objective 4.5: Thought experiment
What is interesting about this thought experiment is recognizing that not all pseudo-class
or pseudo-element selectors are supported by jQuery. For example, inserting content via
pseudo selectors does not work in this way. However, some things can be done via jQuery. In
this example, the following code shows how the pseudo-element selector works in a jQuery
selector:

<script>
 $("document").ready(function () {
 $("p:first-child").css("color", "green");
 });
</script>

Objective 4.5: Review
1.	 Correct answer: A

A.	 Correct: .code is a CSS class selector.

B.	 Incorrect: #code is an ID selector.

C.	 Incorrect: div[code] is an attribute selector.

D.	 Incorrect: :code is not a valid statement.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	 Answers	 CHAPTER 4	 319

2.	 Correct answer: C

A.	 Incorrect: .required is a class selector.

B.	 Incorrect: #required is an ID selector.

C.	 Correct: input[required] is an attribute selector.

D.	 Incorrect: :required is a pseudo-class that would be combined with an element
selector.

3.	 Correct answer: D

A.	 Incorrect: a:link would specify the styles for an unvisited hyperlink.

B.	 Incorrect: a:mouseover is not a valid pseudo-class.

C.	 Incorrect: a:beforeclick is not a valid pseudo-class.

D.	 Correct: a:hover will change the style when the user moves the mouse over the
link.

Objective 4.6: Thought experiment
When you want to achieve specific formatting on complex webpages, you need to account
for the hierarchy of your page and ensure that you understand how the inheritance is going
to impact the nested HTML elements’ styles. The more specific your selectors, the more CSS
you need to write but have more control. The following code will demonstrate a specific se-
lector that will alter only the first character of the first paragraph when a user hovers over it:

p:first-child:hover:first-letter {
 font-size: xx-large;
}

This code does not seem like much, but it is very specific. It will override default inheri-
tance and any other styles defined for that same element. Consider the following CSS:

p:first-child:first-letter {
 font-size: xx-small;
}
p:first-child:hover:first-letter {
 font-size: xx-large;
}

The first selector will default the size of the first letter to xx-small but the hover class will
override this. This is where it may be desirable to use the !important keyword to force the xx-
small font. In this example, the two styles purely conflict. You would need to choose one over
the other.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

	320	 CHAPTER 4	 Use CSS3 in applications

Objective 4.6: Review
1.	 Correct answer: A

A.	 Correct: This is the correct syntax specifying the first paragraph child of the footer
element to have a smaller font.

B.	 Incorrect: The p.firstchild is not the correct syntax. It would need to be
p:first-child.

C.	 Incorrect: The colon after the footer is not correct syntax.

D.	 Incorrect: The => notation is not the correct syntax.

2.	 Correct answer: B

A.	 Incorrect: Styles cannot be nested inside each other in this way.

B.	 Correct: It is correct to first specify the H1 style, then specify the H1 styles for
H1 elements that are beneath an article element.

C.	 Incorrect: This will make all H1 elements italic.

D.	 Incorrect: This will make all H1 elements italic as the comma after article creates a
list of elements to apply the styles to.

3.	 Correct Answer:

aside {
 height:100px;
 width:50px;
 border: 2px solid black;
 transform: skew(-5deg);
 box-shadow: 5px 5px;
}

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

321

allow-same-origin value (sandbox attribute),  217
allow-top-navigation value (sandbox attribute),  217
altering the DOM,  28–34
altKey property, keyboard events,  141
animated UI (CSS3), creating,  288–298

2-D and 3-D transformations,  291–292
adjusting UI based on media queries,  292–297
CSS transitions,  289–290
hiding/disabling controls,  297–298

anonymous functions
callbacks,  167–169
event handling,  134–135

APIs (Application Program Interfaces), 72-84
AppCache API,  77–80
Geolocation API,  81–84
WebSocket, bidirectional communication,  157–161
Web Storage,  72–77
Web Worker,  172–177

AppCache API,  77–80
appearance

styling HTML box properties,  244–249
altering size,  244–245
bordering,  245–247
padding and margin,  247–249

styling HTML text properties
bold,  237
color,  236–237
italic,  238

appendChild method,  29
Application Programming Interfaces.  See APIs
applying styles

elements,  60–68
changing location of element,  61–63
showing/hiding elements,  67–68
transforms,  63–67

HTML box properties,  244–263
appearance attributes,  244–249
element position,  258–263
graphic effects,  249–258

Index

Symbols
2-D transformations, creating an animated UI,  291–292
3-D transformations, creating an animated UI,  291–292
@font-face keyword,  238

A
Abort method,  220
absolute positioning,  61, 259–262
accessing data

consuming data,  218–223
serializing, deserializing, and transmitting

data,  224–228
binary data,  225–228
JSON data,  225
XMLHttpRequest object,  224–225

validating user input, HTML5 elements,  190–209
content attributes,  206–209
input controls,  190–206

validating user input, JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

addColorStop method,  51
addEventListener method,  133–134, 146
adding HTML5 elements,  22–34

altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

advanced arrays,  122–125
:after pseudo-element,  304
AFunction method,  89
AJAX, creating dynamic webpages,  161–165
AJAX call, parameters,  164–165
alignment, applying to text,  240
allow-forms value (sandbox attribute),  217

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

322

arc method

bordering, styling HTML apps,  245–247
border-spacing property,  246
border-style property,  245
border-width property,  246
both value, wrap-flow property,  277
Bottom property, positioning elements,  61
box properties, styling HTML apps,  244–263

appearance attributes,  244–249
altering size,  244–245
bordering,  245–247
padding and margin,  247–249

element position,  258–263
graphic effects,  249–258

background images,  250–251
clipping,  257–258
gradients,  251–252
shadow effects,  252–257
transparency/opacity,  249–250

box-shadow property,  252
break keyword,  115, 129
bubbled events,  136–138
built-in functions, validating user input,  216
button input element, validating user input,  203–206

C
cache parameter, AJAX calls,  164
CACHE section, AppCache API manifest file,  78
callbacks,  156–170

anonymous functions,  167–169
bidirectional communication with WebSocket

API,  157–161
dynamic webpages, jQuery and AJAX,  161–165
this pointer,  169–170
wiring events with jQuery,  165–167

canceling events,  135–136
<canvas> element,  39–58

drawing curves,  43–47
drawing images,  52–53
drawing lines,  41–43
drawing text,  53–55
fill method,  49–52
path methods,  47–48
rect method,  48–49

CanvasGradient objects, filling,  50–52
caret, regular expressions,  212
cascading style sheets. 

See CSS3 (cascading style sheets)
case statements,  115

HTML text properties,  235–242
alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238
spacing,  241

arc method,  43
arrays,  117–120

advanced,  122–125
concat method,  118–119
indexOf and lastIndexOf methods,  119
join method,  119
length property,  118–119
reverse method,  119–120
slice method,  120
sort method,  120
special types,  121–122
splice method,  120

<article> element,  8–9
<aside> element,  11–12
assignment event handling,  133–134
attribute selectors (CSS3),  301
<audio> element,  38–39
autoplay attribute, <video> element,  35
auto value

hyphen property,  241
wrap-flow property,  277

B
background-image property,  250–251
background images, styling HTML apps,  250–251
:before pseudo-element,  304
beginPath method,  41, 47
behavioral program flow,  111
Bezier curves,  46–47
bezierCurveTo method,  43
BFunctionWithParam method,  89
bidirectional communication, WebSocket API,  157–161
binary data, serializing and deserializing,  225–228
blank <canvas> element,  40
blur events,  140
blur parameter

box-shadow property,  252–253
text-shadow property,  256

bold, applying to text,  237
border-color property,  245

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

323

creating

configuring timeouts and intervals, web worker
process,  180

CONNECTING value, readyState property,  161
consuming data,  218–223

JSON and XML,  219
XMLHttpRequest object,  219–223

content attributes, validating user input,  206–209
pattern specification,  207–208
placeholder attribute,  208
read-only controls,  206–207
required controls,  208–209
spell checker,  207

content elements
<article>,  8–9
<section>,  9–10

content layout,  266–287
flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

control2X parameter, bezierCurveTo method,  46
control2Y parameter, bezierCurveTo method,  46
controls, input.  See input controls
controls attribute, <video> element,  35
controlX parameter,  45, bezierCurveTo method,  46
controlY parameter,  45, bezierCurveTo method,  46
coordinate system, <canvas> element,  40
coords property,  83
core structure, HTML5 page,  3–4
counterclockwise parameter, drawing arcs,  44
counter increment, for loops,  126
counter variable, for loops,  126
createPattern method,  52
createRadialGradient method,  51
creating

animated UI (CSS3),  288–298
2-D and 3-D transformations,  291–292
adjusting UI based on media queries,  292–297
CSS transitions,  289–290
hiding/disabling controls,  297–298

custom events,  146
document structure,  2–19

HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for screen readers,  17–19
optimizing for search engines,  16–17

dynamic webpages, jQuery and AJAX,  161–165
objects and methods,  93–100

custom objects,  95–98

catch block (try...catch...finally constructs),  150
center value, text-align property,  240
change events,  139–140
changing location of elements,  61–63
checkbox input type, validating user input,  200–201
:checked pseudo-class,  302
checking for null values, exception handling,  154
checking value, app cache status property),  79
childNodes property,  31
clear method,  73
clear value, wrap-flow property,  277
click events,  141
clientX property, mouse events,  142
clientY property, mouse events,  142
clipping, styling HTML apps,  257–258
clip property,  257–258
CLOSED value, readyState property),  161
close method, WebSocket objects,  161
closePath method,  47
CLOSING value, readyState property,  161
code, writing code to interact with UI controls,  22–58

adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics),  55–58

code injection, preventing,  216–217
collapse value, visibility property,  68
color, applying to text,  236–237
color input element,  193
color parameter

box-shadow property,  252
text-shadow property,  256

color property,  236
color stop...n paramater, linear-gradient function,  252
column-count property, multi-columns,  274
column-gap property, multi-columns,  274
column-rule-color property, multi-columns,  274
column-rule property, multi-columns,  274
column-rule-style property, multi-columns,  274
column-rule-width property, multi-columns,  274
column-span property, multi-columns,  274
Columns property, multi-columns,  274
column-width property, multi-columns,  274
combining transformations,  67
concat method, arrays,  118–119
conditional operators,  112
conditional program flow,  111
configuration options, background images,  250

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

324

CSS3 (cascading style sheets)

dynamic,  189
static,  189

date input element,  193
datetime input element,  193
dblclick events,  142
declarative event handling,  132
declaring

bubbled events,  136–138
variables,  87

default audio controls,  39
default media controls,  36
deserializing data,  224–228

binary data,  225–228
JSON data,  225

determinate progress tasks,  13
direction parameter, linear-gradient function,  252
:disabled pseudo-class,  303
disabling controls, CSS3,  297–298
dispatchEvent method,  146
display property,  67, 297
<div> element,  15–16,  266–267
document.createElement method,  29
Document Object Model (DOM)

adding/modifying HTML5 elements,  22–23
altering,  28–34
selecting items,  23–28

documents, creating structure,  2–19
HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for search engines,  16–17
screen readers,  17–19

DOM (Document Object Model)
adding/modifying HTML5 elements,  22–23
altering,  28–34
events,  139–146

change events,  139–140
drag-and-drop functionality,  143–146
focus events,  140–141
keyboard events,  140–141
mouse events,  141–143

selecting items,  23–28
do...while loops,  128–129
downloading value (app cache status property),  79
drag-and-drop functionality, DOM events,  143–146
dragend events,  143
dragenter events,  143
drag events,  143
dragleave events,  143
dragover events,  143
dragstart events,  143

inheritance,  99–100
native objects,  94

web worker process,  172–180
configuring timeouts and intervals,  180
using web workers,  178–179
Web Worker API,  172–177
web worker limitations,  179–180

CSS3 (cascading style sheets)
creating an animated UI,  288–298

2-D and 3-D transformations,  291–292
adjusting UI based on media queries,  292–297
CSS transitions,  289–290
hiding/disabling controls,  297–298

finding elements using CSS selectors and
jQuery,  300–304

flexible content layout,  266–287
flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

structuring CSS files using CSS selectors,  305–308
styling HTML

box properties,  244–263
text properties,  235–242

CSS files, structuring with CSS selectors,  305–308
CSS selectors

finding elements,  300–304
structuring CSS files,  305–308

CSS transitions, animating objects,  289–290
ctrlKey property, keyboard events,  141
cubic-bezier value, transition-timing property,  290
currentTime method, <video> element,  38
curves, drawing with <canvas> element,  43–47
customEventHandler function,  146
CustomEvent object constructor,  146
custom events,  146
custom image elements, <video> element,  37
custom objects, creating and implementing,  95–98

D
data

access and security
consuming data,  218–223
serializing, deserializing, and transmitting

data,  224–228
validating user input, HTML5 elements,  190–209
validating user input, JavaScript,  211–217

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

325

events

radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

writing code to interact with UI controls,  22–58
adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

element selectors (CSS3),  300–301
else keyword,  113
email input type, validating user input,  198–199
:enabled pseudo-class,  303
enableHighAccuracy property (PositionOptions

object),  81
endAngle parameter, drawing arcs,  44
end value, wrap-flow property,  277
endX parameter, bezierCurveTo method,  45-46
endY parameter,  bezierCurveTo method,  45-46
equality operators,  113
error handling, XMLHttpRequest object,  221
error method,  83
eval function, preventing code injection,  217
evaluating expressions,  112–116

if statements,  113–115
switch statements,  115–116
ternary operators,  116

evenNumberCheck method,  123, 124
event bubbling,  138
event listeners,  131
event objects,  131–132
events

oncached,  80
onchecking,  80
ondownloading,  80
onerror,  80
onnoupdate,  80
onobsolete,  80
onprogress,  80
onreadystatechange,  219
ontimeout,  219
onupdateready,  80
raising and handling,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135

drawImage method,  52
drawing, <canvas> element

curves,  43–47
images,  52–53
lines,  41–43
text,  53–55

drop events,  143
dynamic data,  189
dynamic webpages, creating with jQuery and

AJAX,  161–165

E
ease-in-out value, transition-timing property,  290
ease-in value, transition-timing property,  290
ease-out value, transition-timing property,  290
ease value, transition-timing property,  290
elements

adding/modifying,  22–34
altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

applying styles,  60–68
changing location of element,  61–63
showing/hiding elements,  67–68
transforms,  63–67

<article>,  8–9
<aside>,  11–12
<div>,  15–16,  266–267
<figcaption>,  12–13
<figure>,  12–13
Finding, CSS selectors and jQuery,  300–304
<header> and <footer>,  5
<hgroup>,  7
<mark>,  14
<nav>,  6
position, styling HTML apps,  258–263
<progress>,  13–14
<section>,  9–10
<table>,  15–16
validating user input,  190–209

button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

326

every method

flow-from property,  286
flow-into property,  286
focus events,  140–141
focusin events,  140
focusout events,  140
font-family property,  238
font object

applying bold to text,  237
applying italic to text,  238

fonts, applying styles to,  238–239
font-size property,  239
font typeface property,  238
font-weight CSS property,  237
<footer> element,  5
forEach method,  124
for...in loops,  127
for loops,  126–127
Form.Submit method, serializing and deserializing

binary data,  226–227

G
Geolocation API,  81–84
getAllResponseHeaders method,  220
getCurrentPosition method, Geolocation API,  81–83
getElementById method,  23, 25, 30, 60
getElementsByClassName method,  23, 26
getElementsByTagName method,  23, 26
getItem method,  73
getResponseHeader method,  220
global namespace, avoiding use when establishing

object scope,  90–91
global scope variables,  87
gradients

filling CanvasGradient objects,  50–52
styling HTML apps,  251–252

graphic effects, styling HTML apps,  249–258
background images,  250–251
clipping,  257–258
gradients,  251–252
implementing <canvas> element,  39–58

drawing curves,  43–47
drawing images,  52–53
drawing lines,  41–43
drawing text,  53–55
fill method,  49–52
path methods,  47–48
rect method,  48–49

shadow effects,  252–257

assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

wiring with jQuery,  165–167
every method,  122–123
exception handling,  111, 149–154

checking for null values,  154
try...catch...finally constructs,  149–154

exclusions, flexible content layout,  276–279
expression element, for loops,  126
expressions

evaluating,  112–116
if statements,  113–115
switch statements,  115–116
ternary operators,  116

regular, validating user input,  211–215

F
FALLBACK section, AppCache API manifest file,  78
<figcaption> element,  12–13
<figure> element,  12–13
fill method, <canvas> element,  49–52
fillRect method,  49
fillStyle property,  50
filter method,  124
finally block (try...catch...finally constructs),  151
:first-child pseudo-element,  303
firstChild property,  31
:first-letter pseudo-element,  303
:first-line pseudo-element,  304
fixed positioning,  258–259
flex-direction style, flexible box,  267
flexible box model, content layout,  266–273
flexible content layout,  266–287

flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

flex-pack style, flexible box,  267
flex-wrap property,  272–273
float

flexible content layout,  276–279
property,  262–263

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

327

HTML5 semantic markup

inheritance,  99–100
native objects,  94

creating structure,  2–19
HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for search engines,  16–17
screen readers,  17–19

establishing scope of objects and variables,  86–91
avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

HTML5 APIs,  72–84
AppCache API,  77–80
Geolocation API,  81–84
Web Storage,  72–77

HTML5 elements.  See also HTML5 semantic markup
adding/modifying,  22–34

altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

applying styles,  60–68
changing location of element,  61–63
showing/hiding elements,  67–68
transforms,  63–67

<table>,  15–16
validating user input,  190–209

button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208
radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

writing code to interact with UI controls,  22–58
adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

HTML5 semantic markup,  2–15.  See also HTML5
elements

<article> element,  8–9

transparency/opacity,  249–250
grid alignment, content layout,  280–285
grid-column-span property,  285
grid-columns property,  282
grid-row-span property,  285
grid-rows property,  282
grouping content,  286–287

H
handling

errors, XMLHttpRequest object,  221
events,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135
assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

exceptions,  111, 149–154
checking for null values,  154
try...catch...finally constructs,  149–154

hasChildNodes property,  31
<header> element,  5
height attribute, <video> element,  35
height parameter, rect method,  48
hexadecimal value, color property,  236
<hgroup> element,  7
hidden value, visibility property,  68
hiding

controls, CSS3,  297–298
elements,  67–68

hooking up events,  131
:hover pseudo-class,  302
h-shadow parameter

box-shadow property,  252
text-shadow property,  256

HTML5 APIs,  72–84
AppCache API,  77–80
Geolocation API,  81–84
Web Storage,  72–77

HTML5 documents
creating and implementing objects and

methods,  93–100
custom objects,  95–98

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

328

HTML applications, styling

arrays,  117–120
callbacks,  156–170
evaluating expressions,  112–116
exception handling,  149–154
iterative control flow,  125–129
raising and handling events,  130–147
special types of arrays,  121–122
web worker process,  172–180

!important keyword, overriding inheritance,  307–308
increment, for loops,  126
indeterminate progress tasks,  14
indexed positions, arrays,  117
indexOf method,  119
inheritance,  99–100, 307–308
inherit value, visibility property,  68
inline display,  68
input controls, validating user input,  190–206

button element,  205–206
button input type,  203–205
checkbox input type,  200–201
email input type,  198–199
password input control,  197–198
radio input type,  201–202
range input type,  202–203
text and textarea input types,  193–195
url input type,  195–197

insertBefore method,  30
inset parameter, box-shadow property,  252, 255
intervals, web worker process,  180
isFinite function, validating data,  216
isNaN function, validating data,  216
italic, applying to text,  238
iterative flow control,  125–129

do...while loops,  128–129
for...in loops,  127
for loops,  126–127
short circuiting loops,  129
while loops,  127–128

iterative program flow,  111

J
JavaScript

validating user input,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

writing code to interact with UI controls,  22–58
adding/modifying HTML elements,  22–34

<aside> element,  11–12
core structure of an HTML5 page,  3–4
<div> element,  15–16
<figcaption> and <figure> elements,  12–13
<header> and <footer> elements,  5
<hgroup> element,  7
<mark> element,  14
<nav> element,  6
<progress> element,  13–14
<section> element,  9–10

HTML applications, styling
box properties,  244–263

appearance attributes,  244–249
element position,  258–263
graphic effects,  249–258

text properties,  235–242
alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238
spacing,  241

hyphenation, applying to text,  241–242
hyphen property,  241

I
identity operators,  113
idle value, app cache staus property,  79
if keyword,  113
iFrames, preventing code injection,  217
if statements,  113–115
images, drawing with <canvas> element,  52–53
implementation

document structure and objects
applying styling to HTML5 elements,  60–68
creating and implementing objects and

methods,  93–100
creating document structure,  2–19
establishing scope of objects and

variables,  86–91
HTML5 APIs,  72–84

graphics, <canvas> element,  39–58
media controls,  34–39

<audio> element,  38–39
<video> element,  35–38

program flow,  112–129
advanced arrays,  122–125

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

329

map method

layout containers, creating document structure,  15–16
layout, content,  266–287

flexible box model,  266–273
grid alignment,  280–285
multi-column layout,  273–276
position, floating, and exclusions,  276–279
regions, grouping, and nesting,  286–287

left property, positioning elements,  61
left value, text-align property,  240
length property

arrays,  118–119
storage objects,  73

leveraging, this keyword,  91
lifetime, variables and variable scope,  87–90
limitations, web workers,  179–180
linear-gradient function,  251–252
linear gradients,  51
linear value, transition-timing property,  290
lineCap property,  43
lines, drawing with <canvas> element,  41–43
lineTo method,  41
lineWidth property,  42
:link pseudo-class,  302
LoadFromStorage method,  74
local scope variables,  87
localStorage object,  72
local Web storage,  72
location services, Geolocation API,  81–84
logical operators,  112
loop attribute, <video> element,  35
loops

do...while,  128–129
for,  126–127
for...in,  127
short circuiting,  129
while,  127–128

M
manifest file, AppCache API,  77–79
manipulation, document structure and objects

applying styling to HTML5 elements,  60–68
creating and implementing objects and

methods,  93–100
creating document structure,  2–19
establishing scope of objects and variables,  86–91
HTML5 APIs,  72–84

manual value, hyphen property,  241
map method,  125

implementing graphics with <canvas>
element,  39–58

implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

JavaScript alert method,  25
JavaScript messaging framework, Web Worker API

and,  176
JavaScript Object Notification (JSON) strings,  76
join method,  119
jQuery,  28

creating dynamic webpages,  161–165
finding elements,  300–304
wiring events,  165–167

jQuery.serialize method, serializing and deserializing
binary data,  227–228

JSON data
consuming data,  219
serializing and deserializing,  225

JSON (JavaScript Object Notification) strings,  76
justify value, text-align property,  240

K
keyboard events,  140–141
keyCode property, keyboard events,  141
keydown events,  140
key method,  73
keypress events,  140
keyup events,  140
keywords

break,  115, 129
else,  113
@font-face,  238
if,  113
!important, overriding inheritance,  307–308
leveraging this keyword,  91
new,  117
optional default,  115
self,  177
switch,  115
throw,  153
var, declaring variables,  87

L
lastChild property,  31
lastIndexOf method,  119

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

330

margins, styling HTML apps

getItem,  73
getResponseHeader,  220
indexOf,  119
insertBefore,  30
JavaScript alert,  25
join,  119
jQuery.serialize, serializing and deserializing binary

data,  227–228
key,  73
lastIndexOf,  119
lineTo,  41
LoadFromStorage,  74
map,  125
moveTo,  41, 45
multiplyNumbers,  154
MyCallBack,  156
object.create,  99
onerror, Worker objects,  177
onmessage, Worker objects,  176
Open,  220
path, <canvas> element,  47–48
pause(),  38
play(),  38
pop,  121
postMessage

passing parameters,  179
Worker objects,  176

push,  121
quadradicCurveTo,  43
quadraticArc,  45
quadraticCurveTo,  45
querySelector,  23,  27–28
querySelectorAll,  23, 27–28
rect, <canvas> element,  48–49
reduce,  125
reduceRight,  125
removeChild,  32
removeEventListener,  133–134
removeItem,  73
removeNode,  32
replaceChild,  33
replaceNode,  33
reverse,  119–120
rotate, applying transforms to elements,  64–65
scale, applying transforms to elements,  66
Send,  220
setInterval,  180
setItem,  73
setRequestHeader,  220

margins, styling HTML apps,  247–249
<mark> element,  14
matrix 3-D transformation,  291
max attribute, <progress> element,  13
maximumAge property (PositionOptions object),  82
maximum value, wrap-flow property,  277
media controls,  34–39

<audio> element,  38–39
<video> element,  35–38

media queries, adjusting UI animation,  292–297
message property, exception objects,  150
methods

Abort,  220
addColorStop,  51
addEventListener,  133–134, 146
AFunction,  89
appendChild,  29
arc,  43
beginPath,  41, 47
bezierCurveTo,  43
BFunctionWithParam,  89
clear,  73
closePath,  47
close, WebSocket objects,  161
concat,  118–119
createPattern,  52
createRadialGradient,  51
creating and implementing,  93–100

custom objects,  95–98
inheritance,  99–100
native objects,  94

currentTime,  38
dispatchEvent,  146
document.createElement,  29
drawImage,  52
error,  83
evenNumberCheck,  123, 124
every,  122–123
fill, <canvas> element,  49–52
fillRect,  49
filter,  124
forEach,  124
Form.Submit, serializing and deserializing binary

data,  226–227
getAllResponseHeaders,  220
getCurrentPosition (Geolocation API),  81–83
getElementById,  23, 25, 30, 60
getElementsByClassName,  23, 26
getElementsByTagName,  23, 26

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

331

overriding inheritance, !important keyword

new keyword,  117
none value, hyphen property,  241
null values, exception handling,  154
number input element,  193
number property, exception objects,  150

O
object.create method,  99
object inheritance,  99–100
objects

creating and implementing,  93–100
custom objects,  95–98
inheritance,  99–100
native objects,  94

scope,  86–91
avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

Obsolete value, app cache status property,  79
offsetX property, mouse events,  142
offsetY property, mouse events,  142
oncached event,  80
onchecking event,  80
ondownloading event,  80
onerror event,  80
onerror method, Worker objects,  177
onmessage event handlers,  160
onmessage method, Worker objects,  176
onnoupdate event,  80
onobsolete event,  80
onprogress event,  80
onreadystatechange event,  219
ontimeout event,  219
onupdateready event,  80
opacity property,  249–250
opacity, styling HTML apps,  249–250
Open method,  220
OPEN value, readyState property,  161
operators

conditional,  112
equality,  113
identity,  113
logical,  112
ternary,  116

optional default keyword,  115
OR logical operator,  114
overriding inheritance, !important keyword,  307–308

setTimeout,  180
shift,  121–122
skew, applying transforms to elements,  66
slice,  120
some,  123
sort,  120
splice,  120
stroke,  41
strokeText,  53
success,  83
swapCache,  79
terminate, Worker objects,  176
translate, applying transforms to elements,  65
translateX,  65
translateY,  65
unshift,  121–122
update,  79
volume,  38
watchPosition (Geolocation API),  83–84
WillCallBackWhenDone,  156
WorkWithCanvas,  153

modifying HTML5 elements,  22–34
altering the DOM,  28–34
DOM (Document Object Model),  22–23
selecting items in the DOM,  23–28

month input element,  193
mousedown events,  142
mouseenter events,  142
mouse events,  141–143
mouseleave events,  142
mousemove events,  142
mouseover events,  142
mouseup events,  142
moveTo method,  41, 45
multi-column layout, content,  273–276
multi-dimensional arrays,  117
multiplyNumbers method,  154
MyCallBack function,  156

N
named flow,  286
name property, exception objects,  150
native objects, creating and implementing,  94
<nav> element,  6
nesting conditional statements,  114
nesting content,  286–287
NETWORK section, AppCache API manifest file,  78

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

332

padding, styling HTML apps

iterative flow control,  125–129
raising and handling events,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135
assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

special types of arrays,  121–122
web worker process,  172–180

configuring timeouts and intervals,  180
using web workers,  178–179
Web Worker API,  172–177
web worker limitations,  179–180

<progress> element,  13–14
properties

background-image,  250–251
border-color,  245
border-spacing,  246
border-style,  245
border-width,  246
Bottom,  61
box-shadow,  252
clip,  257–258
color,  236
coords,  83
display,  67, 297
DOM elements,  31
exception objects,  150
fillStyle,  50
flex-wrap,  272–273
float,  262–263
flow-from,  286
flow-into,  286
font-family,  238
font-size,  239
font typeface,  238
font-weight,  237
grid-columns,  282
grid-column-span,  285
grid-rows,  282
grid-row-span,  285
hyphen,  241
keyboard events,  141
Left,  61
length

P
padding, styling HTML apps,  247–249
parameters

AJAX call,  164–165
bezierCurveTo method,  46
box-shadow property,  252
drawing arcs,  44
linear-gradient function,  251–252
postMessage method,  179
quadraticCurveTo method,  45–46
rect method,  48
text-shadow property,  256–257
WebSocket constructors,  159
XMLHttpRequest open method,  221

passing parameters, postMessage method,  179
password input control, validating user input,  197–198
path methods, <canvas> element,  47–48
pattern attribute, validating user input,  207–208
pause() method, <video> element,  38
placeholder attribute, validating user input,  208
play() method, <video> object,  38
polyline,  42
pop method,  121
positionError object,  83
PositionOptions object, properties available,  81
position property,  258–259
poster attribute, <video> element,  35
postMessage method, passing parameters,  179
preventing code injection,  216–217
program flow,  112–129

advanced arrays,  122–125
arrays,  117–120
behavioral,  111
callbacks,  156–170

anonymous functions,  167–169
bidirectional communication with WebSocket

API,  157–161
dynamic webpages, jQuery and AJAX,  161–165
this pointer,  169–170
wiring events with jQuery,  165–167

conditional,  111
evaluating expressions,  112–116

if statements,  113–115
switch statements,  115–116
ternary operators,  116

exception handling,  149–154
checking for null values,  154
try...catch...finally constructs,  149–154

iterative,  111

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

333

scale 3-D transformation

raising an error (throwing an exception),  153
raising events,  130–147

addEventListener and removeEventListener
methods,  133–134

anonymous functions,  134–135
assignment event handling,  133–134
bubbled events,  136–138
canceling events,  135–136
custom events,  146
declarative event handling,  132
DOM events,  139–146
event objects,  131–132

range input type, validating user input,  202–203
readonly attribute, validating user input,  206–207
readyState property,  160–161, 220
rect method, <canvas> element,  48–49
reduce method,  125
reduceRight method,  125
referencing elements, CSS files,  306–307
regions, content layout,  286–287
regular expressions, validating user input,  211–215
relative positioning,  61, 259–261
removeChild method,  32
removeEventListener method,  133–134
removeItem method,  73
removeNode method,  32
replaceChild method,  33
replaceNode method,  33
:required pseudo-class,  302
required controls, validating user input,  208–209
reset input element,  193, 204
responseBody property (XMLHttpRequest object),  220
Response property (XMLHttpRequest object),  220
responseText property (XMLHttpRequest object),  220
responseType property (XMLHttpRequest object),  220
responseXML property (XMLHttpRequest object),  220
reverse method,  119–120
RGB function, color property,  236
Right property, positioning elements,  61
right value, text-align property,  240
rotate 3-D transformation,  291
rotate method, applying transforms to elements,  64–65
row-reverse, flexbox content,  269

S
sandbox attribute values,  217
Scalable Vector Graphics (SVG),  55–58
scale 3-D transformation,  291

arrays,  118–119
storage objects,  73

lineCap,  43
lineWidth,  42
mouse events,  142
multi-column,  274
opacity,  249–250
position,  258–259
PositionOptions object,  81
readyState,  160–161
Right,  61
success, AJAX calls,  164
text-align,  240
textAlign,  54
text-indent,  240
text-shadow,  252, 256–257
timestamp,  83
Top,  61
transform,  63
transition-delay,  290
transition-duration,  290
transition-property,  290
transition-timing,  290
<video> element,  35, 38
visibility,  68, 297
visibility CSS,  68
window.navigator,  81
wrap-flow,  276–279
wrap-margin,  278
XMLHttpRequest object,  220
z-index,  261

pseudo-classes, finding elements,  301–304
pseudo-elements, finding elements,  301–304
push method,  121

Q
quadraticArc method,  45
quadraticCurveTo method,  43, 45
querySelectorAll method,  23, 27–28
querySelector method,  23, 27–28
queues (arrays),  121

R
radial gradients,  51
radio input type, validating user input,  201–202
radius parameter, drawing arcs,  44

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

334

scale method, applying transforms to elements

short circuiting loops,  129
showing elements,  67–68
size, styling HTML box properties,  244–245
sizing arrays,  117
skew method, applying transforms to elements,  66
slice method,  120
some method,  123
sort method,  120
spacing, applying to text,  241
special arrays,  121–122
special characters, regular expressions,  212–213
spellcheck attribute, validating user input,  207
splice method,  120
spread parameter, box-shadow property,  252-254
src attribute, <video> element,  35
stacked case statements,  116
stacks (arrays),  121
startAngle parameter, drawing arcs,  44
start value, wrap-flow property,  277
statements

if,  113–115
switch,  115–116

static data,  189
static layout,  258
status property

AppCace API,  79
XMLHttpRequest object,  220

statusText property (XMLHttpRequest object),  220
stroke method,  41
strokeText method,  53
structure, creating document structure,  2–19

HTML5 semantic markup,  2–15
layout containers,  15–16
optimizing for search engines,  16–17
screen readers,  17–19

structuring CSS files, CSS selectors,  305–308
style selectors (CSS3),  300–301
styles, flexible boxes,  267
styling HTML, 60-68

box properties,  244–263
appearance attributes,  244–249
element position,  258–263
graphic effects,  249–258

text properties,  235–242
alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238

scale method, applying transforms to elements,  66
scope, objects and variables,  86–91

avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

screen readers, creating document structure,  17–19
screenX property, mouse events,  142
screenY property, mouse events,  142
search engine optimization (SEO),  16–17
search engines, creating document structure,  16–17
<section> element,  9–10
secure data

consuming data,  218–223
serializing, deserializing, and transmitting

data,  224–228
binary data,  225–228
JSON data,  225
XMLHttpRequest object,  224–225

validating user input, HTML5 elements,  190–209
content attributes,  206–209
input controls,  190–206

validating user input, JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

selectors (CSS3), finding elements,  300–304
choosing the correct selector to reference an

element,  301
defining element, style, and attribute

selectors,  300–301
selector syntax, jQuery,  165
self keyword,  177
Send function, WebSocket API,  160
Send method,  220
SEO (search engine optimization),  16–17
serializing data,  224–228

binary data,  225–228
JSON data,  225

sessionStorage object,  72
session Web storage,  72
setInterval method,  180
setItem method,  73
setRequestHeader method,  220
setTimeout method,  180
shadow effects, styling HTML apps,  252–257
shapes

fill method,  49–52
rect method,  48–49

shiftKey property, keyboard events,  141
shift method,  121–122

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

335

user input, validating

transitions (CSS), animating objects,  289–290
transition-timing-property,  290
translate 3-D transformation,  291
translate method, applying transforms to elements,  65
translateX method,  65
translateY method,  65
transmitting data,  224–228
transparency, styling HTML apps,  249–250
try block (try...catch...finally constructs),  150
try…catch block (try...catch...finally constructs),  150
try...catch...finally constructs, exception

handling,  149–154
two-dimensional arrays,  118

U
UI controls, writing code to interact with,  22–58

adding/modifying HTML elements,  22–34
implementing graphics with <canvas> element,  39–

58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

Uncached value, app cache status property,  79
unshift method,  121–122
update method,  79
UpdateReady value, app cache status property,  79
url input type, validating user input,  195–197
user input, validating

HTML5 elements,  190–209
button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208
radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

spacing,  241
submit input element,  193, 204
subworkers, web worker process,  180
success method,  83
success property, AJAX calls,  164
SVG (Scalable Vector Graphics),  55–58
swapCache method,  79
switch keyword,  115
switch statements,  115–116

T
<table> element,  15–16
tel input element,  193
terminate method, Worker objects,  176
ternary operators,  116
text-align property,  54, 240
textarea input control, validating user input,  193–195
text, drawing with <canvas> element,  53–55
text drop shadows.  See shadow effect
text-indent property,  240
text input control, validating user input,  193–195
text-shadow property,  252, 256–257
text, styling HTML properties,  235–242

alignment,  240
bold,  237
color,  236–237
fonts,  238–239
hyphenation,  241–242
italic,  238
spacing,  241

this keyword, leveraging,  91
this pointer,  169–170
throwing an exception (raising an error),  153
throw keyword,  153
time input element,  193
timeout property

PositionOptions object,  81
XMLHttpRequest object,  220

timeouts, web worker process,  180
timestamp property,  83
top property, positioning elements,  61
transformations, creating an animated UI,  291–292
transform property,  63
transforms, applying to HTML5 elements,  63–67
transition-delay property,  290
transition-duration property,  290
transition-property property,  290

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

336

validating user input

Web Storage API,  72–77
Web Worker API,  172–177
web worker process, creating,  172–180

configuring timeouts and intervals,  180
using web workers,  178–179
Web Worker API,  172–177
web worker limitations,  179–180

web workers,  178–179
week input element,  193
while loops,  127–128
width parameter

rect method,  48
<video> element,  35

WillCallBackWhenDone function,  156
window.navigator property,  81
wiring events, jQuery,  165–167
withCredentials property (XMLHttpRequest

object),  220
Worker objects,  176
WorkWithCanvas method,  153
wrap-flow property,  276–279
wrap-margin property,  278
writing code, interaction with UI controls,  22–58

adding/modifying HTML elements,  22–34
implementing graphics with <canvas>

element,  39–58
implementing media controls,  34–39
SVG (Scalable Vector Graphics,  55–58

X
XML data, consuming data,  219
XMLHttpRequest object

consuming data,  219–223
properties,  220
transmitting data,  224–225

x, y parameter, rect method,  48

Z
z-index property,  261

V
validating user input

HTML5 elements,  190–209
button element,  205–206
button input type,  203–205
checkbox input type,  200–201
content attributes,  206–209
email input type,  198–199
password input control,  197–198
pattern specification,  207–208
placeholder attribute,  208
radio input type,  201–202
range input type,  202–203
read-only controls,  206–207
required controls,  208–209
spell checker,  207
text and textarea input types,  193–195
url input type,  195–197

JavaScript,  211–217
built-in functions,  216
preventing code injection,  216–217
regular expressions,  211–215

value attribute, <progress> element,  13
values

hyphen property,  241
status property (AppCace API),  79
text-align property,  240
visibility property,  68

variables, scope,  86–91
avoiding use of global namespace,  90–91
leveraging the this keyword,  91
lifetime,  87–90

var keyword, declaring variables,  87
<video> element,  35–38
visibility property,  68, 297
visible value, visibility property,  68
:visited pseudo-class,  302
volume method, <video> element,  38
v-shadow parameter

box-shadow property,  252
text-shadow property,  256

W
watchPosition method, Geolocation API,  83–84
web services, consuming JSON and XML data,  219
WebSocket API, bidirectional communication,  157–161
WebSocket constructors, parameters,  159

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

About the author

RICK DELORME is a Senior Software Architect and Implementer. Since graduating with an
Information Systems degree from St. Francis Xavier University in Antigonish, Nova Scotia, 14
years ago, he has worked on large, multi-factorial projects ranging from call center applica-
tions, to postal industry applications, and more recently, including applications in health care.
Rick has leveraged all the elements of the Microsoft development stack to deliver cohesive
solutions. The addition of HTML5 and CSS3 has provided Rick (and all developers) with more
tools to make the end-user experience richer and to simplify development of web applica-
tions.

Throughout Rick’s career, he has authored several books related to debugging of .NET
applications, design and development of custom web components, .NET deployment, and
general .NET development, since the first pre-release of the .NET Framework.

When Rick is not working, he enjoys spending time with his family and supporting his
kids in their various activities. Rick currently resides in Ontario, Canada, with his wife, three
children, and two dogs.

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

This page intentionally left blank

From the Library of Ida Schander

www.hellodigi.ir

ptg14200515

Microsoft Press

Free ebooks

From technical overviews to drilldowns on special topics, get

free ebooks from Microsoft Press at:

www.microsoftvirtualacademy.com/ebooks

Download your free ebooks in PDF, EPUB, and/or Mobi for

Kindle formats.

Look for other great resources at Microsoft Virtual Academy,

where you can learn new skills and help advance your career

with free Microsoft training delivered by experts.

From the Library of Ida Schander

www.hellodigi.ir

http://www.microsoftvirtualacademy.com/ebooks

ptg14200515

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

From the Library of Ida Schander

www.hellodigi.ir

http://aka.ms/tellpress

	Contents
	Introduction
	Microsoft certifications
	Free ebooks from Microsoft Press
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Preparing for the exam
	Chapter 1 Implement and manipulate document structures and objects
	Objective 1.1: Create the document structure
	Using HTML5 semantic markup
	Creating a layout container in HTML
	Optimizing for search engines
	Optimizing for screen readers
	Objective summary
	Objective review

	Objective 1.2: Write code that interacts with UI controls
	Adding or modifying HTML elements
	Implementing media controls
	Implementing graphics with HTML5 <canvas> and SVG
	Objective summary
	Objective review

	Objective 1.3: Apply styling to HTML elements programmatically
	Changing the location of an element
	Applying a transform
	Showing and hiding elements
	Objective summary
	Objective review

	Objective 1.4: Implement HTML5 APIs
	Using the storage API
	Using the AppCache API
	Using the Geolocation API
	Objective summary
	Objective review

	Objective 1.5: Establish the scope of objects and variables
	Establishing the lifetime of variables and variable scope
	Avoiding using the global namespace
	Leveraging the this keyword
	Objective summary
	Objective review

	Objective 1.6: Create and implement objects and methods
	Implementing native objects
	Creating custom objects
	Implementing inheritance
	Objective summary
	Objective review

	Answers

	Chapter 2 Implement program flow
	Objective 2.1: Implement program flow
	Evaluating expressions
	Working with arrays
	Implementing special types of arrays
	Using advanced array methods
	Implementing iterative control flow
	Objective summary
	Objective review

	Objective 2.2: Raise and handle an event
	Using events
	Handling DOM events
	Creating custom events
	Objective summary
	Objective review

	Objective 2.3: Implement exception handling
	Implementing try…catch…finally constructs
	Checking for null values
	Objective summary
	Objective review

	Objective 2.4: Implement a callback
	Implementing bidirectional communication with the WebSocket API
	Making webpages dynamic with jQuery and AJAX
	Wiring up an event with jQuery
	Implementing a callback with an anonymous function
	Using the this pointer
	Objective summary
	Objective review

	Objective 2.5: Create a web worker process
	Getting started with a web worker process
	Creating a worker process with the Web Worker API
	Using web workers
	Understanding web worker limitations
	Configuring timeouts and intervals
	Objective summary
	Objective review

	Answers

	Chapter 3 Access and secure data
	Objective 3.1: Validate user input by using HTML5 elements
	Choosing input controls
	Implementing content attributes
	Objective summary
	Objective review

	Objective 3.2: Validate user input by using JavaScript
	Evaluating regular expressions
	Evaluating regular expressions in JavaScript
	Validating data with built-in functions
	Preventing code injection
	Objective summary
	Objective review

	Objective 3.3: Consume data
	Consuming JSON and XML data by using web services
	Using the XMLHttpRequest object
	Objective summary
	Objective review

	Objective 3.4: Serialize, deserialize, and transmit data
	Sending data by using XMLHttpRequest
	Serializing and deserializing JSON data
	Serializing and deserializing binary data
	Objective summary
	Objective review

	Answers

	Chapter 4 Use CSS3 in applications
	Objective 4.1: Style HTML text properties
	Apply styles to text appearance
	Apply styles to text font
	Applying styles to text alignment, spacing, and indentation
	Applying styles to text hyphenation
	Applying styles for a text drop shadow
	Objective summary
	Objective review

	Objective 4.2: Style HTML box properties
	Applying styles to alter appearance attributes
	Applying styles to alter graphic effects
	Apply styles to establish and change an element’s position
	Objective summary
	Objective review

	Objective 4.3: Create a flexible content layout
	Implement a layout using a flexible box model
	Implementing a layout using multi-column
	Implementing a layout using position, floating, and exclusions
	Implementing a layout using grid alignment
	Implementing a layout using regions, grouping, and nesting
	Objective summary
	Objective review

	Objective 4.4: Create an animated and adaptive UI
	Animating objects by applying CSS transitions
	Applying 3-D and 2-D transformations
	Adjusting UI based on media queries
	Hiding or disabling controls
	Objective summary
	Objective review

	Objective 4.5: Find elements using CSS selectors and jQuery
	Defining element, style, and attribute selectors
	Choosing the correct selector to reference an element
	Finding elements by using pseudo-elements and pseudo-classes
	Objective summary
	Objective review

	Objective 4.6: Structure a CSS file by using CSS selectors
	Referencing elements correctly
	Implementing inheritance
	Overriding inheritance using !important
	Styling an element based on pseudo-elements and pseudo-classes
	Objective summary
	Objective review

	Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

